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Adversarial Examples in Computer Vision

Puffer: 97.99% | Crab: 100.00%

(Dong et al. CVPR 2018)



Not only in Computer Vision

Movie Review (Positive (POS) <> Negative (NEG))

Original (Label: NEG) The characters, cast in impossibly contrived situations, are totally estranged from reality.

Attack (Label: POS) The characters, cast in impossibly engineered circumstances, are fully estranged from reality.

Original (Label: POS) It cuts to the knot of what it actually means to face your scares, and to ride the overwhelming metaphorical
wave that life wherever it takes you.

Attack (Label: NEG) It cuts to the core of what it actually means to face your fears, and to ride the big metaphorical wave that
life wherever it takes you.

SNLI (Entailment (ENT), Neutral (NEU), Contradiction (CON))

Premise Two small boys in blue soccer uniforms use a wooden set of steps to wash their hands.

Original (Label: CON) The boys are in band uniforms.

Adversary (Label: ENT)  The boys are in band garment.

Premise A child with wet hair is holding a butterfly decorated beach ball.

Original (Label: NEU) The child is at the beach.

Adversary (Label: ENT)  The youngster is at the shore.
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Recommend System,

LIDAR,

best of times, 000000
it was the
worst of times"

"it is a truth
universally
acknowledged
that a single"

Audio (Carlini and Wagner. S&P 2018)



Counter-intuitive?

Why these models with such high performance will make such ridiculous mistakes?



Counter-intuitive?

In worst case, happens in 1% cases

|

Why these models with such high performance will make such ridiculous mistakes?

!

In expectation, happens in 99% cases



Why 1% Matters?

 Potential Risk

In safety-critical areas including payment, security, health care, finance, automatic drive, etc.

 Public Trust

People are suspicious and rigorous of new technologies, and barely tolerate high-risk defects.
For example, the accident of Tesla automatic driving system.



How to Defend Adversarial Attacks?

Possible strategy one:

To correctly classify adversarial examples

* Optimal

e Difficult to achieve

 Computationally expensive (adversarial training)



How to Defend Adversarial Attacks?

Possible strategy two:

To detect and filter out adversarial examples
e Suboptimal

e Little computation

 Methods borrowed from anomaly detection



Possible strategy one:

Max-Mahalanobis Training
(ICML 2018 + ICLR 2020)

Improving Adversarial Robustness via Promoting Ensemble Diversity
(ICML 2019)

Possible strategy two:

Towards Robust Detection of Adversarial Examples
(NeurlPS 2018)



Max-Mahalanobis Training
Part |

(ICML 2018)
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Motivation

* Paradigm of feed-forward deep nets

Non-linear Linear
Transformation Classifier

Active area of research Much less active

(AlexNet; VGG nets; ResNets; (Softmax regression)
GoogleNets; DenseNets;)



Motivation

* Design a new network architecture for better
performance in the adversarial setting.



Motivation

* Design a new network architecture for better
performance

e Substitute a for softmax
regression (SR).



So what is a suitable new linear classifier?



Inspiration one: LDA is more efficient than LR

* Efron et al.(1975) show that if the input distributes as a mixture of
Gaussian, then linear discriminant analysis (LDA) is more efficient
than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate



Inspiration one: LDA is more efficient than LR

* Efron et al.(1975) show that if the input distributes as a mixture of
Gaussian, then linear discriminant analysis (LDA) is more efficient
than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate

* However, in practice data points hardly distributes as a mixture of
Gaussian in the input space.



Inspiration two: neural networks are powerful

* Deep generative models (e.g., GANs) are successful.

Deep generative models
—

DNN
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Inspiration two: neural networks are powerful

* Deep generative models (e.g., GANs) are successful.

* The reverse direction should also be feasible.
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Our method

* Models the feature distribution in DNNs as a mixture of Gaussian.

* Applies LDA on the feature to make predictions.



How to treat the Gaussian parameters?

* Wan et al. (CVPR 2018) also model the feature distribution as a
mixture of Gaussian. However, they treat the Gaussian parameters
(1; and X) as extra trainable variables.
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* Wan et al. (CVPR 2018) also model the feature distribution as a
mixture of Gaussian. However, they treat the Gaussian parameters
(1; and X) as extra trainable variables.

* We treat them as hyperparameters calculated by our algorithm,
which can provide theoretical guarantee on the robustness.



How to treat the Gaussian parameters?

* Wan et al. (CVPR 2018) also model the feature distribution as a
mixture of Gaussian. However, they treat the Gaussian parameters
(1; and X) as extra trainable variables.

* We treat them as hyperparameters calculated by our algorithm,
which can provide theoretical guarantee on the robustness.

* The induced mixture of Gaussian model is named Max
Mahalanobis Distribution (MMD).



Max-Mahalanobis Distribution (MMD)

* Making the minimal Mahalanobis distance between two
Gaussian components maximal.
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Some formal derivations



Definition of Robustness

* The robustness on a point with label i (Moosavi-Dezfoolo et al.,
CVPR 2016):
min d
J#F1
where d; ; is the local minimal distance of a point with label i to an
adversarial example with label j.

i,j’



Definition of Robustness

* The robustness on a point with label i (Moosavi-Dezfoolo et al.,
CVPR 2016):

mlnd
]-'/—'l

where d; ; is the local minimal distance of a point with label i to an
adversarlal example with label ;.

 We further define the robustness of the classifier as:
RB = mln IE(dl])

i,jE[L



Robustness w.r.t Gaussian parameters




Robustness w.r.t Gaussian parameters

[

RB ~ RB = - min A, |,
2i,je[L]



Robustness w.r.t Gaussian parameters

y

2ije[L]

Distributing as a MMD can maximize RB.



Can we further improve MMLDA?



Max-Mahalanobis Training
Part Il

(ICLR 2020)



Motivation

MNIST CIFAR10
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The same dataset, e.g., CIFAR-10, which enables good standard accuracy
may not suffice to train robust models.

(Schmidt et al. NeurlPS 2018)
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sufficient training data for robust learning



Possible Solutions

* Introducing extra labeled data
(Hendrycks et al. ICML 2019)

* Introducing extra unlabeled data
(Alayrac et al. NeurlIPS 2019; Carmon et al. NeurlPS 2019)

* Our solution: Increase sample density to induce locally
sufficient training data for robust learning

Q1: What is the definition of sample density?

Q2: Can existing training objectives induce high sample density?



Sample Density

Given a training dataset D with N input-label pairs, and the feature mapping Z trained by the
objective L(Z(x),y) on this dataset, we define the sample density nearby the feature point z = Z(z)
following the similar definition in physics (Jackson, 1999) as

AN
SD(z) = ————. 2
) = VolaB) )
Here Vol(-) denotes the volume of the input set, A B is a small neighbourhood containing the feature
point z, and AN = |Z(D) N AB| is the number of training points in A B, where Z(D) is the set of

all mapped features for the inputs in D. Note that the mapped feature 2 is still of the label y.
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Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as
Lesce(Z(x),y) = —1; log [softmax(h)],

where h;, = —(z — ,uz-)TEz-(z — u;) + B; is the logits in quadratic form.



Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as
Lesce(Z(x),y) = —1; log [softmax(h)],

where h;, = —(z — ,uz-)TEz-(z — u;) + B; is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as

softmax(Wz + b); = exp(W; 2+ bi) — exp(— ||z — %W"”% 1o+ i”Wz”%)
e &P(W, 2z +b1)  Ycpyexp(=llz — sWill5 + b + 7 [[Wi3)
[L]




Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as
Lesce(Z(x),y) = —1; log [softmax(h)], Including MIMLDA

where h;, = —(z — ,uz-)TEi(z — u;) + B; is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as

softmax(Wz + b); = exp(W;' z + b;) _ exp(—|lz — W;ll3 + b; + [|[Wil|3)
Y exPW 2+ b)) Yepexp(=llz — sWill3 + b + z[Wi13)
[L]




The Contour of g-SCE Loss

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

['g-SCE(Z(iU), y) =C



The Contour of g-SCE Loss

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

‘Cg-SCE(Z(x)a y) =C

y
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The Contour of g-SCE Loss

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

‘Cg'SCE(Z(x)a y) =C

y

exp(h
log <1—|—Zl#y p( l)> =C = hy=log Zexp (hy)| —log(C.—1).
exp(hy) —

\_'_I

Log-Sum-Exp function, which is a soft maximum function




The Contour of g-SCE Loss

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

‘Cg'SCE(Z(x)a y) =C

y

exp(h
log (1—|— Zl#y p( l)) =C = hy=log Zexp (hy) | — log(C.—1).
exp(hy) =

@ approximately

hy — hy = —log(Ce — 1),

where C, = exp(C), and § = arg max,, h;.



The Contour of g-SCE Loss

We can the approximate loss as

L, (z) =loglexp(hy — hy) + 1]
such that

hy — hy = —log(Ce — 1) =)  L,:(z)=C

ﬁ approximately ﬁ approximately

h, =log Z exp(h;) | — log(C.—1) > Lysce(Z(x),y) =C
a




The Neighborhood AB in Sample Density

Based on the above approximation, we can now approximate the neighborhood

AB = {z € RYL(z,y) € [C,C + AC]}

@ approximately

AB,; = {z € R¥L, ;(z) € [C,C + AC]}




Induced Sample Density of g-SCE Loss

Theorem 1. (Proof in Appendix A.1) Given (z,y) € D, ;, 2 = Z(z) and Ly.sce(z,y) = C, if there

are Y, = oyl, X5 = o1, and oy, # 0y, then the sample density nearby the feature point z based on
the approximation in Eq. (6) is

N, :-p, :(C) Npr—pil|3  Br—B;
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SD(z) = and Bk’;c: (0k—07)? +—7, (7)
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The case: o}, > 075 The case: 0, < 05,

(Preferred by models since lower loss values)



The ‘Curse’ of Softmax Function

Lesce(Z(x),y) = —1; log [softmax(h)],

U

* The softmax makes the loss value only depend on the relative relation among logits.

* This causes indirect and unexpected supervisory signals on the learned features.



Our Method: Max-Mahalanobis Center (MMC) Loss

||z—,u,;;||g T x
exp(— exp(z ' p;)
Lvvipa(Z(z),y) = —log ( ") = —log Y

Zle[L] exp(— ||z—.u2k||§) _Zle[L] eXp(ZT,LLZ")_

2




Our Method: Max-Mahalanobis Center (MMC) Loss

— lz=u3l3\ D ] - o
cXp —/;”/P exp(z ' )
Lvivrpa(Z(z),y) = log ( i — _log y

i) exp(— ||Z—gz ||§) _ZZE[L] eXp(zTu;")_

1

Lvmve(Z(z),y) = §||Z — M;”g

* No softmax normalization



Induced Sample Density of MMC Loss

Theorem 2. (Proof in Appendix A.2) Given (z,y) € Dx, z = Z(x) and Lyyc(z,y) = C, the
sample density nearby the feature point z is

SD(z) N .ﬁc), )

C =
where for the input-label pair in Dy, there is Lypc ~ pr(c).
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Toy Demo on Faster Convergence

Center loss o ° o

MMC loss

Full-batch Mini-batch 20/1000 Mini-batch 5/1000



Empirical Faster Convergence
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White-box Robustness (Adaptive Attacks)

Perturbation ¢ = 8 /255

Perturbation ¢ = 16/255

Methods Clean | PGDY¥ | PGDY | PGDY | PGDY | PGDY | PGD: | PGDY" | PGDS
SCE 92.9 <1 3.7 <1 3.6 <1 2.9 <1 2.6
Center loss 92.8 <1 4.4 <1 4.3 <1 3.1 <1 2.9
MMLDA 92.4 <1 16.5 <1 9.7 <1 6.7 <1 5.5
L-GM 92.5 37.6 19.8 8.9 4.9 26.0 11.0 2.5 2.8
MMC-10 (rand) | 92.3 43.5 29.2 20.9 18.4 31.3 17.9 8.6 11.6
MMC-10 92.7 48.7 36.0 26.6 24.8 36.1 25.2 13.4 17.5
AT® (SCE) 83.7 70.6 49.7 69.8 47.8 48.4 26.7 31.2 16.0
ATYS (MMC-10) | 83.0 69.2 54.8 67.0 53.5 58.6 47.3 44.7 45.1
ATY? (SCE) 80.9 69.8 55.4 69.4 53.9 53.3 34.1 38.5 21.5
ATYH (MMC-10) | 81.8 70.8 56.3 70.1 55.0 54.7 37.4 39.9 27.7

CIFAR-10
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White-box Robustness (Adaptive Attacks)

Part 1 Part II (e=8/255) | PartII (e=16/255) Part 111

Methods C&W™ | C&W" | SPSAYS | SPSAY) | SPSAYS | SPSAYf | Noise | Rotation
SCE 0.12 0.07 12.3 1.2 5.1 <1 52.0 83.5
Center loss 0.13 0.07 21.2 6.0 10.6 2.0 554 84.9
MMLDA 0.17 0.10 25.6 13.2 11.3 5.7 57.9 84.8
L-GM 0.23 0.12 61.9 45.9 46.1 28.2 59.2 82.4
MMC-10 0.34 0.17 69.5 56.9 57.2 41.5 69.3 87.2
AT (SCE) 1.19 0.63 81.1 67.8 77.9 594 82.2 76.0
AT (MMC-10) 1.91 0.85 79.1 69.2 74.5 62.7 83.5 75.2
ATY5 (SCE) 1.26 0.68 78.8 67.0 73.7 60.3 78.9 73.7
AT (MMC-10) 1.55 0.73 80.4 69.6 74.6 62.4 80.3 75.8

CIFAR-10



Black-box Robustness (Exclude Gradient Masking)

PGDJ§, € = 8/256 MIM]p, € = 8/256 PGDY}, € = 16/256 MIM]p, € = 16/256

= SCE
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Different Architectures

Perturbation ¢ = 8/255

Perturbation ¢ = 16/255

Methods Cle. | PGDY | PGDY | PGD¥ | PGD% | PGD | PGD | PGDY | PGDY

CIFAR-10

SCE (Res.32) | 936 | <1 3.7 <1 3.6 <1 2.7 <1 2.9

MMC (Res.32) | 927 | 487 | 360 | 26.6 24.8 36.1 25.2 13.4 17.5

SCE (Res.110) | 947 | <1 3.0 <1 2.9 <1 2.1 <1 2.0

MMC (Res.110) | 93.6 | 547 | 460 | 344 31.4 41.0 | 307 16.2 21.6
CIFAR-100

SCE (Res32) | 723 | <1 7.8 <1 74 <1 4.8 <1 4.7

MMC (Res.32) | 719 | 239 | 234 15.1 21.9 16.4 16.7 8.0 15.7

SCE (Res.110) | 748 | <1 75 <1 73 <1 4.7 <1 45

MMC (Res.110) | 732 | 34.6 | 224 | 237 16.5 24.1 14.9 13.9 10.5




Improving Adversarial Robustness via
Promoting Ensemble Diversity

(ICML 2019)



Previous Defense Strategies

Single model defense:

4
o0, e.g., adversarial training
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Previous Defense Strategies

Ensemble model defense:

Member 1 Member 2 Member 3



Previous Defense Strategies

Ensemble model defense:
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Member 1 Member 2 Member 3

Clean input




Previous Defense Strategies

Ensemble model defense:

@é Cat ) @é Cat ’ @@ Cat ’

Member 1 Member 2 Member 3

Adversarial input
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Our Strategy

Training ensembles with diversity:

Member 1 Member 2 Member 3



Our Strategy
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Adaptive Diversity Promoting
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Formulas of ADP

Based on the intuitive insights, we define the ensemble diversity as
ED = det(M,}, M)

where M, = (Fl,,--- ,FE) e RE-D*E are normalized non-maximal prediction.
This definition is based on the fact that

det(M\) My,) = Vol2({FE }cx))



Formulas of ADP

So the ADP regularizer is

ADP,, g(z,y) = o - H(F) + B - log (ED)



Formulas of ADP

So the ADP regularizer is

ADP,, g(z,y) = a- H(F) + B - log (ED)

U

" Theorem 1. (Proof in Appendix A) If o = 0, then V[ > O,\
the optimal solution of the minimization problem (6) satisfies

the equations F* = 1,, where k € [K].
G

J




Formulas of ADP

So the ADP regularizer is

ADP,, g(z,y) = a- H(F) + B - log (ED)

U

G heorem 2. (Proof in Appendix A) When oo > 0 and 8 = 0,\
the optimal solution of the minimization problem (6) satisfies

the equations F;‘ =F, F;= lL—iy and
1 F,(L—1)

(7)

— - 2%
F, K °1-F, "

there k€ |K|and j € [L|\{y}. /




Formulas of ADP

So the ADP regularizer is

ADP,, g(z,y) = a- H(F) + B - log (ED)

ﬁorollary 1. Ifthereis K | (L

optimal solution of the minimization problem (6) satisfies the
Eq. (7). Besides, let S = {s1,,- -

the index set [L|\{y}, L=L. Then
the optimal solution further satisfies:
K(};lfy), J € Sk
Ff =S F,, ji=1y (8)
\ 0, otherwise. /

— 1), thenVa, B > 0, ﬂh

, S K} be any partmon of




Experiments

PGD (untargeted)
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0.12

0.14

0.04 0.12
Ne@es| (.13 0.11 0.04
.\ieﬁl."h\e) -«:I'Bnﬂ Net, (Base)
Net, (ADP) 0.05 0.38 0.41
ADP  woom| 043 0.04 0.48
et (ADF) 0.39 0.40 0.04
Net. (ADP) m:.'.-\DP: Net (ADP)

Net, (Base)

Net, (ADP)

M(:\ADP',

Net, (ADP)

MIM (untargeted)
0.04 0.08 0.08
0.07 0.04 0.07
0.08 0.07 0.04

et e o -
0.03 0.20 0.25
0.25 0.03 0.31

0.23 0.22 0.03
e AP, Net,(AD) =

Net, (ADP)

Net,(ADP)

Net, (ADP)

PGD (targeted)

Net_(Base) Net, (Base)

Net, (ADP)

Net,(ADP)

Net, (ADP)

MIM (targeted)

Net 1 (Base) Net_ (Base) Net, (Base)

Net (ADP) Net(ADP) Net, (ADP)

Adversarial transferability among individual members of ensembles



Experiments

Table 2. Classification accuracy (%) on adversarial examples. Ensemble models consist of three Resnet-20. For JSMA, the perturbation
€ = 0.2 on MNIST, and € = 0.1 on CIFAR-10. For EAD, the factor of Li-norm 8 = 0.01 on both datasets.

MNIST CIFAR-10

Attacks Para. | Baseline | ADPyo | ADP; o5 Para. Baseline | ADP;o | ADP3 g5
FGSM e=0.1 78.3 95.5 96.3 e = 0.02 36.5 57.4 61.7
e=0.2 21.5 50.6 52.8 e =0.04 19.4 41.9 46.2
BIM e=0.1 52.3 86.4 88.5 e =0.01 18.5 44.0 46.6
e =0.15 12.2 69.5 73.6 e =0.02 6.1 28.2 31.0
PGD e =0.1 50.7 73.4 82.8 e = 0.01 23.4 43.2 48.4
e =0.15 6.3 36.2 41.0 e = 0.02 6.6 26.8 30.4
MIM e=0.1 58.3 89.7 92.0 e =0.01 23.8 49.6 52.1
e =0.15 16.1 73.3 71.5 e = 0.02 7.4 32.3 35.9
ISMA ~v=0.3 84.0 88.0 95.0 ~v = 0.05 29.5 33.0 43.5
~v=0.6 74.0 85.0 91.0 ~v=0.1 27.5 32.0 37.0
c=0.1 91.6 95.9 97.3 c = 0.001 71.3 76.3 80.6
C&W c=1.0 30.6 75.0 78.1 c = 0.01 45.2 50.3 54.9
c=10.0 5.9 20.2 23.8 c=0.1 18.8 19.2 25.6
EAD c=5.0 29.8 91.3 93.4 c=1.0 17.5 64.5 67.3
c=10.0 7.3 87.4 89.5 c=5.0 2.4 23.4 29.6

Classification accuracy (%) on adversarial examples



Experiments

Table 4. Classification accuracy (%): AdvTrcsm denotes adversar-
ial training (AdvT) on FGSM, AdvTpgp denotes AdvT on PGD.
e = 0.04 for FGSM; € = 0.02 for BIM, PGD and MIM.

CIFAR-10
Defense Methods FGSM | BIM | PGD | MIM
AdvTrgsm 39.3 19.9 | 242 | 24.5
AdVTFGSM -+ ADP2,0,5 56.1 25.7 26.7 30.6
AdvTpcp 43.2 27.8 | 32.8 | 32.7
AdvTpgp + ADP3 g 5 52.8 34.0 | 36.2 | 38.8

Classification accuracy (%) on adversarial examples



Towards Robust Detection of Adversarial Examples

(NeurlPS 2018)



We Detect Adversarial Examples, and How?

Design new detectors:

e Kernel density detector (Feinman et al. 2017)
e LID detector (Ma et al. ICLR 2018)



We Detect Adversarial Examples, and How?

Design new detectors:

» Kernel density detector (Feinman et al. 2017)
* LID detector (Ma et al. ICLR 2018)

Train the models to better collaborate with existing detectors



Reverse Cross Entropy

Cross-Entropy (CE): | Reverse Cross-Entropy (RCE):
| 1,: One-hot label - R, : Reverse label
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The RCE Training Method

Phase 1: Reverse Training
Training the model by minimizing the RCE loss

Phase 2: Reverse Logits
Negating the logits fed to the softmax layer to give predictions



Theoretical Analysis

Theorem 2. (Proof in Appendix A) Let (z,y) be a given training data. Under the Lo.-norm, if there
is a training error & < 1 that ||S(Z,,e(x,0%)) — Ry ||, < o, then we have bounds

IS(=Zpre(@,0%)) — 1yll, < (L —1)?

and Vi, k # v, , ,
S(=Zpre(®,0R)); — S(=Zpre(x, 0R))x| < 207 (L — 1)~

Property 1: Consistent and Unbiased
When the training error &« — 0, the prediction tends to the one-hot label

Property 2: Tighter Bound
The difference between any two non-maximal elements decreases as O(a?)



The Insights of RCE Training

We first define the non-maximal entropy (non-ME) as:

nonME(x) = — z F(x); lOg(ﬁ(x)i) ,

ERY

where F(x); is the normalized non-maximal predictions.



The Insights of RCE Training

We first define the non-maximal entropy (non-ME) as:

nonME(x) = — z F(x); 10g(ﬁ(x)i) ,

ERY

where F(x); is the normalized non-maximal predictions.

RCE training encourages the maximal prediction to tend to 1,
while maximizing the non-ME.



The Insights of RCE Training
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The Insights of RCE Training

Decision
boundary
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input z,

Decision
boundary

The left plot is the decision domain in 2-
d feature space for 3 classes (each class
with one color)

When the non-ME of the returned
predictions are maximized, the learned
features for each class with tend to
locate near the black dash lines, where
the points on the dash lines have the
maximal non-ME.



The Insights of RCE Training
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The Insights of RCE Training

® Normal examples
@ Adversarial examples that succeed to fool detector
O Adversarial examples that fail to fool detector

Detector allowable region

.\.-/

Detector allowable region

.\.I/

Detector allowable region Detector allowable region

CE RCE

In practice, the learned low-dimensional feature distributions by RCE make it
more difficult to craft an adversarial examples with normal values of non-ME.



Experiments

CE RCE

t-SNE visualization of learned features on CIFAR-10



Experiments

Attack Obj. MNIST ‘ CIFAR-10 ‘

Confidence | non-ME | K-density | Confidence | non-ME | K-density

FGSM CE 79.7 66.8 98.8 (-) 71.5 66.9 99.7 (-)
RCE 98.8 98.6 99.4 (*) 92.6 914 98.0 (*)

BIM CE 88.9 70.5 90.0 (-) 0.0 64.6 100.0 (-)
RCE 91.7 90.6 91.8 (*) 0.7 70.2 100.0 (*)

ILCM CE 98.4 504 96.2 (-) 16.4 37.1 84.2 (-)
RCE 100.0 97.0 98.6 (*) 64.1 77.8 93.9 (%)

ISMA CE 98.6 60.1 97.7 (-) 99.2 27.3 85.8 (-)
RCE 100.0 99.4 99.0 (*) 99.5 91.9 95.4 (*)

C&W CE 98.6 64.1 99.4 (-) 99.5 50.2 95.3 (-)
RCE 100.0 99.5 99.8 (*) 99.6 94.7 98.2 (%)

CE 0.0 40.0 91.1 (-) 0.0 28.8 75.4 (-)

C&Whe | pee | 0u1 934 | 99.6 (%) 0.2 536 | 91.8(%)

AUC-scores (10~%) on adversarial examples
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