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Conclusion

q Attacks on the face verification API in Tencent AI Open Platform

q Face recognition models based on deep neural networks are vulnerable
to adversarial examples. In many real-world face recognition applications,
the attackers cannot get access to the model details.
q We focus on the realistic decision-based black-box setting, where no
model information is exposed except that the attackers can only query the
target model and obtain corresponding hard-label predictions. We are the
first to study adversarial attacks on face recognition in the black-box setting.
q Goal: Finding minimum adversarial perturbations by limited queries.

Experiments

q We propose an evolutionary attack method to improve
query efficiency in the decision-based black-box setting;

q We demonstrate the practical applicability by attacking
a real-world face recognition system;

q Our attack can be used to protect personal privacy and
evaluate the robustness of face recognition models.

Evolutionary Attack
q The evolutionary attack can improve the query efficiency by modeling
the local geometry of the search directions and reducing the dimension of
the search space.
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Problem Formulation
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q Constrained optimization problem
min
$∗

𝐷 𝑥∗, 𝑥 , 	𝑠. 𝑡. 𝐶 𝑓 𝑥∗ = 1
• 𝐷 is a distance metric (e.g., 𝐿2 norm), 𝐶 is an
adversarial criterion (𝐶 𝑓 𝑥 = 0).

q A reformulation
min
$∗
	𝐿 𝑥∗ = 𝐷 𝑥∗, 𝑥 + 𝛿 𝐶 𝑓 𝑥∗ = 1

• 𝛿 𝑎 = 0 if 𝑎 is true; otherwise 𝛿 𝑎 = +∞.
q Dodging attack: protect personal privacy
• 𝐶 𝑓 𝑥∗ = 𝕀 𝑓 𝑥∗ = 0 in face verification;
• 𝐶 𝑓 𝑥∗ = 𝕀 𝑓 𝑥∗ ≠ 𝑦 in face identification.

q Impersonation attack: evade face authentication systems
• 𝐶 𝑓 𝑥∗ = 𝕀 𝑓 𝑥∗ = 1 in face verification;
• 𝐶 𝑓 𝑥∗ = 𝕀 𝑓 𝑥∗ = 𝑦∗ in face identification.
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Boundary Attack [Brendel et al., 2018]

𝑔 𝜃 = argmin
@AB

𝐶 𝑓 𝑥 + 𝜆
𝜃
𝜃 = 1

Optimization Attack [Cheng et al., 2019]

Random search on the decision boundary Zeroth-order optimization to find optimal 𝜃
But they usually require a tremendous number of queries (~105) to converge, or get
a relatively large perturbation given a limited budget of queries.

1. Initialize 𝐶 = 𝐼E, 𝑝G = 0, 𝑥H∗ as an adversarial example;
2. For 𝑡 = 1 to 𝑇 do
3. Sample 𝑧 = 𝑁 0, 𝜎2𝐶 ;
4. Select 𝑘 coordinates with probability proportional to
the diagonal element in 𝐶;

5. Set the non-selected elements to 0;
6. Upscale 𝑧 to ℝO by bilinear interpolation and get 𝑧̃;
7. 𝑧̃ ← 𝑧̃ + 𝜇 𝑥 − 𝑥H∗ ;
8. If 𝐿 𝑥H∗ + 𝑧̃ < 𝐿(𝑥H∗) then
9. 𝑥H∗ ← 𝑥H∗ + 𝑧̃;
10. 𝑝G = 1 − 𝑐G 𝑝G + 𝑐G(2 − 𝑐G)

� [
\
;

11. 𝑐]] = 1 − 𝑐G^_ 𝑐]] + 𝑐G^_ 𝑝G ]
2;

12. End if
13. End for
14. Return 𝑥H∗.

Add a bias to reduce the distance 𝐷 𝑥∗, 𝑥

Reduce the dimension
of search space by
dimensionality 
reduction and
stochastic coordinate
selection

Use a diagonal covariance matrix
to model the local geometry of the
search directions

q Algorithm:
Input: original image 𝑥; the dimension 𝑛 of the input space,𝑚 of the search space;
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