

# **Structured Generative Adversarial Networks**

Zhijie Deng\*, Hao Zhang\*, Xiaodan Liang, Luona Yang, Shizhen Xu, Jun Zhu, Eric P. Xing (\* equal contributions)

Tsinghua University, Carnegie Mellon University, Petuum Inc.



#### Problem

Semi-supervised conditional generative modeling

- > Conditional generative models are quite useful
- Generate data samples with designated semantics
- Synthetic data help supervised training of downstream tasks
- > Challenges: labels are scarce
- How to accurately capture the conditions during generating process?
- How to separate semantics of interest from other factors of variations?
- Problem: ensure controllability and disentanglability

## Training

- > Key training techniques
- Augment labeled dataset with  $(x_c, y_c) \sim p_c(x, y)$
- Mix  $(\mathbf{x}_c, \mathbf{y}_c) \sim p_c(\mathbf{x}, \mathbf{y}), (\mathbf{x}_g, \mathbf{y}_g) \sim p_g(\mathbf{x}, \mathbf{y})$  with labeled data with appropriate mixing proportion

Algorithm 1 Training Structured Generative Adversarial Networks (SGAN).

1: Pretrain C by minimizing the first term of Eq. 4 w.r.t. C using  $X_l$ .

2: repeat

8:

- Sample a batch of  $\boldsymbol{x}: \boldsymbol{x}_u \sim p(\boldsymbol{x})$ .
- Sample batches of pairs  $(\boldsymbol{x}, \boldsymbol{y})$ :  $(\boldsymbol{x}_l, \boldsymbol{y}_l) \sim p(\boldsymbol{x}, \boldsymbol{y}), (\boldsymbol{x}_g, \boldsymbol{y}_g) \sim p_g(\boldsymbol{x}, \boldsymbol{y}), (\boldsymbol{x}_c, \boldsymbol{y}_c) \sim p_c(\boldsymbol{x}, \boldsymbol{y}).$ Obtain a batch  $(\boldsymbol{x}_m, \boldsymbol{y}_m)$  by mixing data from  $(\boldsymbol{x}_l, \boldsymbol{y}_l), (\boldsymbol{x}_g, \boldsymbol{y}_g), (\boldsymbol{x}_c, \boldsymbol{y}_c)$  with proper mixing portion.
- for  $k = 1 \rightarrow K$  do
- Controllability: the ability to conditionally generate data strictly following the designated semantics
- *Disentanglability*: the ability to disentangle the modeled semantic of interest from other factors

### Intuition

- Hidden space shall be structured as
- Semantic of our interest y
- Other factors of variations z
- $\succ$  Hence our goal: learn a generated model  $p_q(x|y,z)$  with
- *Controllability*: semantics of our interest are fully captured by y
- *Disentangliblity*: y and z are not cluttered as much as possible
- However, directly learning p(x, y, z) is difficult

```
Characterizing p(x, z) and p(x, y) instead of p(x, y, z)
```

#### Model

> Step 1: Learn joint distribution p(x, z)Introduce an inference network  $I(x): x \rightarrow z$ 

- - Train  $D_{xz}$  by maximizing the first term of  $\mathcal{L}_{xz}$  using  $x_{y}$  and the second using  $x_{g}$ .
  - Train  $D_{xy}$  by maximizing the first term of  $\mathcal{L}_{xy}$  using  $(\boldsymbol{x}_m, \boldsymbol{y}_m)$  and the second using  $(\boldsymbol{x}_g, \boldsymbol{y}_g)$ .
- end for 9:
- Train I by minimizing  $\mathcal{L}_{xz}$  using  $\underline{x}_u$  and  $\mathcal{R}_z$  using  $x_g$ . 10:
- Train C by minimizing  $\mathcal{R}_{y}$  using  $(\boldsymbol{x}_{m}, \boldsymbol{y}_{m})$  (see text).
- Train G by minimizing  $\mathcal{L}_{xy} + \mathcal{L}_{xz} + \mathcal{R}_{y} + \mathcal{R}_{z}$  using  $(\boldsymbol{x}_{g}, \boldsymbol{y}_{g})$ . 12:

13: **until** convergence.

## Results

- Improved controllability and disentanglability
- Evaluate controllability: generate samples with designated semantics, classify the samples using gold classifiers
- Evaluate disentanglability: mutual predictability measure (MP)





- Better results on semi-supervised classification
- State-of-the-art results across multiple standard datasets
- More advantages at low-shot settings



Estimate  $p(\mathbf{z}|\mathbf{x})$  via adversarial learned inference



- > Step 2: Learn joint distribution p(x, y)
- Estimate p(y|x) via adversarial learned inference



- $\succ$  Step 3: Enforce y to capture all semantic of interest
- Therefore, enhance the controllability of the generator
- Introduce an inference network  $C(x): x \rightarrow y$
- Minimize reconstruction error  $\mathcal{R}_{v}$

|   | Method           |                             | MNIST       |                     | SVHN         | CIFAR-10     |
|---|------------------|-----------------------------|-------------|---------------------|--------------|--------------|
| _ |                  | n=20                        | n=50        | n = 100             | n = 1000     | n = 4000     |
| - | Ladder [22]      | -                           | -           | <b>0.89</b> (±0.50) | -            | 20.40(±0.47) |
|   | VAE [12]         | -                           | -           | 3.33(±0.14)         | 36.02(±0.10) | -            |
|   | CatGAN [28]      | -                           | -           | 1.39(±0.28)         | -            | 19.58(±0.58) |
|   | ALI [5]          | -                           | -           | -                   | 7.3          | 18.3         |
|   | ImprovedGAN [27] | 16.77(±4.52)                | 2.21(±1.36) | 0.93 (±0.07)        | 8.11(±1.3)   | 18.63(±2.32) |
|   | TripleGAN [15]   | 5.40(±6.53)                 | 1.59(±0.69) | 0.92(±0.58)         | 5.83(±0.20)  | 18.82(±0.32) |
| _ | SGAN             | <b>4.0</b> (± <b>4.14</b> ) | 1.29(±0.47) | <b>0.89</b> (±0.11) | 5.73(±0.12)  | 17.26(±0.69) |

- Controllable generation
- Ablation studies reveal that  $\mathcal{R}_{v}$  and  $\mathcal{R}_{z}$  help align the semantics
- > Visual quality
- Report an inception score  $6.91(\pm 0.07)$ , higher than that of TripleGAN and Improved-GAN w/o minibatch discrimination



#### SGAN enables more interesting applications

- Image progression: generate images with interpolated z SGANgeneralizes instead of memorizing data
- Style transfer: infer *z* given an image, generate a new image with the



- $\succ$  Step 4: Enforce z to capture other factors of variations
- Therefore, enhance the disentanglability of the generator
- Reuse the inference network  $I(x): x \rightarrow z$
- Minimize reconstruction error  $\mathcal{R}_{z}$

$$(y) (z) (x) = \lim_{I,G} \mathcal{R}_z = -\mathbb{E}_{(x,z) \sim p_g(x,z)} [\log p_i(z|x)]$$

same *z* but different semantic of interest *y* 

