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There is an emerging trend to train a network :;Iiuvt

with stochastic architectures (NSA) to enable :‘*».\co*nv“"* |

various architectures to be plugged and coinv

played during inference. This is also known as . cony

the weight sharing technique, popular used output

in neural architecture search (NAS). Stochastic architectures in a wiring view

Despite widespread adoption in NAS, the
property/pros/cons of such networks are
unexplored, motivating us to perform a first
systematical investigation on it as a stand-

alone problem. Stochastic architectures in a sub-grap’ vnew
Figure from Pham et al. (2018) "/
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®m Training principle (expected empirical risk w.r.t. the variable architecture)

1
L(w) =~ Bl > —logp(yilxi; w, @), o~ p(c)

(xi,y:)EB
m Test principle A(ayp) = |Dval| D ) eDu L ATE MaAX, p(y[x4; W, o) = ;)
m p(a) for training: a uniform distribution over S architectures sampled by the
Erdo’s-Rényi (ER) model with 0.3 connection probability
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m Typically, the training and test disparity of a DNN model is caused by the
train/val inconsistency of BN

m We identify the batch statistics of naive NSA have high variance because
the whole mini-batch shares the same sampled architecture

m As a solution, we advocate using i.i.d architectures for different instances
during training
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m \We further concern ‘Do diverse architectures behave
diversely given shared weights?’

B Ensemble accuracy gain as a measure of architecture
behaviour diversity

0.967 1

o
o
N
o

Accuracy

m NSA-i (trained with instance-wise architectures)

shows limited ensemble performance gain (mode 0.963 -
——NSA-i
collapse) NSA-id
0.961 - T T T T
o . . 0 100 200 300 400 500
B Augmenting the network with architecture- Number of architectures to ensemble

dependent weights alleviates this issue (see NSA-id)
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We next concern ‘Can NSA trained under a limited architecture space generalize to
unseen architectures in the broad, raw architecture space?’
We calculate the test accuracy of 200 randomly sampled architectures (100 seen

vs. 100 unseen during training) based on the NSA-i models trained under various S

We plot the test accuracy histograms
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Applications of NSA
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Model ensemble; uncertainty estimation; etc.
Method " CIFAR-10 CIFAR-100
ctho params Test error (%) | ECE | Test error (%) | ECE |
WRN-28-10 [49] 36.5M 4.00 - 19.25 -
DenseNet-BC [14] 25.6M 3.46 . 17.18 . n
ENAS + CutOut [30] 4.6M 2.89 - - -
DARTS + CutOut [22] 3.4M 2.83 - - - :f
WRN-28-10 39.5M 2.93 0.0140 16.75 0.0672 E L L Y
WRN-28-10", MC dropout 39.5M 3.23 0.0107 17.16 0.0454
Average of individuals 39.5M 297 0.0153 17.02 0.0446 .
NSA-id 39.6M 275 0.0032 16.44 0.0212 Code available at
https://github.com
Method OOD PGD1-2-1 PGD2-3-1 PGD3-4-1 /thudzj/NSA
AUCT | Acc.T AUCT | Acc.T AUCT | Acc.T AUC?T (Scan the QR code
WRN-28-107, MC dropout || 0.935 | 0.622 0735 | 0345 0.694 | 0.183  0.564 .
NSA-id 0970 | 0.630 0.737 | 0401 0705 | 0263  0.618 for this URL).
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