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Overview
•EBM: interesting on its own; as score estimator for implicit VI, mutual

information estimation, etc

•Optimizing the learning objective (score matching) is nontrivial since
it involves second-order derivatives

•We present scalable approximations to a family of learning objectives
including score matching, by connecting them to Wasserstein gradient
flows

•We derive a CD-1-like approximation to these objectives

•Applications: Riemannian score matching for implicit VAEs and WAEs
with manifold-valued prior

EBMs and Score Matching

•EBM:

q(x; θ) :=
1

Z(θ)
exp(−E(x; θ)),

E parameterized by e.g. NNs.

•MLE intractable: ∇θ log q(x; θ) involves ∇θ logZ = Eq(x;θ)(∇θ log E).

• Score estimation: match

DFisher(p|q) = Ep‖∇ log p−∇ log q‖2

which does not depend on Z.

•Hyvarinen (2005):

DFisher(p|q) = Ep
[
−∆E +

1

2
‖∇E‖2

]
+ const︸ ︷︷ ︸

only depends on p

Estimation possible but expensive (involves ∆E).

Background: Manifold and Flows

•Differential and gradient on general manifolds : for
f :M→ R,

(df )c(t0)

(
dc

dt

∣∣∣∣
t0

)
=
d

dt
f (c(t))

∣∣∣∣
t0

, 〈gradpf, v〉 = (df )p(v)

for any c : [0, a]→M, p ∈M, v ∈ TpM.

•The 2-Wasserstein space P(X ):

–Tangent vector v ∈ TpP(X ) ⇔ vector field v on
X

– 〈v, v′〉p = Ep(x)〈v(x), v′(x)〉x
– (gradpKLq)(u) = gradu log p(u)

q(u)

•Gradient flow of F :M→ R: dc
dt = −gradpF .

Image from Liu et al (2019)

Background: Sampling Dynamics
Common samplers can be interpreted as simulating the gradient flow of KLp : q 7→ KL(q‖p), in different
spaces of probability measures:

•P(X ),X = Rd: Langevin dynamics

dx := gradx log p(x)dt +
√

2dB.

•P(X ),X general manifold: Riemannian Langevin dynamics

dx := V (x)dt +
√

2G−1(x)dB, V i(x) := gij∂j

(
log p(x)− log |G(x)|

2

)
+ ∂jg

ij

(p is the density w.r.t. the Hausdorff measure here)

•The H-Wasserstein space: Stein Variational Gradient Descent

•Other examples: birth-death LD, stochastic particle optimization

Score Matching as Minimum Velocity Learning

DFisher(p|q) = ‖gradpKLq‖2

where ‖·‖ is in defined in P(X ).
Interpretation: the initial velocity of the Wasserstein gradient flow of KLq connecting p
and q.
Wasserstein MVL: switch from P(X ) to other spaces of probability measures.

Approximation using the MVL Formulation
Let F [p] := −EpE ,H[p] := Ep log p so KLq = H−F .

‖gradpKLq‖2 = ‖gradpH‖2︸ ︷︷ ︸
const

−2〈gradpF , gradpKLq1/2〉

−〈gradpF , gradpKLq1/2〉 = (dF)p(−gradpKLq1/2) = lim
ε→0

Ep̃t log qθ − Ep log qθ
ε

where {p̃t} is the gradient flow of KLq1/2, and q1/2 ∝ exp(−E/2).
=⇒ Algorithm 0:

1. Simulate KLq1/2 using the corresponding sampling dynamics, for a time of ε

2. Return the difference in energy, divided by ε

Variance Reduction
Problem: When the sampling dynamics consists of Ito diffusion, the mini-batch estimator

E(x+)− E(x−ε )

ε
has infinite variance as ε→ 0.
Solution: subtract the diffusion part from the estimator. For LD the resulted estimator is

1

ε

(
E(x+)− (E(x+ + ε log q1/2 +

√
2εZ︸ ︷︷ ︸

x−ε

)−〈
√

2εZ,∇x+E〉︸ ︷︷ ︸
control variate

)
)

Side product: the same problem exists in CD-1 for score matching (Hyvarinen (2007)) and
denoising score matching; they can be fixed similarly.

Variance-reduced objective has vanishing bias
as ε→ 0, and O(1) variance regardless of ε.
⇒ Unlike previous work, we can use arbitrar-
ily small ε in practice.

Example: Score Matching on Manifolds

•The Riemannian score matching objective: same form as DFisher, but with different
metric ‖·‖.
•Also a MVL objective, with different sampling dynamics (Riemannian LD).

•Final approximator:

Lmvl-rld =
2

ε

(
E(y−; θ)− E(y; θ)−

√
2ε∂iE(y)zi︸ ︷︷ ︸

control variate

)
, where

(y−)i = yi + ε

(
−gij∂j

E(y; θ) + log |G(y)|
2

+ ∂kg
ik

)
+
√

2εzi,

is a sample from Riemannian LD, and z ∼ N (0, G−1(y)).

Simulation: learning
mixture of

von-Mises-Fisher on S2.

VAE and WAE with hyperspherical prior

VAE nz = 8 nz = 32
NLL Euc. Sph. Euc. Sph.

Explicit 96.47 95.38 90.11 91.16
Implicit 95.71 94.99 90.17 88.63

WAE nz = 8
FID Euc. Sph.

GAN 25.48 20.40
MVL (Ours) 21.95 19.13

Related Work
Unified under our framework (and enhanced):

• CD-1 for score matching (Hyvarinen (2007)): a similar approximator for the gradient of the score matching objective wrt θ.
Suffers from the infinite variance problem above.

• CD-1 for KSD (Liu and Wang, 2017): a similar approximator for the gradient of KSD using SVGD.

(Movellan, 2007, unpublished): score matching as minimizing the “probability velocity field” in data space.
Other unifying perspectives (that do not lead to scalable approximations): Minimum Probability Flow, Minimum Stein discrepancy
estimator
Score matching: scalable approximator (Song et al (UAI 2019)), another connection to diffusion (Lyu (UAI 2009))
Our contribution: generalized derivation using WGF; practical implementation with control variate, and estimator for the original
objective instead of its gradient


