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Adversarial Examples
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Clean images Adversarial noise Adversarial examples
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Dog: 99.99%

Puffer: 97.99% | Crab: 100.00%

(Figure is from Dong et al. 2018) 5




Adversarial Training

-
B From the optimization view, adversarial training (AT) can be formulated as a
minimax optimization problem (Madry et al., 2018)

Outer minimization: train a robust classifier

]

min ZmaxL(f9<xl+6>yl) S ={6:116]lw < €}
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Inner maximization: generate an adversarial example

m Solve the inner maximization by projected gradient descent

§E+Y =1, (5f + a - sign (VxL(fg (x; + 5f)yl)))




Memorization

Standard Training

Adversarial Training

Trained on True Labels Trained on Random Labels Trained on True Labels Trained on Random Labels

Goal: To facilitate a deeper understanding of model capacity, training
convergence, robust generalization, and robust overfitting of the
adversarially trained models.




AT with random labels
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Finding: PGD-AT cannot converge with random labels, but TRADES can.

* This finding holds with different training settings, including network
architecture, attack steps, optimizer, perturbation budget, regularizations




Convergence Analysis

= A
m Gradient instability issue: the gradient of the adversarial loss in PGD-
AT changes more abruptly than TRADES.

:

2 0.6

<

g

2 0.4 -

s

S

‘5

o 0.2 — PGD-AT
§ — TRADES
© CE loss

0.0

—0.050 —0.025  0.000 0.025 0.050
A

We measure the L2 distance between the gradient at 8 and 6 + Ad




Generalization Analysis
= A

1| A Model trained on true labels
@ Model trained on random labels °®
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m We consider two norm-based measures and two sharpness/flatness-
based measures.

m Finding: None of them can adequately explain and ensure robust
generalization.




Robust Overfitting Analysis
= A
m Argument: robust overfitting is caused by excessive memorization of
(noisy) one-hot labels.
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1. Robust overfitting does not occur with a smaller perturbation budget

(e.g., e = 1/255).
2. The hard examples are consistent across different networks.




Mitigation Algorithm

m Incorporate the Temporal Ensembling (TE) approach into AT

mp =

Accuracy

1 n
mei“;_z max(L(fy (i + 80, 0) +w - Ify Cxi + 8 = pill3)

—, p; =

”pl”2
,W
Pl S
/

—— PGD-AT (natural acc.)

- PGD-AT (robust acc.)
PGD-AT + TE (natural acc.)
— PGD-AT + TE (robust acc.)

100 150 200

Epochs

0 50

Accuracy

e
=

S
.
L

np; + (1 —n)fe(x;)

— TRADES (natural acc.)

- TRADES (robust acc.)
TRADES + TE (natural acc.)

— TRADES + TE (robust acc.)

50 100 150 200

Epochs

Learning curves
on CIFAR-10




Empirical Results
= -

Method

Natural Accuracy
Best Final Diff

PGD-10
Best Final Diff

PGD-1000
Best Final Diff

C&W-1000
Best Final Diff

AutoAttack
Best Final Diff

PGD-AT
PGD-AT+TE

83.75 84.82 -1.07
82.35 82.79 -0.44

52.64 4492 7.72
55.79 54.83 0.96

51.22 4274 8.48
54.65 53.30 1.35

50.11 43.63 7.48
52.30 51.73 0.57

47.74 41.84 5.90
50.59 49.62 0.97

TRADES
TRADES+TE

81.19 82.48 -1.29
83.86 83.97 -0.11

53.32 50.25 3.07
55.15 54.42 0.73

52.44 48.67 3.77
53.74 53.03 0.71

49.88 48.14 1.74
50.77 50.63 0.14

49.03 46.80 2.23
49.77 49.20 0.57

(a) The evaluation results on CIFAR-10.

Method

Natural Accuracy
Best Final Diff

PGD-10
Best Final Diff

PGD-1000
Best Final Diff

C&W-1000
Best Final Diff

AutoAttack
Best Final Diff

PGD-AT
PGD-AT+TE

57.54 57.51 0.03
56.45 57.12 -0.67

29.40 21.75 7.65
31.74 30.24 1.50

28.54 20.63 7.91
31.27 29.80 1.47

27.06 21.17 5.89
28.27 27.36 0.91

2472 19.34 5.38
26.30 25.34 0.96

TRADES
TRADES+TE

57.98 56.32 1.66
59.35 58.72 0.63

29.93 27.70 2.23
31.09 30.12 0.97

29.51 26.93 2.58
30.54 29.45 1.09

25.46 2442 1.04
26.61 25.94 0.67

24.61 23.40 1.21
25.27 24.55 0.72

(b) The evaluation results on CIFAR-100.

Method

Natural Accuracy
Best Final Diff

PGD-10
Best Final Diff

PGD-1000
Best Final Diff

C&W-1000
Best Final Diff

AutoAttack
Best Final Diff

PGD-AT
PGD-AT+TE

89.00 90.55 -1.55
90.09 90.91 -0.82

5451 46.97 7.54
59.74 59.05 0.69

52.22 42.85 9.37
57.71 56.46 1.25

48.66 44.13 4.53
54.55 53.94 0.61

46.61 38.24 8.37
51.44 50.61 0.83

TRADES
TRADES+TE

90.88 91.30 -0.42
89.01 88.52 0.49

59.50 57.04 2.46
59.81 58.49 1.32

52.78 50.17 2.61
58.24 56.66 1.58

52.76 50.53 2.23
54.00 53.24 0.76

40.36 38.88 1.48
51.45 50.16 1.29

(¢) The evaluation results on SVHN.




Thanks for listening

Code is available at:
https://github.com/dongyp13/memorization-AT



https://github.com/dongyp13/memorization-AT

