Learning Accurate Low-bit Deep Neural Networks with Stochastic Quantization

Yinpeng Dong¹, Renkun Ni², Jianguo Li³, Yurong Chen³, Jun Zhu¹, Hang Su¹
¹ Department of CST, Tsinghua University
² University of Virginia
³ Intel Labs China

Deep Learning is Everywhere

Self-Driving

Alpha Go

Machine Translation

Google

(Google's Neural Machine Translation System: Bridging the Gap between Human and Machine

Translate Turn off instant translation 🐈 English Chinese (Simplified) Spanish 👻 Chinese English Spanish Detect language + [Google NMT, witness the miracle of the moment] 【谷歌NMT,见证奇迹的时刻】 Recent advances in microblogging crazy biography of artificial intelligence: Google translation to achieve a major breakthrough! Worthy of attention and celebration. Mt almost unlimited number of natural standard data in the new technology, it seems to 微信最近疯传人工智能新进展:谷歌翻译实现重大突破! 值得关注和庆贺。mt 几乎无限量的自然带标数据在新技 start force. The report says: 术下,似乎开始发力。报道说: Ten years ago, we released Google Translate, the core algorithm behind this service is PBMT: Phrase-Based Machine Translation. 十年前,我们发布了 Google Translate(谷歌翻译),这 Since then, the rapid development of machine intelligence has given us a great boost 项服务背后的核心算法是基于短语的机器翻译 in speech recognition and image recognition, but improving machine translation is still a difficult task. (PBMT:Phrase-Based Machine Translation) 。 Today, we announced the release of the Google Neural Machine Translation (GNMT) system, which utilizes state-of-the-art training techniques to maximize the quality of 自那时起,机器智能的快速发展已经给我们的语音识别和 "Google's Neural Machine Translation System: Bridging the Gap between Human and 图像识别能力带来了巨大的提升,但改进机器翻译仍然是 一个高难度的目标。 Machine Translation " ☆目めく A Support on edit Google Translate for Business: Translator Toolkit Website Translator Global Market Finder 今天,我们宣布发布谷歌神经机器翻译(GNMT: Google Neural Machine Translation)系统,该系统使用了当前最 先进的训练技术,能够实现到目前为止机器翻译质量的最 大提升。我们的全部研究结果详情请参阅我们的论文

Dota

■ More data + deeper models → more FLOPs + lager memory

- Computation Intensive
- Memory Intensive
- Hard to deploy on mobile devices

Low-bit DNNs for Efficient Inference

- High Redundancy in DNNs;
- Quantize full-precision(32-bits) weights to binary(1 bit) or ternary(2 bits) weights;
- Replace multiplication(convolution) by addition and subtraction;

Typical Low-bit DNNs

BinaryConnect: $B_i = \begin{cases} +1 \text{ with probability } p = \sigma(W_i) \\ -1 \text{ with probability } 1 - p \end{cases}$ **BWN:** minimize $||W - \alpha B||$ $B_i = sign(W_i), \qquad \alpha = \frac{\sum_{i=1}^{a} |W_i|}{J}$ • TWN: minimize $||W - \alpha T||$ $T_{i} = \begin{cases} +1 \text{ if } W_{i} > \Delta \\ 0 \text{ if } |W_{i}| < \Delta \\ -1 \text{ if } W_{i} < -\Delta \end{cases}, \qquad \alpha = \frac{\sum_{i \in I_{\Delta}} |W_{i}|}{|I_{\Delta}|}$ $I_{\Delta} = \{i | |W_i| > \Delta\}, \qquad \Delta = \frac{0.7}{d} \sum_{i=1}^{d} |W_i|$

Training & Inference of Low-bit DNN

- Let W be the full-precision weights, Q be the low-bit weights $(B, T, \alpha B, \alpha T)$.
- Forward propagation: quantize W to Q and perform convolution or multiplication
- Backward propagation: use Q to calculate gradients

Parameter update:
$$W^{t+1} = W^t - \eta^t \frac{\partial L}{\partial Q^t}$$

Inference: only need to keep low-bit weights Q

Motivations

- Quantize all weights simultaneously;
- Quantization error ||W Q|| may be large for some elements/filters;
- Induce inappropriate gradient directions.
- Quantize a portion of weights
- Stochastic selection
- Could be applied to any low-bit settings

Roulette Selection Algorithm

Quantization Probability: Larger quantization error means smaller quantization probability, e.g. $p_i \propto \frac{1}{e_i}$ Quantization Ratio r: Gradually increase to 100%

Training & Inference

• Hybrid weight matrix \tilde{Q}

$$\tilde{Q}_i = \begin{cases} Q_i & \text{if channel i being selected} \\ W_i & \text{else} \end{cases}$$

Parameter update

$$W^{t+1} = W^t - \eta^t \frac{\partial L}{\partial \tilde{Q}^t}$$

Inference: all weights are quantized; use Q to perform inference

Ablation Studies

- Selection Granularity:
 - Filter-level > Element-level
- Selection/partition algorithms
 - Stochastic (roulette) > deterministic (sorting) ~ fixed (selection only at first iteration)
- Quantization functions
 - Linear > Sigmoid > Constant ~ Softmax

•
$$p_i = \exp(f_i) / \sum \exp(f_i)$$
, where $f = \frac{1}{e}$

- Quantization Ratio Update Scheme
 - Exponential > Fine-tune > Uniformly
 - 50% \rightarrow 75% \rightarrow 87.5% \rightarrow 100%

Results -- CIFAR

	Bits	CIF	FAR-10	CIFAR-100	
	Dits	VGG-9	ResNet-56	VGG-9	ResNet-56
FWN	32	9.00	6.69	30.68	29.49
BWN	1	10.67	16.42	37.68	35.01
SQ-BWN	1	9.40	7.15	35.25	31.56
TWN	2	9.87	1.01	34.80	32.09
SQ-TWN	2	8.37	6.20	34.24	28.90

Results -- ImageNet

	Bite	AlexNet-BN		ResNet-18	
	DIts	top-1	top-5	top-1	top-5
FWN	32	44.18	20.83	34.80	13.60
BWN	1	51.22	27.18	45.20	21.08
SQ-BWN	1	48.78	24.86	41.64	18.35
TWN	2	47.54	23.81	39.83	17.02
SQ-TWN	2	44.70	21.40	36.18	14.26

Conclusions

- We propose a stochastic quantization algorithm for Low-bit DNN training
- Our algorithm can be flexibly applied to all low-bit settings;
- Our algorithm help to consistently improve the performance;
- We release our codes to public for future development
 - https://github.com/dongyp13/Stochastic-Quantization

