

ViewFool: Evaluating the Robustness of Visual Recognition to Adversarial Viewpoints

Yinpeng Dong^{1,3}, Shouwei Ruan², Hang Su¹, Caixin Kang², Xingxing Wei², Jun Zhu^{1,3} ¹ Dept. of Comp. Sci. and Tech., Institute for AI, Tsinghua University ² Institute of AI, Beihang University ³ RealAI <u>dongyinpeng@mail.tsinghua.edu.cn</u>

VERS

OOD Generalization is Hard

Adversarial

"revolver"

×

"vulture"

"ship"

Image Translation and Rotation (Engstrom et al., 2019)

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur **Motion Blur** Zoom Blur Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG

Image Corruptions (Hendrycks et al., 2019)

2

Viewpoint Changes

Chair: 78.66%

Keyboard: 47.80%

Street sign: 99.55%

Traffic light: 97.94%

Board: 63.50%

Mouse: 37.44%

Cinema: 58.45%

Canoe: 41.01%

Goal: find **adversarial viewpoints** that lead to wrong predictions of visual recognition models in the **physical world**.

Real-world Application

Autonomous driving fails to recognize trucks/cars in rare viewpoints to cause traffic accidents.

Challenges

How to model real-world 3D objects with high-fidelity? — NeRF
Simple pipeline: 1) training a NeRF: 2) entireline view point personates

Simple pipeline: 1) training a NeRF; 2) optimize viewpoint parameters based on NeRF; 3) verify the vulnerability from the adversarial viewpoint

How to mitigate the reality gap between a real object and its neural representation?

How to control the real camera pose to precisely match the adversarial viewpoint?

ViewFool: Problem Formulation

- Let $\mathbf{v} \coloneqq [\psi, \theta, \phi, \Delta_x, \Delta_y, \Delta_z]$ denote the transformation parameters of the camera.
- Let $I \coloneqq R(\mathbf{v})$ denote the rendered image.

ViewFool: Optimization Problem

• Learning a **distribution** of adversarial viewpoints:

$$\max_{p(\mathbf{v})} \left\{ \mathbb{E}_{p(\mathbf{v})} \left[L(f(R(\mathbf{v})), y) \right] + \lambda \cdot H(p(\mathbf{v})) \right\}$$

Since $\max_{p(\mathbf{v})} \mathbb{E}_{p(\mathbf{v})} [L(f(R(\mathbf{v})), y)] \le \max_{\mathbf{v}} L(f(R(\mathbf{v})), y)$, we add an **entropic regularizer** into the objective as

$$H(p(\mathbf{v})) = -\mathbb{E}_{p(\mathbf{v})}[\log p(\mathbf{v})]$$

ViewFool: Optimization Algorithm

A transformation of Gaussian distribution

$$\mathbf{v} = \mathbf{a} \cdot \tanh(\mathbf{u}) + \mathbf{b}$$
; $\mathbf{u} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$, $\mathbf{a} = \frac{\mathbf{v}_{max} - \mathbf{v}_{min}}{2}$, $b = \frac{\mathbf{v}_{max} + \mathbf{v}_{min}}{2}$

- Our problem becomes $\max_{\mu,\sigma} \left\{ \mathbb{E}_{N(\mathbf{u};\,\mu,\sigma^{2}\mathbf{I})} \left[L(f(R(\mathbf{a}\cdot \tanh(\mathbf{u}) + \mathbf{b})), y) - \lambda \cdot \log p(\mathbf{a}\cdot \tanh(\mathbf{u}) + \mathbf{b}) \right] \right\}$
- Reparameterization trick: $\mathbf{u} = \boldsymbol{\mu} + \boldsymbol{\sigma}\boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \mathbf{I})$.
- Gradient calculation: adopt the search gradients

$$\nabla_{\boldsymbol{\mu}} = \mathbb{E}_{\mathcal{N}(\boldsymbol{\epsilon};\boldsymbol{0},\mathbf{I})} \left[\mathcal{L}(f(\mathcal{R}(\mathbf{a}\cdot\tanh(\boldsymbol{\mu}+\boldsymbol{\sigma}\boldsymbol{\epsilon})+\mathbf{b})), y) \cdot \boldsymbol{\sigma}\boldsymbol{\epsilon} - \lambda \cdot 2\tanh(\boldsymbol{\mu}+\boldsymbol{\sigma}\boldsymbol{\epsilon}) \right], \quad (6)$$
$$\nabla_{\boldsymbol{\sigma}} = \mathbb{E}_{\mathcal{N}(\boldsymbol{\epsilon};\boldsymbol{0},\mathbf{I})} \left[\mathcal{L}(f(\mathcal{R}(\mathbf{a}\cdot\tanh(\boldsymbol{\mu}+\boldsymbol{\sigma}\boldsymbol{\epsilon})+\mathbf{b})), y) \cdot \frac{\boldsymbol{\sigma}(\boldsymbol{\epsilon}^{2}-1)}{2} - \lambda \cdot \frac{1-2\tanh(\boldsymbol{\mu}+\boldsymbol{\sigma}\boldsymbol{\epsilon})\cdot\boldsymbol{\sigma}\boldsymbol{\epsilon}}{\boldsymbol{\sigma}} \right]$$

Visualization of Adversarial Viewpoints

Real Image from Natural Viewpoint

Granny Smith: 83.71% Studio Couch : 97.56%

Warplane: 94.42%

Notebook: 72.50%

Street Sign: 11.74%

9

Rendered Image from Adversarial Viewpoint

Tennis Ball: 97.81%

Tennis Ball: 73.09% Wallet: 93.13%

Hatchet: 81.23%

Hatchet: 31.01%

Mortarboard: 86.48% Folding Chair: 36.51%

Street Sign: 95.00%

Spatula: 40.98%

Mortarboard: 91.97% Rocking Chair: 58.98%

	ViewFool	VGG-16	Inc-v3	IncRes-v2	DN-121	EN-B0	MN-v2	DeiT-B	Swin-B	Mixer-B
ResNet-50	$\begin{vmatrix} \lambda = 0 \\ \lambda = 0.01 \end{vmatrix}$	85.00% 86.52%	75.94% 82.00%	80.59% 82.00%	73.97% 79.07%	76.73% 82.62%	76.77% 79.11%	65.22% 69.35%	55.81% 59.62%	87.07% 90.37%
ViT-B/16	$\begin{vmatrix} \lambda = 0 \\ \lambda = 0.01 \end{vmatrix}$	82.35% 82.83%	76.18% 78.73%	76.62% 79.07%	74.62% 77.45%	77.06% 74.92%	72.14% 73.97%	69.34% 69.45%	60.50% 59.01%	87.80% 85.72%

High transferability between different models!

Real-world Experiments

Traffic light: 97.94%

Syringe: 10.03%

Missile: 8.09%

Solar dish: 31.23%

11

ImageNet-V Benchmark

- Transformer-based models have better viewpoint robustness;
- A larger model within the same architecture family tends to perform better;
- Adversarial training and existing data augmentation techniques do *not* obtain good results.

12

Code is available at: https://github.com/Heathcliff-saku/ViewFool_

NIVERS

