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Introduction

q Generating adversarial examples:
o Constrained optimization problem:

argmax
&∗

𝐽 𝑥∗, 𝑦 					𝑠. 𝑡. 𝑥∗ − 𝑥 1 ≤ 𝜖

o Fast gradient sign method (FGSM, Goodfellow et al., 2015):
𝑥∗ = 𝑥 + 𝜖 ⋅ sign(𝛻&𝐽(𝑥, 𝑦))

o Iterative fast gradient sign method (I-FGSM, Kurakin et al., 2016):
𝑥=∗ = 𝑥,			𝑥>?@∗ = clip(𝑥>∗ + α ⋅ sign 𝛻&𝐽 𝑥>∗, 𝑦 )

o Optimization-based method (Carlini and Wagner, 2017):
argmin

&∗
𝜆 ⋅ 𝑑 𝑥∗, 𝑥 − 𝐽(𝑥∗, 𝑦)

q Transferability
o The adversarial examples generated for one model can also fool another

model (Liu et al., 2017).
o Black-box attacks: how to generate more efficient adversarial examples for a

black-box model (challenge).

q The trade-off between the attack ability and transferability
1. FGSM: more transferable adversarial examples; low success rates for the white-box 

models. (Reason: linear assumption may not hold for large distortion; “underfit”
the model.)

2. I-FGSM: high success rates for white-box models; poor transferability. (Reason:
drop into poor local maxima; “overfit” the model.)

Motivation

q Ablation studies
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Boosting Adversarial Attacks with Momentum

Conclusion
q We propose a broad class of momentum-based iterative methods for
generating more transferable adversarial examples.

q We propose to attack an ensemble of models whose logits are fused.
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The Success rates when attacking
Inc-v3, Inc-v4, IncRes-v2 and Res-
152 by I-FGSM with different
number of iterations. The adversarial
examples are generated for Inc-v3.

Methodology

q Optimization with Momentum (Polyak, 1964)
o Accelerate gradient descent
o Escape from poor local minima and maxima
o Stabilize update directions of stochastic gradient descent

q Momentum Iterative Fast Gradient Sign Method (MI-FGSM)
𝑥=∗ = 𝑥,			𝑥>?@∗ = clip(𝑥>∗ + α ⋅ sign 𝛻&𝐽 𝑥>∗, 𝑦 )

𝑥=∗ = 𝑥, 𝑔= = 0

𝑔>?@ = 𝜇 ⋅ 𝑔> +
𝛻&𝐽 𝑥>∗, 𝑦
𝛻&𝐽 𝑥>∗, 𝑦 @

			𝑥>?@∗ = clip(𝑥>∗ + 𝛼 ⋅ sign 𝑔>?@ )
where 𝑔> gathers the gradients of the first t iterations.
q Attacking an ensemble of models

o The adversarial examples generated for multiple models are more transferable
(Liu et al., 2017).

o We propose to attack multiple models whose logits are fused together and
then use MI-FGSM to attack the ensemble model.

𝑙 𝑥 =L 𝑤N𝑙N(𝑥)
O

NP@

q Extension: MI-FGSM can be extended to targeted attacks and L2
norm bound attacks

Momentum

Attack Inc-v3 Inc-v4 IncRes-v2 Res-152 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3
FGSM 72.3⇤ 28.2 26.2 25.3 11.3 10.9 4.8

I-FGSM 100.0⇤ 22.8 19.9 16.2 7.5 6.4 4.1
MI-FGSM 100.0⇤ 48.8 48.0 35.6 15.1 15.2 7.8

Inc-v4
FGSM 32.7 61.0⇤ 26.6 27.2 13.7 11.9 6.2

I-FGSM 35.8 99.9⇤ 24.7 19.3 7.8 6.8 4.9
MI-FGSM 65.6 99.9⇤ 54.9 46.3 19.8 17.4 9.6

IncRes-v2
FGSM 32.6 28.1 55.3⇤ 25.8 13.1 12.1 7.5

I-FGSM 37.8 20.8 99.6⇤ 22.8 8.9 7.8 5.8
MI-FGSM 69.8 62.1 99.5⇤ 50.6 26.1 20.9 15.7

Res-152
FGSM 35.0 28.2 27.5 72.9⇤ 14.6 13.2 7.5

I-FGSM 26.7 22.7 21.2 98.6⇤ 9.3 8.9 6.2
MI-FGSM 53.6 48.9 44.7 98.5⇤ 22.1 21.7 12.9

Table 1. The success rates (%) of non-targeted adversarial attacks against seven models we study. The adversarial examples are crafted for
Inc-v3, Inc-v4, IncRes-v2 and Res-152 respectively using FGSM, I-FGSM and MI-FGSM. ⇤ indicates the white-box attacks.

and the targeted MI-FGM with an L2 norm bound is

x

⇤
t+1 = x

⇤
t � ↵ · gt+1

kgt+1k2
. (13)

Therefore, we introduce a broad class of momentum iter-
ative methods for attacks in various settings, whose effec-
tiveness is demonstrated in Sec. 4.

4. Experiments
In this section, we conduct extensive experiments on

the ImageNet dataset [19] to validate the effectiveness of
the proposed methods. We first specify the experimen-
tal settings in Sec. 4.1. Then we report the results for
attacking a single model in Sec. 4.2 and an ensemble of
models in Sec. 4.3. Our methods won both the NIPS
2017 Non-targeted and Targeted Adversarial Attack com-
petitions, with the configurations introduced in Sec. 4.4.

4.1. Setup

We study seven models, four of which are normally
trained models—Inception v3 (Inc-v3) [22], Inception v4
(Inc-v4), Inception Resnet v2 (IncRes-v2) [21], Resnet v2-
152 (Res-152) [7] and the other three of which are trained
by ensemble adversarial training—Inc-v3ens3, Inc-v3ens4,
IncRes-v2ens [24]. We will simply call the last three models
as “adversarially trained models” without ambiguity.

It is less meaningful to study the success rates of attacks
if the models cannot classify the original image correctly.
Therefore, we randomly choose 1000 images belonging to
the 1000 categories from the ILSVRC 2012 validation set,
which are all correctly classified by them.

In our experiments, we compare our methods to one-
step gradient-based methods and iterative methods. Since
optimization-based methods cannot explicitly control the
distance between the adversarial examples and the corre-
sponding real examples, they are not directly comparable to
ours, but they have similar properties with iterative meth-
ods as discussed in Sec. 2.1. For clarity, we only report the

results based on L1 norm bound for non-targeted attacks,
and leave the results based on L2 norm bound and targeted
attacks in the supplementary material. The findings in this
paper are general across different attack settings.

4.2. Attacking a single model

We report in Table 1 the success rates of attacks against
the models we consider. The adversarial examples are gen-
erated for Inc-v3, Inc-v4, InvRes-v2 and Res-152 respec-
tively using FGSM, iterative FGSM (I-FGSM) and MI-
FGSM attack methods. The success rates are the misclassi-
fication rates of the corresponding models with adversarial
images as inputs. The maximum perturbation ✏ is set to 16

among all experiments, with pixel value in [0, 255]. The
number of iterations is 10 for I-FGSM and MI-FGSM, and
the decay factor µ is 1.0, which will be studied in Sec. 4.2.1.

From the table, we can observe that MI-FGSM remains
as a strong white-box adversary like I-FGSM since it can at-
tack a white-box model with a near 100% success rate. On
the other hand, it can be seen that I-FGSM reduces the suc-
cess rates for black-box attacks than one-step FGSM. But
by integrating momentum, our MI-FGSM outperforms both
FGSM and I-FGSM in black-box attacks significantly. It
obtains more than 2 times of the success rates than I-FGSM
in most black-box attack cases, demonstrating the effective-
ness of the proposed algorithm. We show two adversarial
images in Fig. 1 generated for Inc-v3.

It should be noted that although our method greatly im-
proves the success rates for black-box attacks, it is still inef-
fective for attacking adversarially trained models (e.g., less
than 16% for IncRes-v2ens) in the black-box manner. Later
we show that ensemble-based approaches greatly improve
the results in Sec. 4.3. Next, we study several aspects of
MI-FGSM that are different from vanilla iterative methods,
to further explain why it performs well in practice.

4.2.1 Decay factor µ

The decay factor µ plays a key role for improving the suc-
cess rates of attacks. If µ = 0, momentum-based iterative
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q Attacking an ensemble of models

Ensemble method FGSM I-FGSM MI-FGSM
Ensemble Hold-out Ensemble Hold-out Ensemble Hold-out

-Inc-v3
Logits 55.7 45.7 99.7 72.1 99.6 87.9

Predictions 52.3 42.7 95.1 62.7 97.1 83.3
Loss 50.5 42.2 93.8 63.1 97.0 81.9

-Inc-v4
Logits 56.1 39.9 99.8 61.0 99.5 81.2

Predictions 50.9 36.5 95.5 52.4 97.1 77.4
Loss 49.3 36.2 93.9 50.2 96.1 72.5

-IncRes-v2
Logits 57.2 38.8 99.5 54.4 99.5 76.5

Predictions 52.1 35.8 97.1 46.9 98.0 73.9
Loss 50.7 35.2 96.2 45.9 97.4 70.8

-Res-152
Logits 53.5 35.9 99.6 43.5 99.6 69.6

Predictions 51.9 34.6 99.9 41.0 99.8 67.0
Loss 50.4 34.1 98.2 40.1 98.8 65.2

Table 2. The success rates (%) of non-targeted adversarial attacks of three ensemble methods. We report the results for an ensemble of
white-box models and a hold-out black-box target model. We study four models—Inc-v3, Inc-v4, IncRes-v2 and Res-152. In each row, “-”
indicates the name of the hold-out model and the adversarial examples are generated for the ensemble of the other three models by FGSM,
I-FGSM and MI-FGSM respectively. Ensemble in logits consistently outperform other methods.
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Figure 5. The success rates (%) of the adversarial examples gen-
erated for Inc-v3 against Inc-v3 (white-box) and Res-152 (black-
box). We compare the results of FGSM, I-FGSM and MI-FGSM
with different size of perturbation. The curves of Inc-v3 vs. MI-
FGSM and Inc-v3 vs. I-FGSM overlap together.

4.2.4 The size of perturbation

We finally study the influence of the size of adversarial per-
turbation on the success rates. We attack Inc-v3 model by
FGSM, I-FGSM and MI-FGSM with ✏ ranging from 1 to
40 with the image intensity [0, 255], and evaluate the per-
formance on the white-box model Inc-v3 and a black-box
model Res-152. In our experiments, we set the step size ↵
in I-FGSM and MI-FGSM to 1, so the number of iterations
grows linearly with the size of perturbation ✏. The results
are shown in Fig. 5.

For the white-box attack, iterative methods reach the
100% success rate soon, but the success rate of one-step
FGSM decreases when the perturbation is large. The phe-
nomenon largely attributes to the inappropriate assumption
of the linearity of the decision boundary when the pertur-
bation is large [12]. For the black-box attacks, although
the success rates of these three methods grow linearly with
the size of perturbation, MI-FGSM’s success rate grows

faster. In other words, to attack a black-box model with a
required success rate, MI-FGSM can use a smaller perturba-
tion, which is more visually indistinguishable for humans.

4.3. Attacking an ensemble of models

In this section, we show the experimental results of at-
tacking an ensemble of models. We first compare the three
ensemble methods introduced in Sec. 3.2, and then demon-
strate that the adversarially trained models are vulnerable to
our black-box attacks.

4.3.1 Comparison of ensemble methods

We compare the ensemble methods for attacks in this sec-
tion. We include four models in our study, which are Inc-
v3, Inc-v4, IncRes-v2 and Res-152. In our experiments, we
keep one model as the hold-out black-box model and attack
an ensemble of the other three models by FGSM, I-FGSM
and MI-FGSM respectively, to fully compare the results of
the three ensemble methods, i.e., ensemble in logits, ensem-
ble in predictions and ensemble in loss. We set ✏ to 16, the
number of iterations in I-FGSM and MI-FGSM to 10, µ in
MI-FGSM to 1.0, and the ensemble weights equally. The
results are shown in Table 2.

It can be observed that the ensemble in logits outper-
forms the ensemble in predictions and the ensemble in loss
consistently among all the attack methods and different
models in the ensemble for both the white-box and black-
box attacks. Therefore, the ensemble in logits scheme is
more suitable for adversarial attacks.

Another observation from Table 2 is that the adversar-
ial examples generated by MI-FGSM transfer at a high rate,
enabling strong black-box attacks. For example, by attack-
ing an ensemble of Inc-v4, IncRes-v2 and Res-152 fused
in logits without Inc-v3, the generated adversarial examples
can fool Inc-v3 with a 87.9% success rate. Normally trained
models show their great vulnerability against such an attack.

q Adversarial examples are crafted by adding small, human-imperceptible
noises to legitimate examples, but make a model output attacker-desired
inaccurate predictions.

q Adversarial attacks:
o Identify the robustness of deep learning models.
o Provide more varied training data (i.e., adversarial training).

Experiments

q Attacking a single model

q Our method won the first places in both of the
NIPS 2017 Non-target Adversarial Attack and
Targeted Adversarial Attack competitions.

q Code available at:


