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Introduction

d Deep learning methods have shown promise in unsupervised domain
adaptation (UDA), which aims to leverage a labeled source domain to learn
a classifier for the unlabeled target domain with a different distribution.

 Marginal distribution alignment:
1. Adversarial training [Tzeng et al., 2017; Ganin & Lempitsky, 2015]:
minmax Ly (X, ¥5; 0) + @(Ex-x,[log (£ (x; 63; §)] + Eyy [log(1 — c(f (x; 6; ¢))])
2. Kernelized training [Long et al., 2015]:
min Ly (X, Ys; 6) + aMMD(f (X; 0), f (X; 6))
* Theoretical guarantee [Ben-David et al., 2010]: minimizing the divergence

between the marginal distributions in the learned feature space i1s beneficial
to reduce the classifier’s error on target domain.

 Observation: aligning the marginal is not enough in practice!
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* The classification data naturally presents a class-conditional multi-modal
structure owing to the semantic similarity of samples from the same class.

* Existing methods aligning the marginal distributions while ignoring the
class-conditional structures cannot perform well in challenging cases.

L Motivation: incorporating the fine-grained class-conditional structure

* Previous works (Shi & Sha, 2012; Pang et al., 2018) have validated that
utilizing the class-conditional structure of data is beneficial in various tasks.

* In particular, matching the class-conditional structure in UDA enhances the
discriminative power of the learned domain-invariant feature space and is
compatible to the marginal distribution alignment methods.
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Theoretical insight

e(h) < eu(h) + %dmﬂ(s, £)

+ min (e (fAl, ls) + € (’Ala lt))
heH

< es(h)+ %d’HA’H(S, t) +[6t(ls, lt)]

+ min (e, (R, L) + € (h, 1s))
heH

B The target error of classifier h has this bound [Ben-David et al., 2010].

B ([ ;) could be large if the class-conditional structures, which determine
the labeling functions, are not aligned, leading to unsatisfactory bound of €;(h).

Methodology
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* Temporal ensemble [Laine & Aila, 2016]

1 Discriminative clustering loss L_:

* LC(XS'Xt) = Lc(Xs) + Lc(Xt)
1

+ LX) = Wz [65,d(f (1), £ (7)) + (1 = 8;)max(0,m — d(f (x), f (x/)))]

L,J
* Concentrates features from the same class and separates features from different
classes.
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 Cluster alignment loss L:
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 Works in a conditional feature matching way [Salimans et al., 2016], and can
match the conditional distributions across domains theoretically.

d Our method can be integrated into any marginal distribution
alignment method when domains have analogous marginal distributions.

 RevGrad+CAT: mgin mq?x Ly,(Xs,Ys; 0) + a(Ex~XS [log c(f(x;0); d)] +
Ex-x,[log(1 — c(f(x;0); )| + L. + L)

\_ J

Cluster Alignment with a Teacher for Unsupervised Domain Adaptation

Dept. of Comp. Sci. & Tech., Institute for Al, BNRist Lab, THBI Lab, Tsinghua University

-

\_

A \ Seoul, Koreo
)
Experiments
L Imbalanced SVHN-MNIST-USPS (synthetic task)
» A challenging 2-class classification task: the source domains have 10 : 1 ratio
of class imbalance while the target domains have 1 : 10.
Method SVHN to MNIST MNIST to USPS USPS to MNIST
RevGrad [7] 274+6.3 26.7+2.0 179+14
MSTN [49] 256.84+3.6 30310 294405
CAT 100.0 =0.05 100.0+=0.0 99.9 £0.2
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(a) CAT (b) RevGrad (c) MSTN
O SVHN-MNIST-USPS task
Method SVHN to MNIST MNIST to USPS USPS to MNIST
Source Only 60.1 1.1 75.2+1.6 57.1+1.7
DDC [45] 68.1+0.3 79.1+0.5 66.5+3.3
CoGAN [20] . 912408 89.1+08
DRCN [8] 82.0£0.1 91.84+0.09 73.7+0.04
ADDA [44] 76.0+£1.8 894+0.2 90.1+0.8
LEL [26] 81.0 0.3 - -
AssocDA [11] 97.6 - -
MSTN [49] 91.7£15 929+1.1 -
CAT 98.1+1.3 90623 8&809=x3.1
RevGrad [7] 73.9 77118 73.0£2.0
RevGrad+CAT 98.0£0.8 93.7£1.1 95.7%+1.3
rRevGrad+CAT 98.8 £0.02 94.0£0.7 96.0+0.9
MCD [37] 96.2+04 942+0.7 94.1+0.3 o
MCD+CAT 97.14+0.2 96.3+0.5 952+04 .. (b)rRevGrad
VADA [41] 94.5 - - % FCAT
VADA+CAT 95.2 - -
Conclusion
J We propose CAT to exploit the class-conditional structu- E
res for effective adaptation in deep UDA.
d CAT is compatible to most existing UDA methods. -
L CAT establishes new state-of-the-art baselines on a range *
of benchmarks. E




