Boosting Adversarial Attacks with Momentum

Yinpeng Dong¹, Fangzhou Liao¹, Tianyu Pang¹, Hang Su¹, Jun Zhu¹, Xiaolin Hu¹, Jianguo Li²

¹Department of Computer Science and Technology, Tsinghua University, ²Intel Labs China

Introduction

Adversarial examples are crafted by adding small, human-imperceptible noises to legitimate examples, but make a model output attacker-desired inaccurate predictions.

Perturbations

Adversarial Images

Dog: 99.99%

Crab: 100.00%

□ Adversarial attacks:

- Identify the robustness of deep learning models.
- Provide more varied training data (i.e., adversarial training).

Real Images

Alps: 94.39%

Puffer: 97.99%

Generating adversarial examples:

- Constrained optimization problem: $\operatorname{argmax}_{J}(x^*, y) \quad s. t. \|x^* - x\|_{\infty} \leq \epsilon$
- Fast gradient sign method (FGSM, Goodfellow et al., 2015): $x^* = x + \epsilon \cdot \operatorname{sign}(\nabla_x / (x, y))$
- Iterative fast gradient sign method (I-FGSM, Kurakin et al., 2016): $x_0^* = x, \ x_{t+1}^* = \operatorname{clip}(x_t^* + \alpha \cdot \operatorname{sign}(\nabla_x J(x_t^*, y)))$
- Optimization-based method (Carlini and Wagner, 2017): $\operatorname{argmin} \lambda \cdot d(x^*, x) - J(x^*, y)$

Transferability

- The adversarial examples generated for one model can also fool another model (Liu et al., 2017).
- Black-box attacks: how to generate more efficient adversarial examples for a black-box model (challenge).

the model.)

The Success rates when attacking Inc-v3, Inc-v4, IncRes-v2 and Res-152 by I-FGSM with different number of iterations. The adversarial examples are generated for Inc-v3.

Optimization with Momentum (Polyak, 1964)

□ Momentum Iterative Fast Gradient Sign Method (MI-FGSM)

where g_t gathers the gradients of the first t iterations.

□ Attacking an ensemble of models

- (Liu et al., 2017).

 \Box Extension: MI-FGSM can be extended to targeted attacks and L₂ norm bound attacks

Motivation

□ The trade-off between the attack ability and transferability

1. FGSM: more transferable adversarial examples; low success rates for the white-box models. (Reason: linear assumption may not hold for large distortion; "underfit"

2. I-FGSM: high success rates for white-box models; poor transferability. (Reason: drop into poor local maxima; "overfit" the model.)

• Accelerate gradient descent

• Escape from poor local minima and maxima

• Stabilize update directions of stochastic gradient descent

Methodology

 $x_0^* = x, \ x_{t+1}^* = \operatorname{clip}(x_t^* + \alpha \cdot \operatorname{sign}(\nabla_x J(x_t^*, y)))$

Momentum

$$x_{0}^{*} = x, g_{0} = 0$$

$$g_{t+1} = \mu \cdot g_{t} + \frac{\nabla_{x} J(x_{t}^{*}, y)}{\|\nabla_{x} J(x_{t}^{*}, y)\|_{1}}$$

$$x_{t+1}^{*} = \operatorname{clip}(x_{t}^{*} + \alpha \cdot \operatorname{sign}(g_{t+1}))$$

• The adversarial examples generated for multiple models are more transferable

• We propose to attack multiple models whose **logits** are fused together and then use MI-FGSM to attack the ensemble model.

$$l(x) = \sum_{i=1}^{K} w_i l_i(x)$$

□ Attacking a single model

	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-152	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}
Inc-v3	FGSM	72.3*	28.2	26.2	25.3	11.3	10.9	4.8
	I-FGSM	100.0*	22.8	19.9	16.2	7.5	6.4	4.1
	MI-FGSM	100.0*	48.8	48.0	35.6	15.1	15.2	7.8
Inc-v4	FGSM	32.7	61.0*	26.6	27.2	13.7	11.9	6.2
	I-FGSM	35.8	99.9 *	24.7	19.3	7.8	6.8	4.9
	MI-FGSM	65.6	99.9 *	54.9	46.3	19.8	17.4	9.6
IncRes-v2	FGSM	32.6	28.1	55.3*	25.8	13.1	12.1	7.5
	I-FGSM	37.8	20.8	99.6 *	22.8	8.9	7.8	5.8
	MI-FGSM	69.8	62.1	99.5*	50.6	26.1	20.9	15.7
Res-152	FGSM	35.0	28.2	27.5	72.9*	14.6	13.2	7.5
	I-FGSM	26.7	22.7	21.2	98.6 *	9.3	8.9	6.2
	MI-FGSM	53.6	48.9	44.7	98.5*	22.1	21.7	12.9

□ Ablation studies

□ Attacking an ensemble of models

	Ensemble method	FGSM		I-FGSM		MI-FGSM	
	Elisemble method	Ensemble	Hold-out	Ensemble	Hold-out	Ensemble	Hold-out
-Inc-v3	Logits	55.7	45.7	99.7	72.1	99.6	87.9
	Predictions	52.3	42.7	95.1	62.7	97.1	83.3
	Loss	50.5	42.2	93.8	63.1	97.0	81.9
-Inc-v4	Logits	56.1	39.9	99.8	61.0	99.5	81.2
	Predictions	50.9	36.5	95.5	52.4	97.1	77.4
	Loss	49.3	36.2	93.9	50.2	96.1	72.5
	Logits	57.2	38.8	99.5	54.4	99.5	76.5
-IncRes-v2	Predictions	52.1	35.8	97.1	46.9	98.0	73.9
	Loss	50.7	35.2	96.2	45.9	97.4	70.8
	Logits	53.5	35.9	99.6	43.5	99.6	69.6
-Res-152	Predictions	51.9	34.6	99.9	41.0	99.8	67.0
	Loss	50.4	34.1	98.2	40.1	98.8	65.2

Conclusion

□ We propose a broad class of momentum-based iterative methods for Inc-v3 vs. MI-FGSM - - Res-152 vs. MI-FGSM Inc-v3 vs. I-FGSM - Res-152 vs. I-FGSM Our method won the styplaces in both of the NIPS 2017 Non-target Adversarial Attack and Targeted Adversarial Attack competitions. ⁴⁰ Code available at: - - -1 4 7 10 13 16 19 22 25 28 31 34 37 40 The size of perturbation ϵ

Experiments

' 'ersarial examples.

e of models whose logits are fused.

