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Threat from Adversarial Examples

Alps: 94.39% Dog: 99.99%

Puffer: 97.99% Crab: 100.00%

Dong et al., 2018

Ø DNNs are vulnerable against adversarial examples, which are generated by adding 
human-imperceptible perturbations upon clean examples to deliberately cause 
misclassification.
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Current Defenses to Adversarial Examples

n Adversarial training methods are
effective, yet cause added training 
overheads and undermine the
predictive performance on clean data.

n Adversarial detection methods
detect the adversarial examples 
ahead of decision making, yet are 
usually developed for specific tasks or 
attacks, thus lack the flexibility to 
effectively generalize to other tasks 
or attacks.
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Detailed Adversarial Detection Methods
n By virtue of 

¨ auxiliary classifiers

¨ designed statistics 
Ma et al., 2019

KDE based detection, Feinman
et al., 2017

Dropout uncertainty based
detection, Feinman et al., 2017

LID based detection, Ma et al.,
2018
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Detect Adversarial Examples by Bayesian Uncertainty

n The key motivation: think of adversarial
examples as a special kind of out-of-distribution 
(OOD) data, and proceed in a Bayesian way
¨ Bayesian neural networks (BNNs) are as flexible

as DNNs for data fitting in various tasks, and the
uncertainty yielded by them suffices to detect
heterogeneous OOD/adversarial data in
principle.

posterior inference

Marginalization

Angelos Filos et al.

Blundell et al., 2015
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Two Types of Bayesian Uncertainty

n Epistemic uncertainty: uncertainty over the model (for detecting OOD)
n Aleatoric uncertainty: uncertainty over the data for a fixed model (for

measuring data noise)
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Approximate Inference for BNNs

n Variational Inference [Graves, 11; Blundell et al., 15; Louizos et al., 16,17; shi et al, 18; etc.]
¨ Maximize evidence lower bound (ELBO) (𝑞 𝑤 𝜃 is an introduced variational):

max
!
ℒ(𝜃) = E" 𝑤 𝜃 log 𝑝 𝒟 𝑤 − KL(𝑞(𝑤|𝜃)| 𝑝 𝑤 ≤ log 𝑝(𝐷)

¨ Reparameterizition trick:
𝑞 𝑤 𝜃 = 𝒩(𝑤; 𝜇, diag(𝜎#)) -> 𝑡 𝜃, 𝜖 = 𝜇 + 𝜖𝜎, 𝜖~𝒩(0, 𝐈)
¨ Stochastic variational inference resembles ordinary backprop

Efficient yet inducing approximation
error; without the guarantee of

asymptotic consistency
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Approximate Inference for BNNs

n Markov Chain Monte Carlo [Neal, 93; Welling & Teh, 11; etc.]
¨ Metropolis–Hastings
¨ Slice sampling
¨ Hamiltonian (or Hybrid) Monte Carlo

¨ Stochastic gradient Langevin dynamics, SGLD
𝑤!"# = 𝑤! − 𝛼!∇&𝑈 𝑤! + 2𝛼!𝜖! , 𝜖!~𝒩 0, 𝐼

¨ Stochastic gradient Hamiltonian Monte Carlo, SGHMC
𝑤!"# = 𝑤! + 𝜈!"#, 𝜈!"# = (1 − 𝜂)𝜈! − 𝛼!∇&𝑈 𝑤! + 2(𝜂 − 5𝛾)𝛼!𝜖! , 𝜖!~𝒩 0, 𝐼

¨ Cyclical stochastic gradient MCMC Non-parametric and
asymptotically exact yet typically

with low convergence rate
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Approximate Inference for BNNs

n Particle-optimization-based Variational Inference (POVI) [Liu et al., 16; Wang et al., 19;
etc.]
¨ Conjoins the flexibility of being non-parametric as MCMC and the efficiency due to

doing deterministic optimization as variational inference

¨ Stein Variational Gradient Descent (SVGD) is one of the most popular examples:

𝑤!"#
(%) = 𝑤!

(%) + 𝜖𝜙 𝑤!
% , ∀𝑘 = 1,… , 𝐾 , and 𝜙 · := 𝔼'(()[𝐾 𝑤,· ∇) log 𝑝 𝑤 𝒟 + ∇)𝐾 𝑤,· ]

n 5𝑞 𝑤 = #
*
∑+,#* 𝛿((")(𝑤) replaces 𝑞(𝑤) for the above update equation

n ∇)𝐾 𝑤,· is understood as a repulsive force to reduce the correlation between particles

¨ Yet, POVI methods may converge to degenerate posteriors due to over-
parameterization, and suffer from curse of dimensionality [Wang et al., 19; Zhuo et
al.,19].
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Approximate Inference for BNNs

n Some practical workarounds:
¨ Laplace approximation [Mackay, 92; Ritter et al, 18]

n Compute a Gaussian posterior around the MAP
with hessian

n Less flexible

¨ Monte Carlo dropout [Gal & Ghahramani, 16]
n Take dropout as uncertainty over weights
n Less effective

¨ Deep ensemble [Lakshminarayanan et al., 17]
n Train multiple DNNs and assemble their

predictions
n Less scalable
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Approximate Inference for BNNs

n BayesAdapter [Deng et al., 20]
¨ Obtain BNNs by fine-tuning pre-trained DNNs

¨ Conjoins the complementary benefits from 
deterministic training and Bayesian reasoning, 
e.g., good performance, resistance to over-
fitting, reliable uncertainty estimates, etc.

¨ Exemplar reparameterization (ER)!
n Draw a separate parameter sample for every 

exemplar in the mini-batch
n Disentangle the correlation between the loss 

of difference instances
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Lightweight Bayesian Refinement (LiBRe)
• Given a pre-trained task-dependent DNN

1. LiBRe converts its last few layers (e.g. the last ResBlock) to 
be Bayesian.

2. LiBRe inherits the pre-trained parameters.
3. LiBRe launches several-round adversarial detection-

oriented Bayesian fine-tuning.
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Lightweight Bayesian Refinement (LiBRe)
Ø LiBRe follows the variational inference pipeline for learning BNNs:

Maximize the ELBO: max
!

E"(%|!)∑( log 𝑝(𝐷(|𝑤) − 𝐾𝐿(𝑞(𝑤|𝜃)||𝑝(𝑤))

Ø Partial Bayesian treatment: Few lAyer Deep Ensemble (FADE) variational
𝑞 𝑤 𝜃 = )

*
∑+,)* 𝛿 𝑤- −𝑤-

+ 𝛿(𝑤.- −𝑤.-
(/))

• 𝑤!: parameters of tiny Bayesian sub-module; 𝑤"!: the other deterministic ones
• Conjoins the expressiveness of deep ensemble [Lakshminarayanan et al., 2017] and the efficiency of

last-layer Bayesian learning [Kristiadi et al., 2020]

• A mixture of deltas is a singular approximating distribution, so we indeed relax 𝑞 𝑤 𝜃 as a
mixture of Gaussians with small variance to estimate 𝐾𝐿(𝑞(𝑤|𝜃)||𝑝(𝑤))

CDF PDF
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Lightweight Bayesian Refinement (LiBRe)

Ø Monte Carlo estimation of ELBO by reparameterization:
max
!
ℒ = )

|ℬ|
∑ℬ- log 𝑝 ℬ( 𝑤-

+ , 𝑤.-
/ , 𝑐~ 1,2, … , 𝐶 , ℬ ⊂ 𝐷

• Variance reduction by Exemplar reparameterization [Deng et al., 2020]

max
!
ℒ∗ = )

|ℬ|
∑ℬ- log 𝑝 ℬ( 𝑤-

+- , 𝑤.-
/ , 𝑐(~ 1,2, … , 𝐶 ∀𝑖 = 1,… , |ℬ|

Ø Stochastic variational inference as Bayesian fine-tuning
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Lightweight Bayesian Refinement (LiBRe)
Ø Detect adversarial examples with epistemic uncertainty:

Ø A typical metric: softmax variance [Feinman et al., 2017, Smith and Gal, 2018], but not universal
(e.g. in regression)

Ø A more generic metric: feature variance

𝑈𝑛𝑐 = #
$"#

∑%&#$ 𝑧 %
'
'
− 𝑇 #

$
∑%&#$ 𝑧 %

'

'
(𝑧 % is the feature under 𝑤 % , 𝑡 = 1,… , 𝑇)
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Lightweight Bayesian Refinement (LiBRe)
Ø Adversarial example free uncertainty correction

max
!
ℛ = )

|ℬ|
∑ℬ-min( S𝑧( +-,/ − S𝑧( +-,0 #

#
, 𝛾).

• S𝑧( +-,1 refers to the feature of ith training instances with uniform input

perturbations under parameter sample 𝑤(+-,1) = {𝑤-
+-,1 , 𝑤.-

/ }.
• This is necessary as adversarial examples can easily destroy the uncertainty based 

adversarial detection if there is no uncertainty correction [Grosse et al., 2018]

Input with
uniform noise

Uncertainty higher than threshold γ
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Experiments
Ø We perform Bayesian fine-tuning for only 6 epochs on ImageNet.
Ø LiBRe preserves non-degraded accuracy while demonstrating near-perfect capacity of 

detecting adversarial examples.
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Experiments
Ø Face recognition
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Experiments

Ø Object detection

Ø Visualization for the population of uncertainty estimates
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Experiments
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