A WASSERSTEIN MINIMUM VELOCITY APPROACH TO LEARNING UNNORMALIZED MODELS

Ziyu Wang, <u>Shuyu Cheng</u>, Yueru Li, Jun Zhu, Bo Zhang wzy196@gmail.com; Tsinghua University

Overview

- EBM: interesting on its own; as score estimator for implicit VI, mutual information estimation, etc
- Optimizing the learning objective (score matching) is nontrivial since it involves second-order derivatives
- We present scalable approximations to a family of learning objectives including score matching, by connecting them to Wasserstein gradient flows
- We derive a CD-1-like approximation to these objectives
- Applications: Riemannian score matching for implicit VAEs and WAEs with manifold-valued prior

Background: Manifold and Flows

Differential and gradient on general manifolds: for f: M → R,
(df)_{c(t_0)} (dc/dt |_{t_0}) = d/dt f(c(t)) |_{t_0}, ⟨grad_pf, v⟩ = (df)_p for any c: [0, a] → M, p ∈ M, v ∈ T_pM.
The 2-Wasserstein space P(X):
Tangent vector v ∈ T_pP(X) ⇔ vector field v on X
-⟨v, v'⟩_p = E_{p(x)}⟨v(x), v'(x)⟩_x

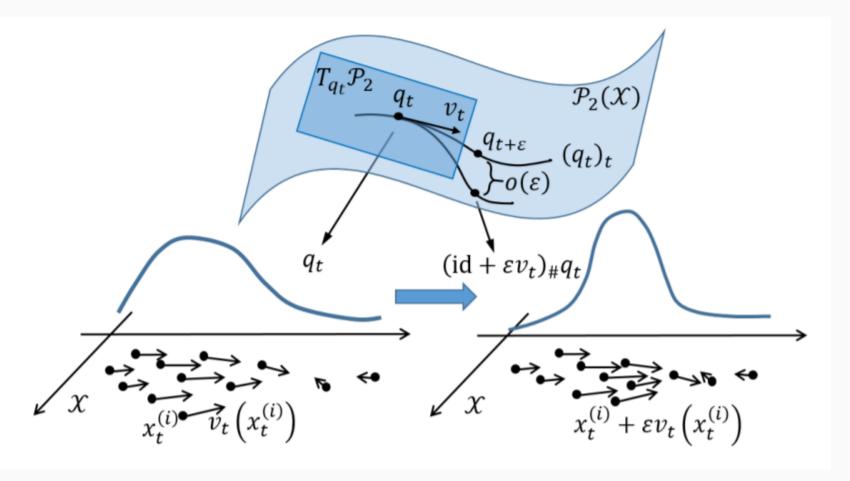


Image from Liu et al (2019)

 $-(\operatorname{grad}_p\operatorname{KL}_q)(u) = \operatorname{grad}_u \log \frac{p(u)}{q(u)}$

• Gradient flow of $\mathcal{F}: \mathcal{M} \to \mathbb{R}: \frac{dc}{dt} = -\text{grad}_p \mathcal{F}.$

EBMs and Score Matching

• EBM:

$$q(x;\theta) := \frac{1}{Z(\theta)} \exp(-\mathcal{E}(x;\theta)),$$

 ${\cal E}$ parameterized by e.g. NNs.

MLE intractable: ∇_θ log q(x; θ) involves ∇_θ log Z = E_{q(x;θ)}(∇_θ log E).
Score estimation: match

 $D_{Fisher}(p|q) = \mathbb{E}_p \|\nabla \log p - \nabla \log q\|^2$

which does not depend on Z.

• Hyvarinen (2005):

$$D_{Fisher}(p|q) = \mathbb{E}_p \left[-\Delta \mathcal{E} + \frac{1}{2} \|\nabla \mathcal{E}\|^2 \right] + \underbrace{\operatorname{const}}_{\text{only depends on } p}$$

Estimation possible but expensive (involves $\Delta \mathcal{E}$).

Background: Sampling Dynamics

Common samplers can be interpreted as simulating the gradient flow of $KL_p : q \mapsto KL(q||p)$, in different spaces of probability measures:

• $\mathcal{P}(\mathcal{X}), \mathcal{X} = \mathbb{R}^d$: Langevin dynamics

 $dx := \operatorname{grad}_x \log p(x) dt + \sqrt{2} dB.$

• $\mathcal{P}(\mathcal{X}), \mathcal{X}$ general manifold: Riemannian Langevin dynamics $\log |G|$

 $dx := V(x)dt + \sqrt{2G^{-1}(x)}dB, \qquad V^i(x) := g^{ij}\partial_j \left(\log p(x) - \frac{\log |G(x)|}{2}\right) + \partial_j g^{ij}$

(p is the density w.r.t. the Hausdorff measure here)

 \bullet The $\mathcal H ext{-}Wasserstein$ space: Stein Variational Gradient Descent

• Other examples: birth-death LD, stochastic particle optimization

Score Matching as Minimum Velocity Learning

$$D_{Fisher}(p|q) = \|\operatorname{grad}_p\operatorname{KL}_q\|^2$$

where $\|\cdot\|$ is in defined in $\mathcal{P}(\mathcal{X})$. Interpretation: the **initial velocity** of the Wasserstein gradient flow of KL_q connecting p and q. **Wasserstein MVL**: switch from $\mathcal{P}(\mathcal{X})$ to other spaces of probability measures.

Example: Score Matching on Manifolds

• The Riemannian score matching objective: same form as D_{Fisher} , but with different metric $\|\cdot\|$.

Approximation using the MVL Formulation

Let $\mathcal{F}[p] := -\mathbb{E}_p \mathcal{E}, \mathcal{H}[p] := \mathbb{E}_p \log p$ so $\mathrm{KL}_q = \mathcal{H} - \mathcal{F}$. $\|\mathrm{grad}_p \mathrm{KL}_q\|^2 = \underbrace{\|\mathrm{grad}_p \mathcal{H}\|^2}_{\mathrm{const}} - 2\langle \mathrm{grad}_p \mathcal{F}, \mathrm{grad}_p \mathrm{KL}_{q^{1/2}} \rangle$ $-\langle \mathrm{grad}_p \mathcal{F}, \mathrm{grad}_p \mathrm{KL}_{q^{1/2}} \rangle = (d\mathcal{F})_p (-\mathrm{grad}_p \mathrm{KL}_{q^{1/2}}) = \lim_{\epsilon \to 0} \frac{\mathbb{E}_{\tilde{p}_t} \log q_\theta - \mathbb{E}_p \log q_\theta}{\epsilon}$ where $\{\tilde{p}_t\}$ is the gradient flow of $\mathrm{KL}_{q^{1/2}}$, and $q^{1/2} \propto \exp(-\mathcal{E}/2)$.

 $\implies \underline{\text{Algorithm 0:}}$ 1. Simulate $KL_{q^{1/2}}$ using the corresponding sampling dynamics, for a time of ϵ

2. Return the difference in energy, divided by ϵ

Variance Reduction

<u>Problem</u>: When the sampling dynamics consists of Ito diffusion, the mini-batch estimator

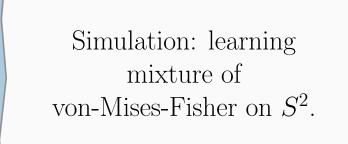
$$\mathcal{E}(x^+) - \mathcal{E}(x_{\epsilon}^-)$$

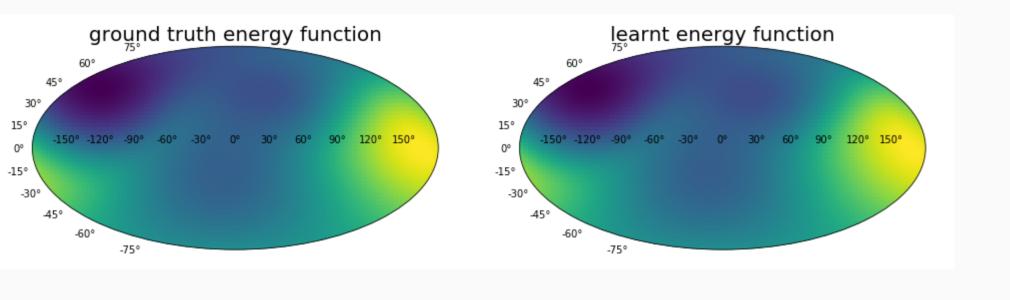
Also a MVL objective, with different sampling dynamics (Riemannian LD).Final approximator:

$$L_{\text{mvl-rld}} = \frac{2}{\epsilon} \left(\mathcal{E}(y^{-};\theta) - \mathcal{E}(y;\theta) - \underbrace{\sqrt{2\epsilon}\partial_{i}\mathcal{E}(y)z^{i}}_{\text{control variate}} \right), \quad \text{where}$$

$$(y^{-})^{i} = y^{i} + \epsilon \left(-g^{ij} \partial_{j} \frac{\mathcal{C}(y, \sigma) + \log |\mathcal{G}(y)|}{2} + \partial_{k} g^{ik} \right) + \sqrt{2\epsilon} z^{i},$$

is a sample from Riemannian LD, and $z \sim \mathcal{N}(0, G^{-1}(y))$.





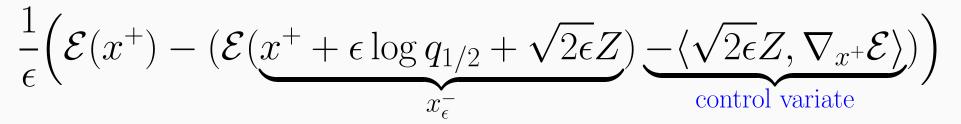
VAE and WAE with hyperspherical prior

VAE	$n_z = 8$		$n_z = 32$	
NLL	Euc.	Sph.	Euc.	Sph.
Explicit	96.47	95.38	90.11	91.16
Implicit	95.71	94.99	90.17	88.63

WAE	$n_z = 8$		
FID	Euc. Sph.		
GAN	25.48 20.40		
MVL (Ours)	21.95 19.13		

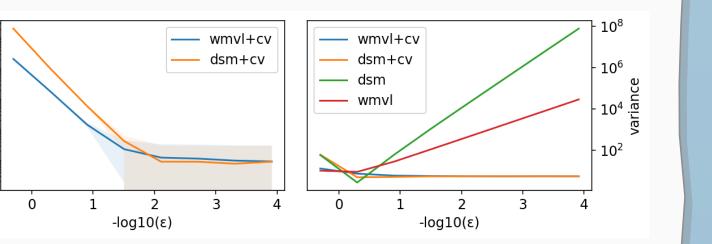
has infinite variance as $\epsilon \to 0$.

Solution: subtract the diffusion part from the estimator. For LD the resulted estimator is



<u>Side product</u>: the same problem exists in CD-1 for score matching (Hyvarinen (2007)) and denoising score matching; they can be fixed similarly.

Variance-reduced objective has vanishing bias as $\epsilon \to 0$, and O(1) variance regardless of ϵ . \Rightarrow Unlike previous work, we can use arbitrarily small ϵ in practice.



Related Work

Unified under our framework (and enhanced):

• CD-1 for score matching (Hyvarinen (2007)): a similar approximator for the *gradient* of the score matching objective wrt θ . Suffers from the infinite variance problem above.

• CD-1 for KSD (Liu and Wang, 2017): a similar approximator for the gradient of KSD using SVGD.

(Movellan, 2007, unpublished): score matching as minimizing the "probability velocity field" in data space. Other unifying perspectives (that do not lead to scalable approximations): Minimum Probability Flow, Minimum Stein discrepancy estimator

Score matching: scalable approximator (Song et al (UAI 2019)), another connection to diffusion (Lyu (UAI 2009)) <u>Our contribution</u>: generalized derivation using WGF; practical implementation with control variate, and estimator for the original objective instead of its gradient

