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Deep	Learning	is	Everywhere

Self-Driving Alpha	Go

DotaMachine Translation
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Limitations

n More data + deeper modelsàmore FLOPs + lager
memory

n Computation	Intensive
n Memory	Intensive
n Hard	to	deploy	on	mobile	devices
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Low-bit DNNs	for	Efficient	Inference

n High Redundancy in DNNs;
n Quantize full-precision(32-bits) weights to binary(1 bit)

or ternary(2 bits) weights;
n Replace multiplication(convolution) by addition and

subtraction;
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Typical	Low-bit DNNs

n BinaryConnect:

𝐵" = $+1		with	probability	𝑝 = 𝜎(𝑊")
−1		with	probability	1 − 𝑝									

n BWN: minimize 𝑊 − 𝛼𝐵

𝐵" = 𝑠𝑖𝑔𝑛 𝑊" , 𝛼 =
∑ 𝑊"
@
"AB
𝑑

n TWN: minimize 𝑊 − 𝛼𝑇

𝑇" = E
+1		if	𝑊" > ∆				
0				if	 𝑊" < ∆
−1	if	𝑊" < −∆

, 	𝛼 =
∑ 𝑊"
�
"∈M∆
𝐼∆

𝐼∆ = 𝑖 𝑊" > ∆ , ∆=
0.7
𝑑 Q 𝑊"

@

"AB
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Training & Inference of	Low-bit	DNN

n Let𝑊 be the full-precision weights, 𝑄 be the low-bit
weights (𝐵, 𝑇, α𝐵, α𝑇).

n Forward propagation: quantize𝑊 to 𝑄 and perform
convolution or multiplication

n Backward propagation: use 𝑄 to calculate gradients

n Parameter update:𝑊TUB = 𝑊T − 𝜂T WX
WYZ

n Inference: only need to keep low-bit weights 𝑄



7

Motivations

n Quantize all weights simultaneously;
n Quantization error 𝑊 −𝑄 may be large for some

elements/filters;
n Induce inappropriate gradient directions.

n Quantize a portion of weights
n Stochastic selection
n Could be applied to any low-bit settings
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Roulette Selection Algorithm
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Training & Inference

n Hybrid weight matrix 𝑄_

𝑄_" = $𝑄"					if	channel	i	being	selected𝑊"				else																																										
n Parameter update

𝑊TUB = 𝑊T − 𝜂T
𝜕𝐿
𝜕𝑄_T

n Inference: all weights are quantized; use 𝑄 to perform
inference
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Ablation	Studies

n Selection	Granularity:	
¨ Filter-level >	Element-level

n Selection/partition	algorithms
¨ Stochastic (roulette)	>	deterministic	(sorting)	~	fixed	
(selection	only	at	first	iteration)

n Quantization	functions
¨ Linear >	Sigmoid	>	Constant	~	Softmax

n 𝑝" = exp	(𝑓") ∑ exp	(𝑓")�
�⁄ , where 𝑓 = B

]

n Quantization	Ratio	Update	Scheme
¨ Exponential >	Fine-tune	>	Uniformly

n 50%à 75%à 87.5%à 100%
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Results -- CIFAR
DONG ET AL.: STOCHASTIC QUANTIZATION 9

Bits CIFAR-10 CIFAR-100
VGG-9 ResNet-56 VGG-9 ResNet-56

FWN 32 9.00 6.69 30.68 29.49
BWN 1 10.67 16.42 37.68 35.01

SQ-BWN 1 9.40 7.15 35.25 31.56
TWN 2 9.87 7.64 34.80 32.09

SQ-TWN 2 8.37 6.20 34.24 28.90
Table 5: Test error (%) of VGG-9 and ResNet-56 trained with 5 different methods on the CIFAR-10 and CIFAR-100
datasets. Our SQ algorithm can consistently improve the results. SQ-TWN even outperform full-precision models.

Bits AlexNet-BN ResNet-18
top-1 top-5 top-1 top-5

FWN 32 44.18 20.83 34.80 13.60
BWN 1 51.22 27.18 45.20 21.08

SQ-BWN 1 48.78 24.86 41.64 18.35
TWN 2 47.54 23.81 39.83 17.02

SQ-TWN 2 44.70 21.40 36.18 14.26
Table 6: Test error (%) of AlexNet-BN and ResNet-18 trained with 5 different methods on the ImageNet dataset.

simplicity. We find that the performance of different functions are very close, which indicates
that what matters most is the stochastic partition algorithm itself.

Scheme for updating the SQ ratio. We also study how to design the scheme for updating
the SQ ratio. Basically, we assume that training with stochastic quantization will be divided
into several stages, and each stage has a fixed SQ ratio. In all previous setting, we use four
stages with SQ ratio r = 50%,75%,87.5% and 100%. We call this exponential scheme (Exp)
since in each stage, the non-quantized part is half-sized to that of previous stage. We com-
pare our results with two additional schemes: the average scheme (Ave), and the fine-tuned
scheme (Tune). The average scheme includes five stages with r = 20%,40%,60%,80% and
100%. The fine-tuned scheme tries to fine-tune the pre-trained full-precision models with
stages same as the exponential scheme instead of training from scratch.

Table 3 shows the results of the compared three schemes. It is obvious that the exponen-
tial scheme performs better than the average scheme and the fine-tuned scheme. It can also
be concluded that our method works well when training from scratch.

4.3 Benchmark Results

We make a full benchmark comparison on the CIFAR-10, CIFAR-100 and ImageNet datasets
between the proposed SQ algorithm and traditional algorithms on BWN and TWN. For fair
comparison, we set the learning rate, optimization method, batch size etc identical in all these
experiments. We adopt the best setting (i.e., channel-wise selection, stochastic partition,
linear probability function, exponential scheme for SQ ratio) for all SQ based experiments.

Table 5 presents the results on the CIFAR-10 and CIFAR-100 datasets. In these two
cases, SQ-BWN and SQ-TWN outperform BWN and TWN significantly, especially in ResNet-
56 which are deeper and the gradients can be easily misled by quantized weights with large
quantization errors. For example, SQ-BWN improve the accuracy by 9.27% than BWN on
the CIFAR-10 dataset with the ResNet-56 network. The 2-bits SQ-TWN models can even
obtain higher accuracy than the full-precision models. Our results show that SQ-TWN im-
prove the accuracy by 0.63%, 0.49% and 0.59% than full-precision models on CIFAR-10
with VGG-9, CIFAR-10 with ResNet-56 and CIFAR-100 with ResNet-56, respectively.
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Figure 2: Test loss of FWN, BWN and SQ-BWN on
CIFAR-10 with ResNet-56.
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Figure 3: Test loss of FWN, TWN and SQ-TWN on
CIFAR-10 with ResNet-56.

In Figure 2 and Figure 3, we show the curves of test loss on the CIFAR-10 dataset with
the ResNet-56 network. In Figure 2, BWN doesn’t converge well with much larger loss than
SQ-BWN, while the losses in SQ-BWN and FWN are relatively low. In Figure 3, we can see
that at the beginning of each stage, quantizing more weights leads to large loss, which will
be soon converged after some training iterations. Finally, SQ-TWN gets smaller loss than
FWN, while the loss in TWN is larger than FWN.

Table 6 shows the results on the standard ImageNet 50K validation set. We compare
SQ-BWN, SQ-TWN to FWN, BWN and TWN with the AlexNet-BN and the ResNet-18
architectures, and all the errors are reported with only single center crop testing. It shows
that our algorithm helps to improve the performance quite a lot, which consistently beats the
baseline methods by a large margin. We can also see that SQ-TWN yield approaching results
with FWN. Note that some works [18, 24] keep the first or last layer full-precision to alleviate
possible accuracy loss. Although we did not do like that, SQ-TWN still achieves near full-
precision accuracy. Nevertheless, we conclude that our SQ algorithm can consistently and
significantly improve the performance.

5 Conclusion

In this paper, we propose a Stochastic Quantization (SQ) algorithm to learn accurate low-bit
DNNs. We propose a roulette based partition algorithm to select a portion of weights to quan-
tize, while keeping the other portion unchanged with full-precision, at each iteration. The hy-
brid weights provide much more appropriate gradients and lead to better local minimum. We
empirically prove the effectiveness of our algorithm by extensive experiments on various low
bitwidth settings, network architectures and benchmark datasets. We also make our codes
public at https://github.com/dongyp13/Stochastic-Quantization. Fu-
ture direction may consider the stochastic quantization of both weights and activations.
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Results -- ImageNet

DONG ET AL.: STOCHASTIC QUANTIZATION 9

Bits CIFAR-10 CIFAR-100
VGG-9 ResNet-56 VGG-9 ResNet-56

FWN 32 9.00 6.69 30.68 29.49
BWN 1 10.67 16.42 37.68 35.01

SQ-BWN 1 9.40 7.15 35.25 31.56
TWN 2 9.87 7.64 34.80 32.09

SQ-TWN 2 8.37 6.20 34.24 28.90
Table 5: Test error (%) of VGG-9 and ResNet-56 trained with 5 different methods on the CIFAR-10 and CIFAR-100
datasets. Our SQ algorithm can consistently improve the results. SQ-TWN even outperform full-precision models.

Bits AlexNet-BN ResNet-18
top-1 top-5 top-1 top-5

FWN 32 44.18 20.83 34.80 13.60
BWN 1 51.22 27.18 45.20 21.08

SQ-BWN 1 48.78 24.86 41.64 18.35
TWN 2 47.54 23.81 39.83 17.02

SQ-TWN 2 44.70 21.40 36.18 14.26
Table 6: Test error (%) of AlexNet-BN and ResNet-18 trained with 5 different methods on the ImageNet dataset.

simplicity. We find that the performance of different functions are very close, which indicates
that what matters most is the stochastic partition algorithm itself.

Scheme for updating the SQ ratio. We also study how to design the scheme for updating
the SQ ratio. Basically, we assume that training with stochastic quantization will be divided
into several stages, and each stage has a fixed SQ ratio. In all previous setting, we use four
stages with SQ ratio r = 50%,75%,87.5% and 100%. We call this exponential scheme (Exp)
since in each stage, the non-quantized part is half-sized to that of previous stage. We com-
pare our results with two additional schemes: the average scheme (Ave), and the fine-tuned
scheme (Tune). The average scheme includes five stages with r = 20%,40%,60%,80% and
100%. The fine-tuned scheme tries to fine-tune the pre-trained full-precision models with
stages same as the exponential scheme instead of training from scratch.

Table 3 shows the results of the compared three schemes. It is obvious that the exponen-
tial scheme performs better than the average scheme and the fine-tuned scheme. It can also
be concluded that our method works well when training from scratch.

4.3 Benchmark Results

We make a full benchmark comparison on the CIFAR-10, CIFAR-100 and ImageNet datasets
between the proposed SQ algorithm and traditional algorithms on BWN and TWN. For fair
comparison, we set the learning rate, optimization method, batch size etc identical in all these
experiments. We adopt the best setting (i.e., channel-wise selection, stochastic partition,
linear probability function, exponential scheme for SQ ratio) for all SQ based experiments.

Table 5 presents the results on the CIFAR-10 and CIFAR-100 datasets. In these two
cases, SQ-BWN and SQ-TWN outperform BWN and TWN significantly, especially in ResNet-
56 which are deeper and the gradients can be easily misled by quantized weights with large
quantization errors. For example, SQ-BWN improve the accuracy by 9.27% than BWN on
the CIFAR-10 dataset with the ResNet-56 network. The 2-bits SQ-TWN models can even
obtain higher accuracy than the full-precision models. Our results show that SQ-TWN im-
prove the accuracy by 0.63%, 0.49% and 0.59% than full-precision models on CIFAR-10
with VGG-9, CIFAR-10 with ResNet-56 and CIFAR-100 with ResNet-56, respectively.
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Conclusions

n We propose a stochastic quantization algorithm	for	
Low-bit	DNN	training

n Our algorithm can be flexibly applied to all low-bit
settings;

n Our algorithm help to consistently improve the
performance;

n We release	our	codes to	public for future development
¨ https://github.com/dongyp13/Stochastic-Quantization
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