#### Cluster Alignment with a Teacher for Unsupervised Domain Adaptation

Zhijie Deng, Yucen Luo and Jun Zhu 01.03.2019

#### Unsupervised domain adaptation



Train on source domain:  $\{x_i^s, y_i^s\}_{i=1,...,N}$ Test on target domain:  $\{x_i^t\}_{i=1,...,M}$ Goal: classifier conquers the domain shift

# Related work: domain adversarial training(Ganin and Lempitsky; Tzeng et al.)

• Based on Ben. David's the  $\varepsilon_{\mathcal{T}}(h) \leq \varepsilon_{\mathcal{S}}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S},\mathcal{T}) + C$ .



Related work: maximum mean discrepancy(MMD) based approaches(Long et al.)



#### Issues of previous works

- Ignore the structure information of data manifolds in both the alignment and the classification process
- Lead to improper alignment and misclassification of target points Before adaptation



#### Motivation of CAT

- Consider the cluster structures of the data manifolds
  - in the classification process: help to learn a feature space with improved discriminative power
  - in the alignment process: make the two domains aligned more properly and simplify the alignment problem between multi-mode domains



#### Why teacher?

- Classification based discriminative clustering
- Self evolution with one classifier
  - Sensitive to outliers and noise
  - A few wrongly classified instances may deteriorate the learning performance
- Clustering with a teacher classifier
  - Teacher generates different decision boundaries and has different abilities to learn
  - The error of student classifier will not be transferred back itself

#### Cluster Alignment with a Teacher (CAT)



### Discover discriminative clusters in both domains: $L_c$

- Introduce a teacher model to predict the cluster alignments for target samples
- Use ground truth labels of source samples as their cluster

 $\min_{\theta} \mathcal{L}_c(\mathcal{X}_s, \mathcal{X}_t) = \mathcal{L}_c(\mathcal{X}_s) + \mathcal{L}_c(\mathcal{X}_t),$ 

• 
$$\mathcal{L}_{c}(\mathcal{X}) = \frac{1}{|\mathcal{X}|^{2}} \sum_{i=1}^{|\mathcal{X}|} \sum_{j=1}^{|\mathcal{X}|} \left[ \delta_{ij} d\left(h(x^{i}), h(x^{j})\right) + (1 - \delta_{ij}) \max\left(0, m - d\left(h(x^{i}), h(x^{j})\right)\right) \right],$$

 Encourages the features from the same cluster to concentrate together and pushes the features from different clusters far away from each other with a distance m at least

#### Cluster alignment with centers: $L_a$

Align the cluster-structure distributions through matching the

$$\min_{\theta} \mathcal{L}_a(\mathcal{X}_s, \mathcal{Y}_s, \mathcal{X}_t) = \frac{1}{K} \sum_{k=1}^K \left[ d(\lambda_{s,k}, \lambda_{t,k}) \right]$$
  
•  $\lambda_{s,k} = \frac{1}{|\mathcal{X}_{s,k}|} \sum_{x_s^i \in \mathcal{X}_{s,k}} h(x_s^i), \, \lambda_{t,k} = \frac{1}{|\mathcal{X}_{t,k}|} \sum_{x_t^i \in \mathcal{X}_{t,k}} h(x_t^i)$ 

- The features from the same class but different domains tend to concentrate together
- Harmful signals of incorrect labeled target samples can be alleviated by the summation operation and the robust teacher

### Reduce uncertainty in adversarial training: $L_{cd}$

- In the early stages of training, quite a number of target samples lie around the decision boundaries and have high probability to be mapped into wrong clusters
- we propose a confidence-based variant of the domain adversarial loss:

$$\min_{\theta} \max_{\phi} \mathcal{L}_{cd}(\mathcal{X}_s, \mathcal{X}_t) = \frac{1}{N} \sum_{i=1}^{N} \left[ \log c \left( h(x_s^i; \theta); \phi \right) \right] + \frac{1}{\tilde{M}} \sum_{i=1}^{\tilde{M}} \left[ \log \left( 1 - c \left( h(x_t^i; \theta); \phi \right) \right) \gamma_i \right]$$

 This improves the correctness of learned clusters and enhances the stability of training, bringing better generalization performance of the classifier in the target domain

#### **Overall objective**

### $\min_{\theta} \max_{\phi} \mathcal{L}_y + \alpha \mathcal{L}_{cd} + \beta (\mathcal{L}_c + \mathcal{L}_a)$

#### Insights from theoretical analysis

$$\epsilon_{\mathcal{T}}(h) \le \epsilon_{\mathcal{S}}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(S,T) + C, \ \forall h \in \mathcal{H}$$

- $C \leq \min_{h \in \mathcal{H}} \epsilon_{\mathcal{S}}(h, f_{\mathcal{S}}) + \epsilon_{\mathcal{T}}(h, f_{\mathcal{S}}) + \epsilon_{\mathcal{T}}(f_{\mathcal{S}}, f_{\hat{\mathcal{T}}}) + \epsilon_{\mathcal{T}}(f_{\mathcal{T}}, f_{\hat{\mathcal{T}}})$
- Minimizing the supervised loss in source domain can reduce the first two terms effectively
- The third term represents the inconsistency between  $f_S$  and  $f_{T^{\wedge}}$  which is minimized by discovering discriminative cluster structures of domains and then reducing the distance between corresponding pairs
- The last term is minimized by CAT using the mutual boosting cycle between the student classifier and its teacher

#### Experiments: synthetic data



(a) RevGrad: failure case 1





(b) RevGrad: Failure Case 2



#### Experiments: digits datasets

| Method      | SVHN<br>to<br>MNIST | MNIST<br>to<br>USPS | USPS<br>to<br>MNIST |  |  |
|-------------|---------------------|---------------------|---------------------|--|--|
| Source Only | $60.1\pm1.1$        | $75.2\pm1.6$        | $57.1 \pm 1.7$      |  |  |
| RevGrad [8] | 73.9                | $77.1 \pm 1.8$      | $73.0\pm2.0$        |  |  |
| DDC [39]    | $68.1\pm0.3$        | $79.1\pm0.5$        | $66.5\pm3.3$        |  |  |
| CoGAN [20]  | -                   | $91.2\pm0.8$        | $89.1\pm0.8$        |  |  |
| DRCN [9]    | $82.0\pm0.1$        | $91.8\pm0.09$       | $73.7\pm0.04$       |  |  |
| ADDA [38]   | $76.0\pm1.8$        | $89.4\pm0.2$        | $90.1\pm0.8$        |  |  |
| LEL [26]    | $81.0\pm0.3$        | -                   | -                   |  |  |
| MCD [34]    | $96.2\pm0.4$        | $94.2\pm0.7$        | $94.1\pm0.3$        |  |  |
| MSTN [42]   | $91.7 \pm 1.5$      | $92.9 \pm 1.1$      | -                   |  |  |
| CAT(ours)   | $98.4 \pm 0.6$      | $95.0\pm0.8$        | $96.5 \pm 0.5$      |  |  |

### Experiments: office-31 and ImageCLEF-

| Method       | A to W         | D to W         | W to D          | A to D                  | D to A                | W to A         | Avg  |
|--------------|----------------|----------------|-----------------|-------------------------|-----------------------|----------------|------|
| AlexNet [15] | $61.6\pm0.5$   | $95.4\pm0.3$   | $99.0\pm0.2$    | $63.8\pm0.5$            | $51.1\pm0.6$          | $49.8\pm0.4$   | 70.1 |
| DDC [39]     | $61.8\pm0.4$   | $95.0\pm0.5$   | $98.5\pm0.4$    | $64.4\pm0.3$            | $52.1\pm0.6$          | $52.2\pm0.4$   | 70.6 |
| DRCN [9]     | $68.7\pm0.3$   | $96.4\pm0.3$   | $99.0\pm0.2$    | $66.8\pm0.5$            | $56.0 \pm 0.5$        | $54.9\pm0.5$   | 73.6 |
| RevGrad [8]  | $73.0\pm0.5$   | $96.4\pm0.3$   | $99.2\pm0.3$    | $72.3\pm0.3$            | $53.4 \pm 0.4$        | $51.2\pm0.5$   | 74.3 |
| RTN [24]     | $73.3\pm0.3$   | $96.8\pm0.2$   | $99.6\pm0.1$    | $71.0\pm0.2$            | $50.5\pm0.3$          | $51.0\pm0.1$   | 73.7 |
| JAN [23]     | $74.9\pm0.3$   | $96.6\pm0.2$   | $99.5\pm0.2$    | $71.8\pm0.2$            | $58.3 \pm 0.3$        | $55.0 \pm 0.4$ | 76.0 |
| AutoDIAL [3] | 75.5           | 96.6           | 99.5            | 73.6                    | 58.1                  | 59.4           | 77.1 |
| MSTN [42]    | $80.5 \pm 0.4$ | $96.9\pm0.1$   | $99.9\pm0.1$    | $74.5\pm0.4$            | $62.5\pm0.4$          | $60.0\pm0.6$   | 79.1 |
| CAT (ours)   | $80.7 \pm 1.6$ | $97.6 \pm 0.1$ | $100.0 \pm 0.0$ | $\textbf{76.4} \pm 0.6$ | $\textbf{63.7}\pm0.5$ | $62.2 \pm 0.4$ | 80.1 |

Table 1: Summary of domain adaptation results on the Office-31 datasets in terms of test accuracy (%). (AlexNet)

| Method       | I to P         | P to I         | I to C         | C to I         | C to P         | P to C       | Avg  |
|--------------|----------------|----------------|----------------|----------------|----------------|--------------|------|
| AlexNet [15] | $66.2\pm0.2$   | $70.0\pm0.2$   | $84.3\pm0.2$   | $71.3\pm0.4$   | $59.3\pm0.5$   | $84.5\pm0.3$ | 73.9 |
| RevGrad [8]  | $66.5\pm0.5$   | $81.8\pm0.4$   | $89.0\pm0.5$   | $79.8\pm0.5$   | $63.5\pm0.4$   | $88.7\pm0.4$ | 78.2 |
| RTN [24]     | $67.4 \pm 0.3$ | $81.3\pm0.3$   | $89.5\pm0.4$   | $78.0\pm0.2$   | $62.0\pm0.2$   | $89.1\pm0.1$ | 77.9 |
| JAN [23]     | $67.2\pm0.5$   | $82.8\pm0.4$   | $91.3 \pm 0.5$ | $80.0\pm0.5$   | $63.5\pm0.4$   | $91.0\pm0.4$ | 79.3 |
| MSTN [42]    | $67.3\pm0.3$   | $82.8\pm0.2$   | $91.5\pm0.1$   | $81.7 \pm 0.3$ | $65.3\pm0.2$   | $91.2\pm0.2$ | 80.0 |
| CAT (ours)   | $68.6 \pm 0.1$ | $84.6 \pm 0.5$ | $91.9 \pm 0.4$ | $80.8\pm0.3$   | $65.6 \pm 0.6$ | $92.5\pm0.2$ | 80.7 |

Table 2: Summary of domain adaptation results on the ImageCLEF-DA datasets in terms of test accuracy (%). (AlexNet)

## Experiments: office-31 and ImageCLEF-

| Method              | A to W       | D to W         | W to D          | A to D         | D to A         | W to A         | Avg  |
|---------------------|--------------|----------------|-----------------|----------------|----------------|----------------|------|
| ResNet-50 [2]       | $68.4\pm0.2$ | $96.7\pm0.1$   | $99.3\pm0.1$    | $68.9\pm0.2$   | $62.5\pm0.3$   | $60.7\pm0.3$   | 76.1 |
| DAN [4]             | $80.5\pm0.4$ | $97.1\pm0.2$   | $99.6\pm0.1$    | $78.6\pm0.2$   | $63.6\pm0.3$   | $62.8\pm0.2$   | 80.4 |
| RevGrad [1]         | $82.0\pm0.4$ | $96.9\pm0.2$   | $99.1\pm0.1$    | $79.4\pm0.4$   | $68.2\pm0.4$   | $67.4\pm0.5$   | 82.2 |
| RTN [6]             | $84.5\pm0.2$ | $96.8\pm0.1$   | $99.4\pm0.1$    | $77.5\pm0.3$   | $66.2\pm0.2$   | $64.8\pm0.3$   | 81.6 |
| GenToAdapt [7]      | $89.5\pm0.5$ | $97.9\pm0.3$   | $99.8\pm0.4$    | $87.7\pm0.5$   | $72.8 \pm 0.3$ | $71.4 \pm 0.4$ | 86.5 |
| JAN [5]             | $85.4\pm0.3$ | $97.4\pm0.2$   | $99.8\pm0.2$    | $84.7\pm0.3$   | $68.6\pm0.3$   | $70.0\pm0.4$   | 84.3 |
| Modified JAN (ours) | $94.0\pm0.4$ | $96.6\pm0.6$   | $100.0 \pm 0.0$ | $88.1 \pm 1.0$ | $68.9\pm0.7$   | $69.4\pm0.5$   | 86.2 |
| CAT (ours)          | $94.4\pm0.1$ | $98.0 \pm 0.2$ | $100.0 \pm 0.0$ | $90.8 \pm 1.8$ | $72.2\pm0.6$   | $70.2\pm0.1$   | 87.6 |

Table 1: Summary of domain adaptation results on the Office-31 datasets in terms of test accuracy (%). (ResNet-50)

| Method              | I to P                | P to I       | I to C         | C to I       | C to P                  | P to C         | Avg  |
|---------------------|-----------------------|--------------|----------------|--------------|-------------------------|----------------|------|
| ResNet-50 [2]       | $74.8\pm0.3$          | $83.9\pm0.1$ | 91.5±0.3       | $78.0\pm0.2$ | $65.5\pm0.3$            | $91.2\pm0.3$   | 80.7 |
| DAN [4]             | $74.5\pm0.4$          | $82.2\pm0.2$ | $92.8\pm0.2$   | $86.3\pm0.4$ | $69.2\pm0.4$            | $89.8\pm0.4$   | 82.5 |
| RevGrad [1]         | $75.0\pm0.6$          | $86.0\pm0.3$ | $96.2 \pm 0.4$ | $87.0\pm0.5$ | $74.3\pm0.5$            | $91.5\pm0.6$   | 85.0 |
| JAN [5]             | $76.8\pm0.4$          | $88.0\pm0.2$ | $94.7\pm0.2$   | $89.5\pm0.3$ | $74.2\pm0.3$            | $91.7\pm0.3$   | 85.8 |
| Modified JAN (ours) | $76.3\pm0.8$          | $89.2\pm0.8$ | $95.3\pm0.7$   | $89.3\pm0.3$ | $\textbf{75.9} \pm 1.1$ | $92.2\pm1.3$   | 86.4 |
| CAT (ours)          | $\textbf{77.2}\pm0.2$ | $91.0\pm0.3$ | $95.5\pm0.3$   | $91.3\pm0.3$ | $75.3\pm0.6$            | $93.6 \pm 0.5$ | 87.3 |

Table 2: Summary of domain adaptation results on the ImageCLEF-DA datasets in terms of test accuracy (%). (ResNet-50)

#### Experiments: Visualization of manifolds



# Experiments: ablation study of $L_{c}$ $L_{a}$ and $L_{cd}$

| Method                                                                                 | SVHN to MNIST  |
|----------------------------------------------------------------------------------------|----------------|
| RevGrad( $\mathcal{L}_y + \alpha \mathcal{L}_d$ )                                      | 73.9           |
| $\mathcal{L}_y + \alpha \mathcal{L}_{cd}$                                              | $77.1 \pm 1.2$ |
| $\mathcal{L}_{y} + \alpha \mathcal{L}_{d} + \beta \mathcal{L}_{c}$                     | $97.6 \pm 1.5$ |
| $\mathcal{L}_y + \alpha \mathcal{L}_{cd} + \beta \mathcal{L}_c$                        | $97.8 \pm 1.4$ |
| $\mathcal{L}_y + \alpha \mathcal{L}_d + \beta \mathcal{L}_a$                           | $96.3\pm0.8$   |
| $\mathcal{L}_y + \alpha \mathcal{L}_{cd} + \beta \mathcal{L}_a$                        | $97.4\pm0.2$   |
| $CAT(\mathcal{L}_y + \alpha \mathcal{L}_{cd} + \beta (\mathcal{L}_c + \mathcal{L}_a))$ | $98.4 \pm 0.6$ |

## Experiments: Clustering in the feature space



#### **Experiments: Convergence**



#### Conclusion

- Cluster Alignment with a Teacher
  - discovers the underlying cluster structures of data manifolds
  - aligns source domain with target domain better based on it
  - produces a domain-invariant feature space with improved discriminative power
  - enhances the domain adaptation results significantly
  - establishes new state-of-the-art results on several standard benchmarks

#### Thanks!