
BayesAdapter: Being Bayesian, Inexpensively and
Reliably, via Bayesian Fine-tuning

1Zhijie Deng, 2Hao Zhang, 1Xiao Yang, 1Yinpeng Dong, 1Jun Zhu∗
1Dept. of Comp. Sci. & Tech., BNRist Center, Institute for AI, Tsinghua-Bosch Joint ML Center,

THBI Lab, Tsinghua University, Beijing, 100084 China 2Carnegie Mellon University
dzj17@mails.tsinghua.edu.cn, sjtu.haozhang@gmail.com,

{yangxiao19,dyp17}@mails.tsinghua.edu.cn, dcszj@tsinghua.edu.cn

Abstract
Despite their theoretical appealingness, Bayesian neural networks (BNNs) are left
behind in real-world adoption, mainly due to persistent concerns on their scalability,
accessibility, and reliability. In this work, we develop the BayesAdapter framework
to relieve these concerns. In particular, we propose to adapt pre-trained determinis-
tic NNs to be variational BNNs via cost-effective Bayesian fine-tuning. Technically,
we develop a modularized implementation for the learning of variational BNNs
under two representative variational distributions. We refurbish the generally ap-
plicable exemplar reparameterization trick through exemplar parallelization to
efficiently reduce the gradient variance in stochastic variational inference. Based
on the developed lightweight paradigm for learning variational BNNs, we conduct
a detailed investigation on do variational BNNs know what they do not know. We
uncover an unreliability issue of variational BNNs’ uncertainty estimates, and
provide a corresponding prescription. Through extensive experiments on diverse
benchmarks, we show that BayesAdapter can consistently induce posteriors with
higher quality than competitive baselines, especially in large-scale settings, yet
significantly reducing training overheads.

1 Introduction
Much effort has been devoted to developing expressive Bayesian neural networks (BNNs) to make
accurate and reliable decisions [36, 40, 14, 2]. The principled uncertainty quantification inside BNNs
is critical for realistic decision-making, finding applications in scenarios ranging from model-based
reinforcement learning [8], active learning [19] to healthcare [31] and autonomous driving [23].
BNNs are also known to be capable of resisting over-fitting and over-confidence.

Nonetheless, BNNs are falling far behind in terms of adoption in real-world applications compared
with deterministic NNs [17, 52, 7], due to various issues. For example, typical approximate inference
methods for BNNs are often difficult to simultaneously obtain effectiveness and scalability [62,
37]. Implementing a BNN algorithm requires substantially more expertise than implementing a
deterministic NN program. Moreover, as revealed, BNNs trained from scratch without the “cold
posterior” trick are often systematically worse than their point-estimate counterparts in terms of
predictive performance [56]; and some easy-to-use BNNs (e.g., Monte Carlo dropout) tend to suffer
from mode collapse in function space, thus usually give uncertainty estimates of poor fidelity [11].

To mitigate these issues, we develop a pre-training & fine-tuning workflow for learning variational
BNNs conditioned on the inherent connections between variational BNNs [2] and regular deep neural
networks (DNNs). The resultant BayesAdapter framework learns a variational BNN by performing
several rounds of Bayesian fine-tuning, starting from a pre-trained deterministic NN. BayesAdapter is
effective and lightweight, and conjoins the complementary benefits from deterministic training and
Bayesian reasoning, e.g., good performance, resistance to over-fitting, reliable uncertainty estimates,
etc. (find evidence in Figure 1).
∗Corresponding author.

Preprint. Under review.

RN18 RN34 RN50 DN121 DN169 DN201
69

70

71

72

73

74

75

76

77

Im
ag

eN
et

 T
op

1
Ac

cu
ra

cy

RN18 RN34 RN50 DN121 DN169 DN201
0.00

0.01

0.02

0.03

0.04

0.05

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

BayesAdapter Deterministic Fine-tuning Pre-trained (MAP)

1 2 3 4 5
Skew intensity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

BayesAdapter
Deep Ensemble
From-scratch Variational BNN
MC Dropout
MAP

Figure 1: (left): BayesAdapter boosts the accuracy of ImageNet classifiers significantly without compromising
model calibration (estimated by expected calibration error (ECE) [15]), while deterministic fine-tuning only
marginally improves the accuracy of pre-trained models, yet aggravates over-confidence issue. RN refers
to ResNet [17] and DN refers to DenseNet [21]. (right): BayesAdapter learns a CIFAR-10 classifier which
approaches or outperforms competing baselines in terms of ECE for CIFAR-10 corruptions [18]. Each box
summarizes the ECE across 19 types of skew. We use the PSE variational (detailed in Sec 2.2) in these
experiments and perform Bayesian fine-tuning for only 4 and 12 epochs on ImageNet and CIFAR-10 respectively.

To make BayesAdapter comfortably accessible, we provide an easy-to-use implementation for the
stochastic variational inference (SVI) under two representative variational distributions: mean-field
Gaussian and parameter-sharing ensemble. Variance reduction for the gradients in SVI plays a
critical role in making approximate inference successful, while the pioneering works like local
reparameterization [26] or Flipout [55] typically impose restrictive assumptions on the variational
form, e.g., a Gaussian or a distribution whose samples can be re-parameterized with symmetric
perturbations. To tackle this, we refurbish the widely-criticized exemplar reparameterization [26]
by accelerating the exemplar-wise computations through parallelization, giving rise to an efficient
and general-purpose gradient variance reduction strategy. Based on these designs, we perform an
investigation on do variational BNNs know what they do not know, and find that typical variational
BNNs can seldom yield calibrated uncertainty estimates on realistic, malicious out-of-distribution
(OOD) data. We then provide a corresponding prescription, where Bayesian inference is augmented
with biased yet meaningful regularization, to ameliorate this pathology.

We conduct extensive experiments to validate the advantages of BayesAdapter over competing
baselines, in aspects covering learning efficiency, predictive performance, and quality of uncertainty
estimates. Desirably, we scale up BayesAdapter to big data (e.g., ImageNet [6]), deep architectures
(e.g., ResNets [17]), and practical scenarios (e.g., face recognition [7]), and observe promising results.

2 BayesAdapter

MC estimate of

expected log-likelihood

Variational BNN

Predictions

grad.

Pre-trained DNN

grad.

Complexity loss

Adaptation

<latexit sha1_base64="A52TXafAKk26vffgmjbz7AoeP0g=">AAACCnicbVDLSsNAFJ3UV62vqEs30SLUTUlE1I1Q6sZlBfuAJg2T6aQdOnkwMxHLNGs3/oobF4q49Qvc+TdO2iy09cCFwzn3cu89XkwJF6b5rRWWlldW14rrpY3Nre0dfXevxaOEIdxEEY1Yx4McUxLipiCC4k7MMAw8itve6Drz2/eYcRKFd2IcYyeAg5D4BEGhJFc/tOVDT1bISWqnriRXVtqTEzuAYogglfV0krp62ayaUxiLxMpJGeRouPqX3Y9QEuBQIAo571pmLBwJmSCI4rRkJxzHEI3gAHcVDWGAuSOnr6TGsVL6hh8xVaEwpurvCQkDzseBpzqzI/m8l4n/ed1E+JeOJGGcCByi2SI/oYaIjCwXo08YRoKOFYGIEXWrgYaQQSRUeiUVgjX/8iJpnVat86p5e1au1fM4iuAAHIEKsMAFqIEb0ABNgMAjeAav4E170l60d+1j1lrQ8pl98Afa5w8E9Zse</latexit>

{x(i)}|B|
i=1

<latexit sha1_base64="f3AWVxHWmOJuc83a3Tp7SjwsiT4=">AAACJnicbZBLSwMxEMez9VXrq+rRS7AI7aXsiqhYChUvHivYB3Trkk3TNjT7MJlVy9pP48Wv4sVDRcSbH8X0gWjrQOA3/5lhMn83FFyBaX4aiYXFpeWV5GpqbX1jcyu9vVNVQSQpq9BABLLuEsUE91kFOAhWDyUjnitYze1djOq1OyYVD/xr6Ies6ZGOz9ucEtCSky52b+Iszw3wWRE/TLB071gTKmC78JPYinv4NqvzRxu6DIhj5Zx0xsyb48DzYE0hg6ZRdtJDuxXQyGM+UEGUalhmCM2YSOBUsEHKjhQLCe2RDmto9InHVDMenznAB1pp4XYg9fMBj9XfEzHxlOp7ru70CHTVbG0k/ldrRNA+bcbcDyNgPp0sakcCQ4BHnuEWl4yC6GsgVHL9V0y7RBIK2tmUNsGaPXkeqod56zhvXh1lSudTO5JoD+2jLLLQCSqhS1RGFUTRE3pBQ/RmPBuvxrvxMWlNGNOZXfQnjK9vOcGjNA==</latexit>

h(i) := x(i)@w
(i)
1 ; w

(i)
1 ⇠ q(w1|✓1)

<latexit sha1_base64="SrRSNsmrKkrPudjU0uRjEx45mCc=">AAACJ3icbZBLS8NAEMc39V1fVY9eFotQLyUpoqIoFS8eFewDmhg22027uHm4O1FK7Lfx4lfxIqiIHv0mbtsgah1Y+M1/ZpidvxcLrsA0P4zcxOTU9MzsXH5+YXFpubCyWldRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jDuzoZ1Bs3TCoehRfQi5kTkE7IfU4JaMktHHUv0xLf6uP9Q5xh9datjOgA2wf4O7MVD/B1Sed3NnQZELey5RaKZtkcBh4HK4MiyuLMLTzb7YgmAQuBCqJUyzJjcFIigVPB+nk7USwm9Ip0WEtjSAKmnHR4Zx9vaqWN/UjqFwIeqj8nUhIo1Qs83RkQ6Kq/tYH4X62VgL/npDyME2AhHS3yE4EhwgPTcJtLRkH0NBAquf4rpl0iCQVtbV6bYP09eRzqlbK1UzbPt4vV48yOWbSONlAJWWgXVdEpOkM1RNE9ekQv6NV4MJ6MN+N91Jozspk19CuMzy+IWaNS</latexit>

h(i) := h(i)@w
(i)
2 ; w

(i)
2 ⇠ q(w2|✓2)

<latexit sha1_base64="QoB0YEyc2z+y134Pp/BzIf3PUQo=">AAACJnicbZBNS8NAEIY3flu/oh69LBahvZTEiooiVLx4VLAqNDFstpt26ebD3YlSYn+NF/+KFw+KiDd/its2iLYOLDzzzgyz8/qJ4Aos69OYmJyanpmdmy8sLC4tr5ira5cqTiVldRqLWF77RDHBI1YHDoJdJ5KR0Bfsyu+c9OtXd0wqHkcX0E2YG5JWxANOCWjJM4/aN1mJl3v44AjnWLv3qkM6dA7xT+IoHuLbks4fHGgzIF617JlFq2INAo+DnUMR5XHmma9OM6ZpyCKggijVsK0E3IxI4FSwXsFJFUsI7ZAWa2iMSMiUmw3O7OEtrTRxEEv9IsAD9fdERkKluqGvO0MCbTVa64v/1RopBPtuxqMkBRbR4aIgFRhi3PcMN7lkFERXA6GS679i2iaSUNDOFrQJ9ujJ43C5XbF3K9b5TrF2nNsxhzbQJiohG+2hGjpFZ6iOKHpEz+gVvRlPxovxbnwMWyeMfGYd/Qnj6xsrgKMs</latexit>

h(i) := h(i)@w
(i)
3 ; w

(i)
3 ⇠ q(w3|✓3)

<latexit sha1_base64="3tMknqmJhufJt4buVVgFme13Ebo=">AAACAXicbZDLSgMxFIbP1Futt1E3gptgEaqLMiOiIggVNy4r2Au00yGTpm1o5kKSUctQN76KGxeKuPUt3Pk2pu0stPWHwMd/zuHk/F7EmVSW9W1k5uYXFpeyy7mV1bX1DXNzqyrDWBBaISEPRd3DknIW0IpiitN6JCj2PU5rXv9qVK/dUSFZGNyqQUQdH3cD1mEEK2255k6vlRTYwRCdX6CHCZbuXbt16Jp5q2iNhWbBTiEPqcqu+dVshyT2aaAIx1I2bCtSToKFYoTTYa4ZSxph0sdd2tAYYJ9KJxlfMET72mmjTij0CxQau78nEuxLOfA93elj1ZPTtZH5X60Rq86Zk7AgihUNyGRRJ+ZIhWgUB2ozQYniAw2YCKb/ikgPC0yUDi2nQ7CnT56F6lHRPilaN8f50mUaRxZ2YQ8KYMMplOAaylABAo/wDK/wZjwZL8a78TFpzRjpzDb8kfH5A70UlSU=</latexit>

h(i) := x(i)@w⇤
1

<latexit sha1_base64="HHuIRxpVZDIfKVb/bztITMuwIu4=">AAACAXicbZDLSgMxFIbP1Futt1E3gptgEaqLMlNERRAqblxWsBdop0MmTdvQzIUko5ShbnwVNy4UcetbuPNtTNtZaOsPgY//nMPJ+b2IM6ks69vILCwuLa9kV3Nr6xubW+b2Tk2GsSC0SkIeioaHJeUsoFXFFKeNSFDse5zWvcH1uF6/p0KyMLhTw4g6Pu4FrMsIVtpyzb1+OymwoxG6uEQplh/cUvvYNfNW0ZoIzYOdQh5SVVzzq9UJSezTQBGOpWzaVqScBAvFCKejXCuWNMJkgHu0qTHAPpVOMrlghA6100HdUOgXKDRxf08k2Jdy6Hu608eqL2drY/O/WjNW3XMnYUEUKxqQ6aJuzJEK0TgO1GGCEsWHGjARTP8VkT4WmCgdWk6HYM+ePA+1UtE+LVq3J/nyVRpHFvbhAApgwxmU4QYqUAUCj/AMr/BmPBkvxrvxMW3NGOnMLvyR8fkDpZqVFg==</latexit>

h(i) := h(i)@w⇤
2

<latexit sha1_base64="J3oJkKqFuFr4+ud2MNrDSO4WjCo=">AAACAXicbZDLSgMxFIbP1Futt1E3gptgEaqLMqOiIggVNy4r2Au00yGTpm1o5kKSUcpQN76KGxeKuPUt3Pk2pu0stPWHwMd/zuHk/F7EmVSW9W1k5uYXFpeyy7mV1bX1DXNzqyrDWBBaISEPRd3DknIW0IpiitN6JCj2PU5rXv96VK/dUyFZGNypQUQdH3cD1mEEK2255k6vlRTYwRBdXKIUSw/ucevQNfNW0RoLzYKdQh5SlV3zq9kOSezTQBGOpWzYVqScBAvFCKfDXDOWNMKkj7u0oTHAPpVOMr5giPa100adUOgXKDR2f08k2Jdy4Hu608eqJ6drI/O/WiNWnXMnYUEUKxqQyaJOzJEK0SgO1GaCEsUHGjARTP8VkR4WmCgdWk6HYE+fPAvVo6J9WrRuT/KlqzSOLOzCHhTAhjMowQ2UoQIEHuEZXuHNeDJejHfjY9KaMdKZbfgj4/MHpyCVFw==</latexit>

h(i) := h(i)@w⇤
3

Figure 2: The workflow of BayesAdapter: we adapt the
pre-trained DNNs to be variational BNNs and then per-
form several rounds of Bayesian fine-tuning. We provide
a modularized implementation for Bayesian fine-tuning
under mean-field Gaussian and parameter-sharing ensem-
ble variational distributions, permitting the users to learn
a variational BNN as if one were training a regular DNN
under weight decay regularizer.

In this section, we first motivate BayesAdapter
by drawing a connection between variational
BNNs and DNNs under maximum a posteri-
ori (MAP) estimation. We then describe the
rationale of Bayesian fine-tuning, as well as
two implementations of it. Figure 2 illustrates
the overall workflow of BayesAdapter.

2.1 From DNNs to BNNs

Let D = {(x(i), y(i))}ni=1 be a given training
set, where x(i) ∈ Rd and y(i) ∈ Y denote
the input data and label, respectively. A DNN
model can be fit via MAP as follows:

max
w

1

n

∑
i

[log p(y(i)|x(i);w)] +
1

n
log p(w).

(1)
We use w ∈ Rp to denote the high-
dimensional model parameters, and p(y|x;w)

2

as the predictive distribution associated with the model. The prior p(w), when taking the form
of an isotropic Gaussian N (w; 0, σ2

0I), reduces to the weight decay regularizer with coefficient
λ = 1/(σ2

0n) in optimization. Yet, deterministic training may easily cause over-fitting and over-
confidence, rendering the learned models of poor fidelity (see Figure 1). Naturally, Bayesian neural
networks (BNNs) come into the picture to address these limitations.

Typically, a BNN imposes a prior p(w) on model parameters, which is put together with the likelihood
p(D|w) to infer the posterior p(w|D). Among the wide spectrum of BNN algorithms [36, 40, 14,
2, 33, 13], variational BNNs are particularly promising due to their analogy to ordinary backprop.
Formally, variational BNNs use a θ-parameterized variational distribution q(w|θ) to approximate the
true posterior p(w|D), by maximizing the evidence lower bound (ELBO) (scaled by 1/n):

maxθ Eq(w|θ)
[1
n

∑
i

log p(y(i)|x(i);w)
]

︸ ︷︷ ︸
Lell

− 1

n
DKL (q(w|θ)‖p(w))︸ ︷︷ ︸

Lc

, (2)

where Lell is the expected log-likelihood and Lc is the complexity loss. By casting posterior inference
into optimization, Eq. (2) makes the training of BNNs resemble that of DNNs. After training, the
variational posterior is leveraged for prediction by marginalizing over all likely modes:

p(y|x,D) ≈ Eq(w|θ)p(y|x;w) ≈ 1

S

S∑
s=1

p(y|x;w(s)), (3)

where w(s) ∼ q(w|θ), s = 1, ..., S, with S denoting the number of Monte Carlo (MC) samples.
Eq. (3) is also known as posterior predictive, Bayes ensemble, or Bayes model average.

We can simultaneously quantify the epistemic uncertainty with these MC samples. A principled
uncertainty metric is the mutual information between the model parameter and the prediction [49],
estimated by (H denotes the Shannon entropy):

I(w, y|x,D) ≈ H
(

1
S

∑S
s=1 p(y|x;w

(s))
)
− 1

S

∑S
s=1H

(
p(y|x;w(s))

)
. (4)

However, most of the existing variational BNNs exhibit limitations in scalability and performance [42,
56] compared with their deterministic counterparts, primarily due to the higher difficulty of learning
high-dimensional distributions from scratch than point estimates.

Given that MAP converges to a mode of the Bayesian posterior, it might be plausible to adapt pre-
trained deterministic DNNs to be Bayesian economically. Following this hypothesis, we repurpose the
converged parametersw∗ of MAP – takew∗ as the initialization of the parameters of the approximate
posterior. Laplace approximation [36] is a classic method in this spirit, which assumes a Gaussian
posterior, and adaptsw∗ and the local curvature atw∗ as the posterior mean and variance, respectively.
Yet, Laplace approximation is inflexible and usually computationally prohibitive. Alternatively, we
develop the more practical Bayesian fine-tuning scheme, whose core notion is to fine-tune the
imperfect variational posterior by maximizing ELBO.

2.2 Bayesian Fine-tuning

In Bayesian fine-tuning, the configuration of the variational distribution q(w|θ) plays a decisive
role. Although a wealth of variationals have emerged for adoption [34, 32, 55], on one hand, more
complicated ones [35, 48] are routinely accompanied by less scalable and less amenable learning
procedures; on the other hand, the aforementioned hypothesis inspiring Bayesian fine-tuning entails
an explicit alignment between the DNN parameters w∗ and the variational parameters θ. In this
sense, we primarily concern the typical, efficient, yet less effective mean-field Gaussian distribution
as well as a more powerful one which resembles Deep Ensemble [30].

Mean-field Gaussian (MFG) variational. Without losing generality, we write the MFG variational
as q(w|θ) = N (w;µ,diag(exp(2ψ))), with µ,ψ ∈ Rp denoting the mean and the logarithm
of standard deviation respectively. In this sense, we can naturally initialize µ with w∗ at the
beginning of fine-tuning to ease the approximate posterior inference and to enable the investigation
of more qualified posterior modes. As in MAP, we also assume an isotropic Gaussian prior p(w) =
N (w; 0, σ2

0I). Then the gradients of the complexity loss can be derived analytically:

∇µLc = −λµ, ∇ψLc = −λexp(2ψ) +
1

n
, λ =

1

σ2
0n
. (5)

3

Intuitively, the above gradients for the variational parameters correspond to a variant of the vanilla
weight decay in DNNs. Having identified this, we can implement a weight decay-like module
to implicitly be responsible for the complexity loss, leaving only the expected log-likelihood Lell
required to be explicitly handled. We will elaborate the details of solving maxLell after presenting a
more expressive variational configuration.

Parameter-sharing ensemble (PSE) variational. Despite simplicity, the MFG variational can be
limited in expressiveness for capturing the multi-modal parameter posterior of over-parameterized
neural networks. Empowered by the observation that Deep Ensemble [30] is a compelling Bayesian
marginalization mechanism in deep learning [58], we intend to develop a low-cost ensemble-like
variational for more practical Bayesian deep learning.

Specifically, we first define the variational as a uniform mixture of C Gaussians: q(w|θ) =
1
C

∑
cN (w;w(c),Σ(c)), where Σ(c) ∈ Rp×p is positive-definite and its elements are indepen-

dent of the dimension p.2 In this sense, the complexity loss boils down to the KL divergence between
a mixture of Gaussians and a Gaussian, which, yet, cannot be calculated analytically in general.
Nevertheless, under the mild assumption that w(c) ∈ Rp is normally distributed and p is large
enough, the KL divergence can be approximated by a weighted sum of the KL divergences between
the Gaussian components and the Gaussian prior (refer to [12] for detailed discussion and proof).
Namely:

− 1
n
DKL

(
1
C

∑
cN (w;w(c),Σ(c))

∥∥N (w;0, σ2
0I)
)
≈ − 1

2σ2
0nC

∑C
c=1

(
‖w(c)‖22 + trace(Σ(c))− σ2

0 log |Σ(c)|
)
+ constant.

(6)

Based on the observation that Bayesian model average benefits significantly more from the exploration
of new modes than navigation around a local mode [58], we assume Σ(c), c = 1, ..., C, to be a constant
diagonal matrix σ2I with σ2 approaching 0. Namely, we purely chase multi-mode exploration and
leave the joint optimization of Σ(c) and w(c) for future investigation. Then, q(w|θ) almost amounts
to a mixture of deltas (i.e., an ensemble) and with high probability we can approximate the realisation
of w by a uniform sample from {w(1), ...,w(C)}. Meanwhile, the complexity loss approximately
becomes − λ

2C

∑C
c=1 ‖w(c)‖22 + constant, and we can easily implement a weight decay-like module

to be responsible for its gradient. We comment here that it may be more plausible to alternatively
leverage the rigorous quasi-KL divergence [20] for estimating the divergence between a mixture of
deltas and the Gaussian prior, left as a future work.

Simulating an ensemble is far from our ultimate goal due to the required high cost. To make the
variational economical, we explore a valuable insight from recent works [54, 57] that the parameters
of different ensemble components can be partially shared without undermining effectiveness.

Specifically, abusingw to notate the parameter matrix of sizemin×mout in a neural network layer, we
generate C components via: w(c) = l(c)r(c) ◦ w̄, c = 1, ..., C, where w̄ ∈ Rmin×mout are the shared
parameters and l(c) ∈ Rmin×r and r(c) ∈ Rr×mout correspond to r-rank decomposition of some
component-specialized perturbations. ◦ is the element-wise multiplication. The shared parameters w̄
can be initialized as w∗ to ease and speedup the Bayesian fine-tuning. When the rank r is suitably
small, the above design can significantly reduce the model size, and save the training effort. Of
note that the previous works [54, 57] confine r to be 1 to permit the adoption of a specific gradient
variance reduction trick. Conversely, we loosen this constraint by using a more generally applicable
variance reduction tactic, detailed below.

Estimation of the expected log-likelihood Lell. Given the high non-linearity of deep NNs and the
large volume of data in modern settings, we follow the stochastic variational inference (SVI) pipeline
for estimating Lell. Formally, given a mini-batch of data B = {(x(i), y(i))}|B|i=1, we solve

max
θ
L′ell =

1

|B|

|B|∑
i=1

log p(y(i)|x(i);w), (7)

where w is drawn from the MFG or PSE variational via reparameterization [25]. The gradients
w.r.t. the variational parameters can be derived automatically with autodiff libraries, thus the training
resembles that of regular DNNs.

2We define the variational as a mixture of Gaussians instead of a mixture of deltas to ensure the variational is
absolutely continuous w.r.t. the prior. This avoids the singularity of the approximate posterior distribution [20].

4

def ER_conv(input, theta, stride, padding, groups):

 “””input: [b, i, h, w]; theta: variational parameters”””

 b = input.shape[0]

 # sample a batch of conv filters w: [b, o, i, k, k]
 w = mc_sample(theta, num_mc_samples=b)

 # reshape w to have shape [b*o, i, k, k]
 w = w.flatten(start_dim=0, end_dim=1)

 # reshape input to have shape [1, b*i, h, w]
 input = input.flatten(start_dim=0, end_dim=1).unsqueeze(0)

 # perform b convs in parallel
 output = conv2d(input, w, stride, padding, groups*b)

 # reshape the result to standard format
 return output.view(b, -1, output.shape[2], output.shape[3])
 ER VR LR Flipout

4

5

6

7

8

9

10

M
ax

 M
em

or
y

Al
lo

ca
te

d
(G

b)

ER VR LR Flipout
0.15

0.20

0.25

0.30

0.35

0.40

Ti
m

e
pe

r M
in

i-b
at

ch
 (s

)

Figure 3: (left): Implementation of exemplar reparametrization for 2D convolution in PyTorch [43].
(right): Memory and time cost comparison among exemplar reparametrization (ER), vanilla
reparametrization (VR) [25], local reparametrization (LR) [26], and Flipout [55] with mean-field
Gaussian variational used (estimated on ImageNet with ResNet-50 architecture and batch size as 32).

However, gradients derived by L′ell might exhibit high variance, caused by sharing the sampled
parameters w across data in the mini-batch [26]. Popular techniques for addressing this issue
typically assume a restrictive form of variational distribution [26, 55], struggling to handle structured
distributions like the proposed PSE with> 1 rank. Fortunately, there is a generally applicable strategy
for reducing gradient variance in stochastic variational inference named exemplar reparametrization
(ER), which samples dedicated parameters for every exemplar in the minibatch for estimating Lell:

L∗ell =
1

|B|

|B|∑
i=1

log p(y(i)|x(i);w(i)), w(i) i.i.d.∼ q(w|θ), i = 1, ..., |B|. (8)

We can see that the FLOPS of ER are identical to that of vanilla reparameterization, but ER was
criticized for that the involved exemplar-wise computations could not be efficiently done within
the popular computation libraries in 2015 [26]. With the rapid development of high-performance
device-propriety kernel backends (e.g. cuDNN [4]) in recent years, we wonder is the criticism still
hold? To this end, we first refurbish ER to fit nowadays ML frameworks. Our key insight here
is to perform multiple exemplar-wise computations in parallel with a single kernel launch, e.g.,
organize exemplar-wise matrix multiplications as a batch matrix multiplication; organize
exemplar-wise convolutions as a group convolution (see Figure 3 (left)). We then conduct an
empirical study on the computation cost of ER and relevant methods using MFG variational. Figure 3
(right) shows the results.

Surprisingly, the time efficiency of ER is comparable with that of local reparameterization [26]
and Flipout [55], while the memory cost of ER is even lower. We deduce this is because local
reparameterization and Flipout both need to calculate and store one extra mini-batch of feature maps,
which are rather large in ImageNet models. Note that the added memory cost of ER upon vanillar
reparameterization comes from the storage of a mini-batch of temporary parameters.

A plug-and-play library. We wrap the details of the aforementioned modularized stochastic varia-
tional inference and ER strategy for MFG and PSE in a plug-and-play Python library (attached in
supplementary materials) to free the users from the difficulties of implementing BayesAdapter.

3 Do Variational BNNs Know What They Do Not Know?

0.0 0.2 0.4 0.6 0.8
Confidence Threshold

0.0

0.2

0.4

0.6

Er
ro

r o
n

ex
am

pl
es

 p
(y

|x
)

CIFAR10+SVHN Error vs Confidence

BayesAdapter (PSE)
Deep Ensemble
From-scratch Variational BNN
MC Dropout
MAP

Figure 4: Error vs. confidence plots
for models trained on CIFAR-10 and
tested on both CIFAR-10 and SVHN.

Based on the efficient BayesAdapter paradigm, we can per-
form faster learning of variational BNNs, and hence deeper
investigations on their properties.

We first evaluate the predictive uncertainty of BayesAdapter as
well as popular baselines under regular domain shift. Follow-
ing [16], we train models on CIFAR-10 [29] training set, and
evaluate them on both CIFAR-10 and SVHN [41] test sets. For
every confidence threshold 0 ≤ τ < 1, we calculate the average
error rate for points with ≥ τ confidence (all predictions on
SVHN data are regarded as incorrect). The results are depicted
in Figure 4. It is clear that BayesAdapter with PSE variational
has made more conservative predictions on out-of-distribution
(OOD) SVHN data than all baselines. We perform only 12

5

0.00 0.02 0.04
Mutual information

0

200

400

600

800

D
en

si
ty

Normal
Adversarial

(a) BayesAdapter, C10

0 1 2 3
Mutual information

0.0

2.5

5.0

7.5

10.0

12.5

D
en

si
ty

Normal
Fake

(b) BayesAdapter, IN

0.0 0.5 1.0 1.5 2.0
Mutual information

0

5

10

15

20

D
en

si
ty

Normal
Adversarial

(c) BayesAdapter w/ reg, C10

0 1 2 3
Mutual information

0

2

4

6

D
en

si
ty

Normal
Fake

(d) BayesAdapter w/ reg, IN

Figure 5: (a)-(b): The histograms for the mutual information uncertainty of normal data and OOD data given
by BayesAdapter (MFG). (c)-(d): The histograms for the mutual information uncertainty of normal data and
OOD data given by BayesAdapter w/ reg (MFG). (C10 refers to CIFAR-10; IN refers to ImageNet.)

epochs of Bayesian fine-tuning upon MAP, while the model calibration is significantly promoted.
BayesAdapter with PSE variational even outperforms the expensive Deep Ensemble, implying that
the parameter-sharing mechanism may impose further regularization on model parameters. The
comparison also confirms that from-scratch variational BNNs have difficulties to find good posteriors.

We then move to more realistic and malicious OOD data frequently encountered in real world. We
train models on CIFAR-10 and ImageNet [6], and test them on the adversarial examples from PGD
attack [38] and the fake samples from BigGAN [3], respectively. We only plot the histograms for the
epistemic uncertainty (estimated by Eq. (4)) from BayesAdapter in Figure 5a and 5b, while the other
BNN methods behave similarly (see Figure 6 in Sec 4 for evidence). It is evident that the two kinds
of OOD data are undesirably assigned systematically lower uncertainty than normal data.

Such an unreliability issue of the uncertainty estimates pose a road-block for the practical application
of variational BNNs. To address this pathology, we propose to calibrate the epistemic uncertainty of
variational BNNs on top of ELBO maximization during Bayesian fine-tuning. Basically, we regularize
the BNNs to give high epistemic uncertainty for a cheap collection of OOD data, so that they acquire
the ability of yielding high uncertainty for unseen OOD samples with similar fingerprints. Namely,
assuming access to some OOD data {x(i)

o }no
i=1, we optimize the following margin loss:

maxθ Lreg = 1
|Bo|

∑
x
(i)
o ∈Bo

min
(
I(w, y|x(i)

o ,D), γ
)
, (9)

where Bo refers to a mini-batch of OOD data and γ is a pre-defined threshold. For efficiency, we
adopt S = 2 MC samples for estimating the uncertainty I in Eq. (9) during training. The overall
objective for BayesAdapter w/ reg is then L∗ell + αLreg with α representing a trade-off coefficient.

We comment that though the regularization may make the learned posterior deviate from the principled
posterior associated with the imposed prior, it, yet, is practically effective for improving the quality
of learned posteriors, partially because the imposed prior beliefs on model parameters may not be
meaningful, especially for deep networks [50]. For verification, we deploy BayesAdapter w/ reg to the
aforementioned two settings, and observe calibrated epistemic uncertainty on OOD data in Figure 5c
and 5d. Note that we take uniformly contaminated samples (as a proxy of the expensive adversarial
examples crafted by PGD) and 1000 BigGAN samples as the training OOD data for CIFAR-10 and
ImageNet respectively, indicating the sample efficiency of the uncertainty regularization.

4 Experiments

In this section, we apply BayesAdapter to a diverse set of benchmarks for empirical verification.

Settings. In general, we pre-train DNNs following standard protocols or fetch the pre-trained
checkpoints available online, and then perform Bayesian fine-tuning. We randomly initialize the
newly added variational parameters (e.g., ψ, l(c), r(c)). Unless otherwise stated, we set rank r = 1
and component number C = 20 for PSE. We use S = 20 MC samples for predicting and quantifying
epistemic uncertainty for both MFG and PSE. For BayesAdapter w/ reg, we set α = 3 without tuning
and set uncertainty threshold γ = 0.75 according to an observation that the normal examples usually
present < 0.75 mutual information uncertainty across various scenarios. We conduct experiments on
8 RTX 2080Ti GPUs. Full details are deferred to Appendix B.

Baselines. We consider extensive baselines including: (1) MAP, which is the fine-tuning start point,
(2) Laplace Approx.: which preforms Laplace approximation with diagonal Fisher information
matrix, (3) MC Dropout, which is a dropout variant of MAP, (4) VBNN, which refers to from-scratch
trained variational BNNs under ELBO maximization. In particular, the variational BNN methods

6

Table 1: Comparison on predictive performance and negative log-likelihood (NLL). We use underline to
emphasize the results obtained given significantly more training effort. For BayesAdapter, we repeat every
experiment for 3 times and report the error bar.

Method CIFAR-10 ImageNet
TOP1 (%) ↑ NLL ↓ TOP1 (%) ↑ NLL ↓

MAP 96.92 0.1312 76.13 0.9618
Laplace Approx. 96.41 0.1204 75.89 0.9739

MC Dropout 96.95 0.1151 74.88 0.9884
SWAG 96.32 0.1122 - -

Deep Ensemble 97.40 0.0869 - -
VBNN (MFG) 96.95 0.0994 75.97 0.9435
VBNN (PSE) 96.88 0.1328 75.12 0.9865

BayesAdapter (MFG) 97.10±0.03 0.1007±0.0014 76.45±0.05 0.9303±0.0005
BayesAdapter (PSE) 97.13±0.03 0.0936±0.0010 76.80±0.03 0.9159±0.0010

Table 2: Accuracy ↑ comparison on open-set face recognition with MobileNetV2 architecture.

Method LFW CPLFW CALFW CFP-FF CFP-FP
MAP 98.2% 84.0% 87.6% 97.8% 92.7%

MC Dropout 98.2% 83.6% 87.3% 97.8% 92.8%
BayesAdapter (MFG) 98.4% 83.9% 85.8% 97.6% 92.9%
BayesAdapter (PSE) 98.4% 84.7% 87.8% 97.8% 93.1%

like BayesAdapter and VBNN are evaluated on both the MFG and PSE variationals. We also include
Deep Ensemble [30], and SWAG [37] into the comparison on CIFAR-10.3

4.1 CIFAR-10 Classification

We first conduct experiments on CIFAR-10 classification with wide-ResNet-28-10 architecture [61].
We perform Bayesian fine-tuning for 12 epochs with the weight decay coefficient λ set as 2e-4
following common practice. Table 1 (left) outlines the comparison on prediction performance.

It is worth noting that BayesAdapter notably outperforms MAP, Laplace Approx., MC Dropout, and
SWAG in aspect of predictive performance. The accuracy upper bound is Deep Ensemble, which
trains 5 isolated MAPs and assembles their predictions to explicitly investigate diverse function
modes, but it is orders of magnitude more expensive than BayesAdapter. VBNN is clearly defeated
by BayesAdapter, confirming our claim that performing Bayesian fine-tuning from the converged
deterministic checkpoints is beneficial to explore more qualified posteriors.

Converged ELBO. We compare the converged (training) ELBO of VBNN and BayesAdapter: the
former gives Lell = −0.032 and Lc = −2384.3 while the latter gives Lell = −0.019 and Lc =
−2806.8. The comparison implies Bayesian fine-tuning can make the approximate posterior converge,
while the convergence is distinct from that of from-scratch variational inference.

CIFAR-10 vs CIFAR-10 corruptions/SVHN. We then compare the predictive uncertainty of
BayesAdapter as well as the baselines on CIFAR-10 corruptions [18] and SVHN [41]. Figure 1 (right)
and 4 present the results, which substantiate the efficacy of BayesAdapter for resisting over-fitting.

Speedup. Based on our implementation, SVI with PSE takes around 2 minutes for one epoch. Thus,
VBNN trained from scratch consumes 400 minutes for 200-epoch training, while BayesAdapter needs
only 24 minutes for 12-epoch fine-tuning, saving 376 minutes (94%) training time than VBNN.

4.2 ImageNet Classification

We then scale up BayesAdapter to the large ImageNet dataset with ResNet-50 [17] architecture. We
launch fine-tuning for merely 4 epochs with the weight decay coefficient λ set as 1e-4.

Table 1 (right) reports the empirical comparison. As expected, most of results are consistent with
those on CIFAR-10. On this large-scale scenario, it is more clear that the from-scratch learning
baseline VBNN would suffer from local optima. The striking improvement of BayesAdapter upon
MAP validates the benefits of Bayesian treatment. Zooming in, we also note that BayesAdapter
(PSE) reveals remarkably higher accuracy than the BayesAdapter (MFG), testifying the enhanced
expressiveness of PSE over MFG.

3Currently, we have not scaled Deep Ensemble and SWAG up to ImageNet due to resource constraints.

7

PGD adversarial data (CIFAR-10) SNGAN fake data (CIFAR-10)0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pr
ec

isi
on

PGD adversarial data (ImageNet) BigGAN fake data (ImageNet)0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pr
ec

isi
on

MAP
Laplace Approx.

MC Dropout
SWAG

Deep Ensemble
VBNN (MFG)

VBNN (PSE)
BayesAdapter (MFG)

BayesAdapter (PSE)
BayesAdapter w/ reg (MFG)

BayesAdapter w/ reg (PSE)

Figure 6: Comparison on the average precision for detecting adversarial/fake examples on CIFAR-10/ImageNet.

Table 4: Ablation study on the rank r of PSE. (ImageNet)
Method TOP1 (%) # of Param. (M)

MAP 76.13 25.56
BayesAdapter (PSE, r=1) 76.80 27.21
BayesAdapter (PSE, r=8) 76.78 38.76

BayesAdapter (PSE, r=16) 76.80 51.95

4.3 Face Recognition

To demonstrate the universality of BayesAdapter, we further apply it to the challenging face recogni-
tion task based on MobileNetV2 [45]. We train models on the CASIA dataset [60], and perform com-
prehensive evaluation on face verification datasets including LFW [22], CPLFW [63], CALFW [64],
and CFP [46].We launch fine-tuning for 4 epochs with λ = 5e − 4. We compare our method to
MAP and MC Dropout, two popular baselines in face recognition field. We depict the comparison on
recognition accuracy in Table 2.

It is noteworthy that Bayesian principle can induce better predictive performance for face recognition
models. BayesAdapter (PSE) has outperformed the fine-tuning start point MAP and the popular
baseline MC Dropout in most verification datasets, despite being fine-tuned for only several rounds.

4.4 Detection of Adversarial and Fake Examples

We then concern the quality of the uncertainty estimates yielded by the trained models for realistic
OOD data, including adversarial examples crafted by 20-step PGD following standard protocols
and fake samples from performant GANs [39, 3] or DeepFake (see Appendix F for some examples).
Concretely, we estimate the epistemic uncertainty of the trained models on normal data as well
as OOD data, based on which we distinguish the latter from the former. We compute the average
precision (AP) of such a binary classification (detection) and plot the comparison in Figure 6.

Briefly speaking, BayesAdapter w/ reg significantly surpasses all other methods. In particular, Deep
Ensemble also yields unreliable predictive uncertainty for the difficult OOD data. These results
confirm the unreliability issue of existing BNNs’ predictive uncertainty and prove the efficacy of the
developed uncertainty regularization. See Table 1 in Appendix D for the classification performance
of BayesAdapter w/ reg.

4.5 More Empirical Analyses

Table 3: Comparison on model calibration (ECE ↓).
Method CIFAR-10 ImageNet

MAP 0.0198 0.0373
SWAG 0.0088 -

Deep Ensemble 0.0057 -
VBNN (MFG) 0.0074 0.0183
VBNN (PSE) 0.0188 0.0202

BayesAdapter (MFG) 0.0091 0.0289
BayesAdapter (PSE) 0.0058 0.0129

Model calibration on in-distribution data.
We estimate model calibration, measured by
expected calibration error (ECE) [15], of the
studies methods on in-distribution data, and re-
port the results in Table 3. Notably, the ECE of
BayesAdapter (PSE) is on par with Deep Ensem-
ble, significantly better than the other baselines.

The impact of the rank r for PSE. As stated,
we set r = 1 for all the above studies for maxi-
mal parameter saving. Yet, does the small rank r confine the expressiveness of PSE? We perform
an ablation study to pursue the answer. As shown in Table 4, the capacity of PSE can already be
sufficiently unleashed when the rank is 1, indicating the merit of PSE for efficient learning.

8

1 20 40 60 80 100
The number of MC samples

74

75

76

Te
st

 a
cc

ur
ac

y
(%

)

Individual
Ensemble
Deterministic

4.2e-07 5.0e-04 3.5e-03 1.3e-02 3.2e-02 6.2e-02 1.1e-01 1.7e-01 2.5e-01 3.7e-01 3.3e+00

Epistemic Uncertainty
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Figure 7: (left): Test accuracy varies w.r.t. the number of MC samples for Bayes ensemble. (right): Comparison
on the accuracy for instance buckets of equal size but with rising uncertainty. (BayesAdapter (MFG), ImageNet)

The effectiveness of exemplar reparameterization. We build a toy model with only a convolutional
layer and fix the model input and the target output. We employ the MFG variational on the convolu-
tional parameters and computing the variance of stochastic gradients across 500 runs. We average the
gradient variance of µ and ψ over all their coordinates, and observe that vanilla reparameterization
typically introduces more than 100× variance than exemplar reparameterization.

The impact of ensemble number. We draw the change of test accuracy w.r.t. the number of MC
samples S for Bayes ensemble in Figure 7 (left). The model is trained by BayesAdapter (MFG)
on ImageNet. The points on the red line represent the individual accuracies of the 100 parameter
samples. The yellow dashed line refers to the deterministic inference with only the Gaussian mean.
The green line displays the effects of Bayes ensemble – the predictive performance increases from
< 74% to > 76% quickly before seeing 20 parameter samples, and gradually saturates after that.

Uncertainty-based rejective decision. In practice, we expect our models to be accurate on the data
that they are certain about. In this spirit, we gather the epistemic uncertainty estimates for ImageNet
validation data given by BayesAdapter (MFG), based on which we divide the data into 10 buckets of
equal size but with increasing uncertainty. We depict the average accuracy of each bucket in Figure 7
(right). As expected, our BNN is more accurate for instances with smaller uncertainty.

5 Related Work

Fruitful works have emerged in the BNN community in the last decade [14, 53, 2, 25, 1, 33, 23, 59].
However, most of the existing works cannot achieve the goal of practicability. For example, some
works trade learning efficiency for flexible variational posteriors, leading to restrictive scalability [34,
35, 47, 50]. [24, 62, 42] build Adam-like optimizers to do variational inference, but their parallel
training throughput and compatibility with data augmentation are inferior to SGD. Approximate
Bayesian methods, e.g., Monte Carlo (MC) dropout [13] and deep ensemble [30], usually maintain
impressive predictive performance, but suffer from degenerated uncertainty estimates [11] or high
cost.

Laplace approximation [36, 44] is a known approach to transform a DNN to a BNN, but it is
inflexible due to its postprocessing nature and some strong assumptions made for practical concerns.
Alternatively, BayesAdapter works in the style of fine-tuning, which is more natural and economical
for deep networks. Bayesian modeling the last layer of a DNN is proposed recently [28], and its
combination with BayesAdapter deserves an investigation. BayesAdapter connects to MOPED [27] in
that their variational configurations are both based on MAP. Yet, beyond MOPED, we make valuable
technical contributions including PSE variational and the refinement of exemplar reparameterization.
We have also done a thorough investigation on how pre-training benefits variational inference.
Anyway, we provide an empirical comparison between BayesAdapter and MOPED in Appendix C.

6 Conclusions

In this work, we propose the scalable BayesAdapter framework to learn variational BNNs. Our
core idea is to perform Bayesian fine-tuning instead of expensive from-scratch Bayesian learning.
We develop plug-and-play implementations for the stochastic variational inference under two rep-
resentative variational distributions, and refine exemplar reparameterization to efficiently reduce
gradient variance. We also propose a biased yet meaningful uncertainty regularization to calibrate the
epistemic uncertainty of variational BNNs. We evaluate BayesAdapter in diverse real-world scenarios
and report promising results.

9

References
[1] Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy, and Max Welling. Bayesian dark knowledge.

In Advances in Neural Information Processing Systems, pages 3438–3446, 2015.

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In International Conference on Machine Learning, pages 1613–1622, 2015.

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[4] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and
Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[5] Deepfakes, 2018. https://github.com/deepfakes/faceswap. Accessed: 2018-10-29.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

[7] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4690–4699, 2019.

[8] Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Learning
and policy search in stochastic dynamical systems with Bayesian neural networks. arXiv preprint
arXiv:1605.07127, 2016.

[9] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017.

[10] Faceswap, 2018. https://github.com/MarekKowalski/FaceSwap. Accessed: 2018-10-29.

[11] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape perspective.
arXiv preprint arXiv:1912.02757, 2019.

[12] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: appendix. arXiv preprint
arXiv:1506.02157, 420, 2015.

[13] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty
in deep learning. In International Conference on Machine Learning, pages 1050–1059, 2016.

[14] Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems, pages 2348–2356, 2011.

[15] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks.
arXiv preprint arXiv:1706.04599, 2017.

[16] Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the neural tangent
kernel. arXiv preprint arXiv:2007.05864, 2020.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[18] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[19] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning of
Bayesian neural networks. In International Conference on Machine Learning, pages 1861–1869, 2015.

[20] Jiri Hron, Alex Matthews, and Zoubin Ghahramani. Variational bayesian dropout: pitfalls and fixes. In
International Conference on Machine Learning, pages 2019–2028. PMLR, 2018.

[21] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolu-
tional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4700–4708, 2017.

[22] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild: A
database forstudying face recognition in unconstrained environments. In Technical report, 2007.

10

https://github.com/deepfakes/faceswap.
https://github.com/MarekKowalski/FaceSwap.

[23] Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for computer
vision? In Advances in Neural Information Processing Systems, pages 5574–5584, 2017.

[24] Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Srivastava.
Fast and scalable Bayesian deep learning by weight-perturbation in adam. In International Conference on
Machine Learning, pages 2616–2625, 2018.

[25] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114,
2013.

[26] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. In Advances in Neural Information Processing Systems, pages 2575–2583, 2015.

[27] Ranganath Krishnan, Mahesh Subedar, and Omesh Tickoo. Specifying weight priors in bayesian deep
neural networks with empirical bayes. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 4477–4484, 2020.

[28] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes overconfi-
dence in relu networks. arXiv preprint arXiv:2002.10118, 2020.

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[30] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing Systems,
pages 6402–6413, 2017.

[31] Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and Siegfried Wahl. Leveraging
uncertainty information from deep neural networks for disease detection. Scientific Reports, 7(1):1–14,
2017.

[32] Yingzhen Li and Richard E Turner. Gradient estimators for implicit models. arXiv preprint
arXiv:1705.07107, 2017.

[33] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian inference
algorithm. In Advances in Neural Information Processing Systems, pages 2378–2386, 2016.

[34] Christos Louizos and Max Welling. Structured and efficient variational deep learning with matrix gaussian
posteriors. In International Conference on Machine Learning, pages 1708–1716, 2016.

[35] Christos Louizos and Max Welling. Multiplicative normalizing flows for variational Bayesian neural
networks. In International Conference on Machine Learning, pages 2218–2227, 2017.

[36] David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation,
4(3):448–472, 1992.

[37] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson. A simple
baseline for bayesian uncertainty in deep learning. In Advances in Neural Information Processing Systems,
pages 13153–13164, 2019.

[38] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[39] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

[40] Radford M Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1995.

[41] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits
in natural images with unsupervised feature learning. 2011.

[42] Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E Turner, Rio Yokota,
and Mohammad Emtiyaz Khan. Practical deep learning with Bayesian principles. arXiv preprint
arXiv:1906.02506, 2019.

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in neural information processing systems, pages 8026–8037, 2019.

11

[44] Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural networks.
In 6th International Conference on Learning Representations, ICLR 2018-Conference Track Proceedings,
volume 6. International Conference on Representation Learning, 2018.

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510–4520, 2018.

[46] Soumyadip Sengupta, Jun-Cheng Chen, Carlos Castillo, Vishal M Patel, Rama Chellappa, and David W
Jacobs. Frontal to profile face verification in the wild. In 2016 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1–9. IEEE, 2016.

[47] Jiaxin Shi, Shengyang Sun, and Jun Zhu. Kernel implicit variational inference. In International Conference
on Learning Representations, 2018.

[48] Jiaxin Shi, Shengyang Sun, and Jun Zhu. A spectral approach to gradient estimation for implicit distribu-
tions. arXiv preprint arXiv:1806.02925, 2018.

[49] Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial example detection.
arXiv preprint arXiv:1803.08533, 2018.

[50] Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational Bayesian neural
networks. In International Conference on Learning Representations, 2019.

[51] Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias Niebner. Face2face:
Real-time face capture and reenactment of rgb videos. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2387–2395, 2016.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[53] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings
of the 28th international conference on machine learning (ICML-11), pages 681–688, 2011.

[54] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient ensemble
and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

[55] Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient pseudo-independent
weight perturbations on mini-batches. arXiv preprint arXiv:1803.04386, 2018.

[56] Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper
Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes posterior in
deep neural networks really? arXiv preprint arXiv:2002.02405, 2020.

[57] Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles for
robustness and uncertainty quantification. arXiv preprint arXiv:2006.13570, 2020.

[58] Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. arXiv preprint arXiv:2002.08791, 2020.

[59] Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E Turner, Jose Miguel Hernandez-Lobato, and
Alexander L Gaunt. Deterministic variational inference for robust bayesian neural networks. arXiv preprint
arXiv:1810.03958, 2018.

[60] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from scratch. arXiv
preprint arXiv:1411.7923, 2014.

[61] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

[62] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient as variational
inference. In International Conference on Machine Learning, pages 5847–5856, 2018.

[63] Tianyue Zheng and Weihong Deng. Cross-pose lfw: A database for studying cross-pose face recognition
in unconstrained environments. Beijing University of Posts and Telecommunications, Tech. Rep, 5, 2018.

[64] Tianyue Zheng, Weihong Deng, and Jiani Hu. Cross-age lfw: A database for studying cross-age face
recognition in unconstrained environments. arXiv preprint arXiv:1708.08197, 2017.

12

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See L215.
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tal material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sec 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Table 1.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Sec 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Exemplar Fully-connected Layer

As introduced in Sec 2.2, the regular convolution can be elegantly converted into an exemplar version
by resorting to group convolution. The other popular operators are relatively easy to handle. Take the
fully-connected (FC) layer as an example: assuming a feature x ∈ Rb×i, we draw b i.i.d. FC weights
and concatenate them as w ∈ Rb×i×o, then invoke batch_matmul(x,w) to get the output.

B More Experimental Details

The only important hyper-parameter is the weight decay coefficient λ. Other hyper-parameters for
defining PGD or specifying learning rates, etc., all follow standard practice in the DL community.
The number of fake data training (1000) and the number of MC samples for evaluation (S) are flexible
and not tuned.

13

Table 5: Predictive performance of BayesAdapter w/ reg.

Method CIFAR-10 ImageNet
TOP1 (%) ↑ NLL ↓ TOP1 (%) ↑ NLL ↓

BayesAdapter (MFG) 97.10±0.03 0.1007±0.0014 76.45±0.05 0.9303±0.0005
BayesAdapter (PSE) 97.13±0.03 0.0936±0.0010 76.80±0.03 0.9159±0.0010

BayesAdapter w/ reg (MFG) 96.82±0.07 0.1004±0.0026 76.26±0.06 0.9428±0.0020
BayesAdapter w/ reg (PSE) 96.86±0.06 0.1173±0.0030 76.48±0.06 0.9752±0.0030

For λ, we keep it consistent between pre-training and fine-tuning, without elaborated tuning, for
example, λ = 2e− 4 for the wide-ResNet-28-10 architecture on CIFAR-10, λ = 1e− 4 for ResNet-
50 architecture on ImageNet, and λ = 5e − 4 for MobileNet-V2 architecture on CASIA. These
values correspond to isotropic Gaussian priors with σ2

0 as 0.1, 0.0078, and 0.0041 on CIFAR-10,
ImageNet, and CASIA, respectively. It is notable that for a “small” dataset like CIFAR-10, a flatter
prior is preferred. While on larger datasets with stronger data evidence, we need a sharper prior for
regularization.

For the pre-training, we follow standard protocols available online. On CIFAR-10, we perform
CutOut [9] transformation upon popular resize/crop/flip transformation for data augmentation. On
ImageNet, we leverage the ResNet-50 checkpoint on PyTorch Hub as the converged deterministic
model. On face tasks, we train MobileNetV2 following popular hyper-parameter settings, and the
pre-training takes 90 epochs. We use the same weight decay coefficients in both the pre-training and
the fine-tuning.

For models on face recognition, we utilize the features before the last FC layer of the MobileNetV2
architecture to conduct feature distance-based face classification in the validation phase, due to the
open-set nature of the validation data. The Bayes ensemble is similarly achieved by assembling
features from multiple runs as the final feature for estimating predictive performance. But we still
adopt the output from the last FC layer for uncertainty estimation (i.e., calculating Eq. (4)).

For the success of BayesAdapter w/ reg, the uncertainty threshold γ plays a vital role. We use
γ = 0.75 for training across all the scenarios as introduced in Sec 4. But it is not used for OOD
detection in the testing phase. For estimating the results of OOD detection, we use the non-parametric
metric average precision (see the experiment setup in Sec 4), which is the Area Under the Precision-
Recall Curve and is more suitable than the ROC-AUC metric when there is class imbalance. When
uniformly perturbing samples (as said, they are a cheap proxy of “real” adversarial examples) to
construct training OOD set, the budget is identical to the evaluation budget. We adopt PGD for
generating adversarial samples in the validation phase. Concretely, we attack the posterior predictive
objective, i.e., Eq. (3), with S = 20 MC samples. On CIFAR-10, we set perturbation budget as 0.031
and perform PGD for 20 steps with step size at 0.003. On ImageNet and face recognition, we set
perturbation budget as 16/255 and perform PGD for 20 steps with step size at 1/255.

Regarding the fake data, we craft 1000 fake samples for training and 10000 ones for evaluation with
SNGAN [39] on CIFAR-10; we craft 1000 fake samples for training and 1000 ones for evaluation
with BigGAN [3] on ImageNet; we randomly sample 1000 fake samples for training and 10000 ones
for evaluation from DeepFakes [5], FaceSwap [10] and Face2Face [51] on face recognition. We
perform intensive data augmentation for fake training data with a random strategy including Gaussian
blur, JPEG compression, etc.

As for the MC dropout, we add dropout-0.3 (0.3 denotes the dropout rate) before the second con-
volution in the residual blocks in wide-ResNet-28-10, dropout-0.2 after the second and the third
convolutions in the bottleneck blocks in ResNet-50, and dropout-0.2 before the last fully connected
(FC) layer in MobileNetV2.

For reproducing Deep Ensemble, we train 5 MAPs separately, and assemble them for prediction and
uncertainty quantification. For reproducing SWAG, we take use of its official implementation, and
leverage 20 MC samples for decision making.

C Comparison Between BayesAdapter and MOPED

We emphasize that MOPED solves the prior specification problem for BNNs while BayesAdapter
constitutes a practical framework to bring variational BNNs to the masses. Empirically, we evaluate

14

Table 6: Comparison on the quality of uncertainty estimates for adversarial samples in terms of AP ↑ on face
recognition.

Method LFW CPLFW CALFW CFP-FF CFP-FP
MAP 0.191 0.192 0.191 0.211 0.205

MC dropout 0.965 0.946 0.959 0.965 0.949
BayesAdapter (MFG) 0.232 0.212 0.236 0.242 0.219
BayesAdapter (PSE) 0.939 0.746 0.936 0.923 0.667

BayesAdapter w/ reg (MFG) 0.998 0.981 0.999 0.999 0.983
BayesAdapter w/ reg (PSE) 1.000 1.000 0.999 1.000 1.000

Table 7: Comparison on the quality of uncertainty estimates for DeepFake samples in terms of AP ↑ on face
recognition.

Method LFW CPLFW CALFW CFP-FF CFP-FP
MAP 0.389 0.456 0.375 0.394 0.454

MC dropout 0.846 0.664 0.862 0.874 0.685
BayesAdapter (MFG) 0.761 0.520 0.788 0.738 0.441
BayesAdapter (PSE) 0.885 0.577 0.899 0.864 0.504

BayesAdapter w/ reg (MFG) 0.998 0.987 0.999 0.999 0.986
BayesAdapter w/ reg (PSE) 1.000 1.000 1.000 1.000 1.000

MOPED on CIFAR-10 with MFG variational, and get 0.0143 training loss (Lell), 96.92% top1
accuracy, 0.1001 test NLL, and 0.0100 ECE. Compared to BayesAdapter’s results (0.0191, 97.10%,
0.1007, and 0.0091), we find MOPED exhibits more seriously over-fitting, implying that taking MAP
as prior poses under-regularization.

D The Predictive Performance of BayesAdapter w/ reg

We report the predictive performance of BayesAdapter w/ reg in Table 5. As shown, the regulariza-
tion Lreg slightly undermines the performance. We think this is reasonable since the uncertainty
regularization enforces the model to trade partial capacity for the fidelity of uncertainty estimates.
Nevertheless, on ImageNet, BayesAdapter w/ reg is still better than its fine-tuning start point MAP
and the from-scratch baseline VBNN.

E Detection of Adversarial and Fake Examples on Face Recognition

We provide the results for the detection of adversarial and fake examples on face recognition in
Table 6 and 7. It is an immediate observation that BayeAdapter w/ reg outperforms the baselines
significantly, and can detect almost all the OOD instances across the validation datasets. By contrast,
BayeAdapter and MAP are similarly unsatisfactory. Surprisingly, MC dropout exhibits some capacity
to detect adversarial instances and DeepFake ones in the face tasks.

F Visualization of Realistic OOD Data

We provide some random samples of the realistic OOD data used for evaluation in Figure 8.

G Visualization of the Learned Posterior

We plot the parameter posterior of the first convolutional kernel in ResNet-50 architecture learned
by BayesAdapter (MFG) on ImageNet in Figure 9. The learned posterior variance seems to be
disordered, unlike the mean. We leave more explanations as future work.

15

Figure 8: Some random samples of the realistic OOD data used for evaluation. The first row refers to
the fake samples from BigGAN on ImageNet. The second row refers to the adversarial examples
generated by PGD on ImageNet. The third row refers to the fake samples from DeepFake.

Figure 9: Left: the mean of the MFG posterior. Right: the variance of the MFG posterior. These
correspond to a convolutional kernel with 64 output channels and 3 input channels, where every
output channel is plotted as a separate image.

16

