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Adversarial Examples
Clean images Adversarial noise Adversarial examples

(Figure is from Dong et al. 2018)
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Adversarial Training

n From the optimization view, adversarial training (AT) can be formulated as a
minimax optimization problem (Madry et al., 2018)
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n Solve the inner maximization by projected gradient descent
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Inner maximization: generate an adversarial example

Outer minimization: train a robust classifier

C = {6: 6 F ≤ H}
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Memorization

Standard Training Adversarial Training

Trained on True Labels Trained on Random LabelsTrained on True Labels Trained on Random Labels

Goal: To facilitate a deeper understanding of model capacity, training 
convergence, robust generalization, and robust overfitting of the 
adversarially trained models.
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AT with random labels

Finding: PGD-AT cannot converge with random labels, but TRADES can.
• This finding holds with different training settings, including network 

architecture, attack steps, optimizer, perturbation budget, regularizations
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Convergence Analysis

n Gradient instability issue: the gradient of the adversarial loss in PGD-
AT changes more abruptly than TRADES.

We measure the L2 distance between the gradient at ! and ! + #$
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Generalization Analysis

n We consider two norm-based measures and two sharpness/flatness-
based measures.

n Finding: None of them can adequately explain and ensure robust 
generalization.
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Robust Overfitting Analysis

n Argument: robust overfitting is caused by excessive memorization of 
(noisy) one-hot labels.

1. Robust overfitting does not occur with a smaller perturbation budget 
(e.g., ! = 1/255).
2. The hard examples are consistent across different networks.
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Mitigation Algorithm

n Incorporate the Temporal Ensembling (TE) approach into AT
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Learning curves 
on CIFAR-10
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Empirical Results



Thanks for listening

Code is available at:
https://github.com/dongyp13/memorization-AT

https://github.com/dongyp13/memorization-AT

