



# **Cluster Alignment with a Teacher for Unsupervised Domain Adaptation**

Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Lab, THBI Lab, Tsinghua University

## **Introduction**

**Deep learning** methods have shown promise in **unsupervised domain** adaptation (UDA), which aims to leverage a labeled source domain to learn a classifier for the unlabeled target domain with a different distribution.

#### □ **Marginal distribution alignment:**

1. Adversarial training [Tzeng et al., 2017; Ganin & Lempitsky, 2015]:

 $\min_{\theta} \max_{X_s} L_y(X_s, Y_s; \theta) + \alpha \left( E_{x \sim X_s} [\log c(f(x; \theta); \phi)] + E_{x \sim X_t} [\log (1 - c(f(x; \theta); \phi))] \right)$ 

2. Kernelized training [Long et al., 2015]:

 $\min_{\alpha} L_{y}(X_{s}, Y_{s}; \theta) + \alpha \text{MMD}(f(X_{s}; \theta), f(X_{t}; \theta))$ 

• Theoretical guarantee [Ben-David et al., 2010]: minimizing the divergence between the marginal distributions in the learned feature space is beneficial to reduce the classifier's error on target domain.

#### **Observation:** aligning the marginal is not enough in practice!



- The classification data naturally presents a class-conditional multi-modal structure owing to the semantic similarity of samples from the same class.
- Existing methods aligning the marginal distributions while ignoring the class-conditional structures cannot perform well in challenging cases.

#### **Motivation:** incorporating the fine-grained class-conditional structure

- Previous works (Shi & Sha, 2012; Pang et al., 2018) have validated that utilizing the class-conditional structure of data is beneficial in various tasks.
- In particular, matching the class-conditional structure in UDA enhances the discriminative power of the learned domain-invariant feature space and is compatible to the marginal distribution alignment methods.

- **Overall objective:**  $\min_{\alpha} L_y + \alpha (L_c + L_a)$

where  $\alpha$  is a coefficient.

- **Build a teacher** classifier to
- Π model [Laine & Aila, 2016]

- $L_c(X_s, X_t) = L_c(X_s) + L_c(X_t)$
- classes.
- $\Box$  Cluster alignment loss  $L_a$ :
- $L_a(X_s, X_t) = \frac{1}{\kappa}$
- $\lambda_{s,k} = \frac{1}{|X_{c,k}|} \sum_{j}$

#### **Our** method can be integrated into any marginal distribution alignment method when domains have analogous marginal distributions.

- RevGrad+CAT:
- $E_{x \sim X_t} \Big[ \log \big( 1 \alpha \big) \Big]$

Zhijie Deng, Yucen Luo, Jun Zhu



## **Theoretical insight**

$$(h) \leq \epsilon_{s}(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(s,t) + \min_{\hat{h}\in\mathcal{H}} (\epsilon_{s}(\hat{h},l_{s}) + \epsilon_{t}(\hat{h},l_{t})) \leq \epsilon_{s}(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(s,t) + \epsilon_{t}(l_{s},l_{t}) + \min_{\hat{h}\in\mathcal{H}} (\epsilon_{s}(\hat{h},l_{s}) + \epsilon_{t}(\hat{h},l_{s}))$$

The target error of classifier h has this bound [Ben-David et al., 2010].

 $\epsilon_t(l_s, l_t)$  could be large if the class-conditional structures, which determine the labeling functions, are not aligned, leading to unsatisfactory bound of  $\epsilon_t(h)$ .



$$\sum_{k=1}^{K} \| \lambda_{s,k} - \lambda_{t,k} \|_{2}^{2}$$
  
$$\sum_{x_{s}^{i} \in X_{s,k}} f(x_{s}^{i}), \ \lambda_{t,k} = \frac{1}{|X_{t,k}|} \sum_{x_{t}^{i} \in X_{t,k}} f(x_{t}^{i})$$

• Works in a conditional feature matching way [Salimans et al., 2016], and can match the conditional distributions across domains theoretically.

$$\min_{\theta} \max_{\phi} L_{y}(X_{s}, Y_{s}; \theta) + \alpha \Big( E_{x \sim X_{s}}[\log c(f(x; \theta); \phi)] + c(f(x; \theta); \phi) \Big) \Big] + L_{c} + L_{a} \Big)$$

## **Experiments**

### □ Imbalanced SVHN-MNIST-USPS (synthetic task)

> A challenging 2-class classification task: the source domains have 10 : 1 ratio of class imbalance while the target domains have 1 : 10.

|                      | Method                 | SVHN to MNIS    | ST MN        |
|----------------------|------------------------|-----------------|--------------|
|                      | RevGrad [7]            | $27.4\pm6.3$    | 26           |
|                      | <b>MSTN</b> [49]       | $25.8\pm3.6$    | 30           |
|                      | CAT                    | $100.0 \pm 0.0$ | )5 <b>10</b> |
|                      |                        |                 | RevCt        |
| SVHN-MNIST-USPS task |                        |                 |              |
| Method               | SVHN to MNIST          | MNIST to USPS   | USPS t       |
| Source Only          | $60.1\pm1.1$           | $75.2\pm1.6$    | 57.1         |
| <b>DDC</b> [45]      | $68.1\pm0.3$           | $79.1\pm0.5$    | 66.5         |
| <b>CoGAN</b> [20]    | -                      | $91.2\pm0.8$    | 89.1         |
| <b>DRCN</b> [8]      | $82.0\pm0.1$           | $91.8\pm0.09$   | 73.7 :       |
| ADDA [44]            | $76.0 \pm 1.8$         | $89.4\pm0.2$    | 90.1         |
| LEL [26]             | $81.0 \pm 0.3$         | -               |              |
| AssocDA [11]         | 97.6                   | -               |              |
| MSTN [49]            | $91.7 \pm 1.5$         | $92.9 \pm 1.1$  | 00.0         |
| CAT                  | $98.1 \pm 1.3$         | $90.6 \pm 2.3$  | 80.9         |
| RevGrad [7]          | 73.9                   | $77.1\pm1.8$    | 73.0         |
| <b>RevGrad+CAT</b>   | $98.0\pm0.8$           | $93.7\pm1.1$    | 95.7         |
| rRevGrad+CAT         | <b>98.8</b> $\pm$ 0.02 | $94.0\pm0.7$    | <b>96</b> .0 |
| MCD [37]             | $96.2 \pm 0.4$         | $94.2\pm0.7$    | 94.1         |
| MCD+CAT              | $97.1\pm0.2$           | $96.3\pm0.5$    | 95.2         |
| <b>VADA</b> [41]     | 94.5                   | -               |              |
| VADA+CAT             | 95.2                   | -               |              |
|                      |                        |                 |              |

## Conclusion

- □ We propose CAT to exploit the class-conditional structu res for effective adaptation in deep UDA.
- **CAT is compatible** to most existing UDA methods.
- □ CAT establishes new state-of-the-art baselines on a range of benchmarks.

ICCV 2019 Seoul, Korea



