Robust Machine Learning in the Adversarial Setting

Tianyu Pang

Advisor: Jun Zhu

Department of Computer Science and Technology Tsinghua University

Adversarial Examples in Computer Vision

Alps: 94.39%

Dog: 99.99%

Puffer: 97.99%

Crab: 100.00%

(Dong et al. CVPR 2018)

Not only in Computer Vision

Movie Review (Positive (POS) ↔ Negative (NEG))							
Original (Label: NEG)	The characters, cast in impossibly contrived situations, are totally estranged from reality.						
Attack (Label: POS)	The characters, cast in impossibly engineered circumstances, are fully estranged from reality.						
Original (Label: POS) It cuts to the knot of what it actually means to face your scares, and to ride the overwhelming m							
	wave that life wherever it takes you.						
Attack (Label: NEG)	It cuts to the core of what it actually means to face your fears, and to ride the big metaphorical wave that						
	life wherever it takes you.						
SNLI (Entailment (ENT), Neutral (NEU), Contradiction (CON))							
Premise	Two small boys in blue soccer uniforms use a wooden set of steps to wash their hands.						
Original (Label: CON)	The boys are in band uniforms.						
Adversary (Label: ENT)	The boys are in band garment.						
Premise	A child with wet hair is holding a butterfly decorated beach ball.						
Original (Label: NEU)	The child is at the beach.						
Adversary (Label: ENT)	The youngster is at the shore.						

× 0.001

Audio (Carlini and Wagner. S&P 2018)

=

pooling

 $\overline{\nabla}$

"it is a truth

universally acknowledged

that a single"

Recommend System, LIDAR,

Reinforcement Learning (Lin et al. IJCAI 2017)

Counter-intuitive?

Why these models with such high performance will make such ridiculous mistakes?

Counter-intuitive?

Why 1% Matters?

Potential Risk

In safety-critical areas including payment, security, health care, finance, automatic drive, etc.

• Public Trust

People are suspicious and rigorous of new technologies, and barely tolerate high-risk defects. For example, the accident of Tesla automatic driving system. **How to Defend Adversarial Attacks?**

Possible strategy one:

To correctly classify adversarial examples

- Optimal
- Difficult to achieve
- Computationally expensive (adversarial training)

How to Defend Adversarial Attacks?

Possible strategy two:

To detect and filter out adversarial examples

- Suboptimal
- Little computation
- Methods borrowed from anomaly detection

Possible strategy one: Max-Mahalanobis Training (ICML 2018 + ICLR 2020)

Full list of our papers and codes

Max-Mahalanobis Training

Part I

(ICML 2018)

• Paradigm of feed-forward deep nets

• Paradigm of feed-forward deep nets

GoogleNets; DenseNets;)

• Paradigm of feed-forward deep nets

• Design a new network architecture for better performance in the adversarial setting.

• Design a new network architecture for better performance in the adversarial setting.

• Substitute a new linear classifier for softmax regression (SR).

So what is a suitable new linear classifier?

Inspiration one: LDA is more efficient than LR

• Efron et al.(1975) show that *if the input distributes as a mixture of Gaussian*, then linear discriminant analysis (LDA) is **more efficient** than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate

Inspiration one: LDA is more efficient than LR

• Efron et al.(1975) show that *if the input distributes as a mixture of Gaussian*, then linear discriminant analysis (LDA) is **more efficient** than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate

• However, in practice data points hardly distributes as a mixture of Gaussian in the input space.

Inspiration two: neural networks are powerful

• Deep generative models (e.g., GANs) are successful.

Inspiration two: neural networks are powerful

• Deep generative models (e.g., GANs) are successful.

• The reverse direction should also be feasible.

Our method

- Models the feature distribution in DNNs as a mixture of Gaussian.
- Applies LDA on the feature to make predictions.

How to treat the Gaussian parameters?

• Wan et al. (CVPR 2018) also model the feature distribution as a mixture of Gaussian. However, they treat the Gaussian parameters $(\mu_i \text{ and } \Sigma)$ as extra trainable variables.

How to treat the Gaussian parameters?

- Wan et al. (CVPR 2018) also model the feature distribution as a mixture of Gaussian. However, they treat the Gaussian parameters $(\mu_i \text{ and } \Sigma)$ as extra trainable variables.
- We treat them as hyperparameters calculated by our algorithm, which can provide theoretical guarantee on the robustness.

How to treat the Gaussian parameters?

- Wan et al. (CVPR 2018) also model the feature distribution as a mixture of Gaussian. However, they treat the Gaussian parameters $(\mu_i \text{ and } \Sigma)$ as extra trainable variables.
- We treat them as hyperparameters calculated by our algorithm, which can provide theoretical guarantee on the robustness.
- The induced mixture of Gaussian model is named Max Mahalanobis Distribution (MMD).

Max-Mahalanobis Distribution (MMD)

• Making the minimal Mahalanobis distance between two Gaussian components maximal.

Some formal derivations

Definition of Robustness

• The robustness on a point with label *i* (Moosavi-Dezfoolo et al. , CVPR 2016):

$\min_{j eq i} d_{i,j}$,

where $d_{i,j}$ is the local minimal distance of a point with label i to an adversarial example with label j.

Definition of Robustness

• The robustness on a point with label *i* (Moosavi-Dezfoolo et al. , CVPR 2016):

$\min_{j eq i} d_{i,j}$,

where $d_{i,j}$ is the local minimal distance of a point with label i to an adversarial example with label j.

• We further define the robustness of the classifier as: $\mathbf{RB} = \min_{i,j\in[L]} \mathbb{E}(d_{i,j}).$

Robustness w.r.t Gaussian parameters

Theorem 1. The expectation of the distance $\mathbb{E}(d_{i,j})$ is a function of the Mahalanobis distance $\Delta_{i,j}$ as

$$E(d_{i,j}) = \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\Delta_{i,j}^2}{8}\right) + \frac{1}{2}\Delta_{i,j}\left[1 - 2\Phi\left(-\frac{\Delta_{i,j}}{2}\right)\right]$$

where $\Phi(\cdot)$ is the normal cumulative distribution function.

Robustness w.r.t Gaussian parameters

Theorem 1. The expectation of the distance $\mathbb{E}(d_{i,j})$ is a function of the Mahalanobis distance $\Delta_{i,j}$ as

$$E(d_{i,j}) = \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\Delta_{i,j}^2}{8}\right) + \frac{1}{2}\Delta_{i,j}\left[1 - 2\Phi\left(-\frac{\Delta_{i,j}}{2}\right)\right]$$

where $\Phi(\cdot)$ is the normal cumulative distribution function.

$$\mathbf{RB} \approx \overline{\mathbf{RB}} = \frac{1}{2} \min_{i,j \in [L]} \Delta_{i,j},$$

Robustness w.r.t Gaussian parameters

Theorem 1. The expectation of the distance $\mathbb{E}(d_{i,j})$ is a function of the Mahalanobis distance $\Delta_{i,j}$ as

$$E(d_{i,j}) = \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\Delta_{i,j}^2}{8}\right) + \frac{1}{2}\Delta_{i,j}\left[1 - 2\Phi\left(-\frac{\Delta_{i,j}}{2}\right)\right]$$

where $\Phi(\cdot)$ is the normal cumulative distribution function.

$$\mathbf{RB} \approx \overline{\mathbf{RB}} = \frac{1}{2} \min_{i,j \in [L]} \Delta_{i,j},$$

Distributing as a MMD can maximize RB.

Can we further improve MMLDA?

Max-Mahalanobis Training

Part II

(ICLR 2020)

The same dataset, e.g., CIFAR-10, which enables good standard accuracy may not suffice to train robust models.

(Schmidt et al. NeurIPS 2018)

Possible Solutions

Introducing extra labeled data

(Hendrycks et al. ICML 2019)

Introducing extra unlabeled data

(Alayrac et al. NeurIPS 2019; Carmon et al. NeurIPS 2019)

Possible Solutions

Introducing extra labeled data

(Hendrycks et al. ICML 2019)

• Introducing extra unlabeled data

(Alayrac et al. NeurIPS 2019; Carmon et al. NeurIPS 2019)

• Our solution: Increase sample density to induce locally sufficient training data for robust learning

Possible Solutions

Introducing extra labeled data

(Hendrycks et al. ICML 2019)

• Introducing extra unlabeled data

(Alayrac et al. NeurIPS 2019; Carmon et al. NeurIPS 2019)

• Our solution: Increase sample density to induce locally sufficient training data for robust learning

Q1: What is the definition of sample density?

Q2: Can existing training objectives induce high sample density?

Sample Density

Given a training dataset \mathcal{D} with N input-label pairs, and the feature mapping Z trained by the objective $\mathcal{L}(Z(x), y)$ on this dataset, we define the sample density nearby the feature point z = Z(x) following the similar definition in physics (Jackson, 1999) as

$$\mathbb{SD}(z) = \frac{\Delta N}{\operatorname{Vol}(\Delta B)}.$$
(2)

Here $Vol(\cdot)$ denotes the volume of the input set, ΔB is a small neighbourhood containing the feature point z, and $\Delta N = |Z(\mathcal{D}) \cap \Delta B|$ is the number of training points in ΔB , where $Z(\mathcal{D})$ is the set of all mapped features for the inputs in \mathcal{D} . Note that the mapped feature z is still of the label y.

Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as

 $\mathcal{L}_{ ext{g-SCE}}(Z(x),y) = -1_y^ op \log [ext{softmax}(h)],$

where $h_i = -(z - \mu_i)^\top \Sigma_i (z - \mu_i) + B_i$ is the logits in quadratic form.

Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as

 $\mathcal{L}_{g-SCE}(Z(x), y) = -1_y^{\top} \log [\operatorname{softmax}(h)],$ where $h_i = -(z - \mu_i)^{\top} \Sigma_i (z - \mu_i) + B_i$ is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as

$$\operatorname{softmax}(Wz+b)_{i} = \frac{\exp(W_{i}^{\top}z+b_{i})}{\sum_{l\in[L]}\exp(W_{l}^{\top}z+b_{l})} = \frac{\exp(-\|z-\frac{1}{2}W_{i}\|_{2}^{2}+b_{i}+\frac{1}{4}\|W_{i}\|_{2}^{2})}{\sum_{l\in[L]}\exp(-\|z-\frac{1}{2}W_{l}\|_{2}^{2}+b_{l}+\frac{1}{4}\|W_{l}\|_{2}^{2})}.$$

Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as

 $\mathcal{L}_{g ext{-SCE}}(Z(x), y) = -1_y^{ op} \log [\operatorname{softmax}(h)], \text{ Including MMLDA}$ where $h_i = -(z - \mu_i)^{ op} \Sigma_i (z - \mu_i) + B_i$ is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as

softmax
$$(Wz+b)_i = \frac{\exp(W_i^{\top}z+b_i)}{\sum_{l\in[L]}\exp(W_l^{\top}z+b_l)} = \frac{\exp(-\|z-\frac{1}{2}W_i\|_2^2+b_i+\frac{1}{4}\|W_i\|_2^2)}{\sum_{l\in[L]}\exp(-\|z-\frac{1}{2}W_l\|_2^2+b_l+\frac{1}{4}\|W_l\|_2^2)}.$$

To provide a formal representation of the sample density induced by the g-SCE loss, we first derive the formula of the contours

$$\mathcal{L}_{g\text{-SCE}}(Z(x), y) = C$$

To provide a formal representation of the sample density induced by the g-SCE loss, we first derive the formula of the contours

$$\mathcal{L}_{g\text{-SCE}}(Z(x), y) = C$$

$$\bigcup$$

$$\log\left(1 + \frac{\sum_{l \neq y} \exp(h_l)}{\exp(h_y)}\right) = C \implies h_y = \log\left[\sum_{l \neq y} \exp(h_l)\right] - \log(C_e - 1).$$

To provide a formal representation of the sample density induced by the g-SCE loss, we first derive the formula of the contours

$$\mathcal{L}_{g\text{-SCE}}(Z(x), y) = C$$

$$\log\left(1 + \frac{\sum_{l \neq y} \exp(h_l)}{\exp(h_y)}\right) = C \implies h_y = \log\left[\sum_{l \neq y} \exp(h_l)\right] - \log(C_e - 1).$$

Log-Sum-Exp function, which is a soft maximum function

To provide a formal representation of the sample density induced by the g-SCE loss, we first derive the formula of the contours

$$\mathcal{L}_{g\text{-SCE}}(Z(x), y) = C$$

$$\downarrow$$

$$\log\left(1 + \frac{\sum_{l \neq y} \exp(h_l)}{\exp(h_y)}\right) = C \implies h_y = \log\left[\sum_{l \neq y} \exp(h_l)\right] - \log(C_e - 1).$$

$$\downarrow$$
approximately
$$h_y - h_{\tilde{y}} = -\log(C_e - 1),$$

where $C_e = \exp(C)$, and $\tilde{y} = \arg \max_{l \neq y} h_l$.

We can the approximate loss as

$$\mathcal{L}_{y,\tilde{y}}(z) = \log[\exp(h_{\tilde{y}} - h_y) + 1]$$

such that

The Neighborhood ΔB in Sample Density

Based on the above approximation, we can now approximate the neighborhood

$$\Delta B = \{ \mathbf{z} \in \mathbb{R}^d | \mathcal{L}(\mathbf{z}, y) \in [C, C + \Delta C] \}$$

approximately

$$\Delta B_{y,\tilde{\mathbf{y}}} = \{ \mathbf{z} \in \mathbb{R}^d | \mathcal{L}_{y,\tilde{\mathbf{y}}}(\mathbf{z}) \in [C, C + \Delta C] \}$$

Induced Sample Density of g-SCE Loss

Theorem 1. (Proof in Appendix A.1) Given $(x, y) \in \mathcal{D}_{k,\tilde{k}}$, z = Z(x) and $\mathcal{L}_{g-SCE}(z, y) = C$, if there are $\Sigma_k = \sigma_k I$, $\Sigma_{\tilde{k}} = \sigma_{\tilde{k}} I$, and $\sigma_k \neq \sigma_{\tilde{k}}$, then the sample density nearby the feature point z based on the approximation in Eq. (6) is

$$\mathbb{SD}(z) \propto \frac{N_{k,\tilde{k}} \cdot p_{k,\tilde{k}}(C)}{\left[\mathbf{B}_{k,\tilde{k}} + \frac{\log(C_e - 1)}{\sigma_k - \sigma_{\tilde{k}}}\right]^{\frac{d-1}{2}}}, \text{ and } \mathbf{B}_{k,\tilde{k}} = \frac{\sigma_k \sigma_{\tilde{k}} \|\mu_k - \mu_{\tilde{k}}\|_2^2}{(\sigma_k - \sigma_{\tilde{k}})^2} + \frac{B_k - B_{\tilde{k}}}{\sigma_k - \sigma_{\tilde{k}}}, \tag{7}$$

where for the input-label pair in $\mathcal{D}_{k,\tilde{k}}$, there is $\mathcal{L}_{g-SCE} \sim p_{k,\tilde{k}}(c)$.

The 'Curse' of Softmax Function

$$\mathcal{L}_{g-SCE}(Z(x), y) = -1_y^{\top} \log [\operatorname{softmax}(h)],$$

- The softmax makes the loss value only depend on the relative relation among logits.
- This causes indirect and unexpected supervisory signals on the learned features.

Our Method: Max-Mahalanobis Center (MMC) Loss

$$\mathcal{L}_{\text{MMLDA}}(Z(x), y) = -\log\left[\frac{\exp(-\frac{\|z-\mu_y^*\|_2^2}{2})}{\sum_{l \in [L]} \exp(-\frac{\|z-\mu_l^*\|_2^2}{2})}\right] = -\log\left[\frac{\exp(z^\top \mu_y^*)}{\sum_{l \in [L]} \exp(z^\top \mu_l^*)}\right]$$

Our Method: Max-Mahalanobis Center (MMC) Loss

• No softmax normalization

Induced Sample Density of MMC Loss

Theorem 2. (Proof in Appendix A.2) Given $(x, y) \in D_k$, z = Z(x) and $\mathcal{L}_{MMC}(z, y) = C$, the sample density nearby the feature point z is

$$\mathbb{SD}(z) \propto \frac{N_k \cdot p_k(C)}{C^{\frac{d-1}{2}}},$$
(9)

where for the input-label pair in \mathcal{D}_k , there is $\mathcal{L}_{MMC} \sim p_k(c)$.

Toy Demo on Faster Convergence

Empirical Faster Convergence

		Perturbation $\epsilon = 8/255$				Perturbation $\epsilon = 16/255$				
Methods	Clean	PGD ₁₀ ^{tar}	PGD ^{un} ₁₀	PGD ^{tar} ₅₀	PGD ₅₀ ^{un}	PGD ₁₀ ^{tar}	PGD ^{un} ₁₀	PGD ₅₀ ^{tar}	PGD ₅₀ ^{un}	
SCE	92.9	≤ 1	3.7	≤ 1	3.6	≤ 1	2.9	≤ 1	2.6	
Center loss	92.8	≤ 1	4.4	≤ 1	4.3	≤ 1	3.1	≤ 1	2.9	
MMLDA	92.4	≤ 1	16.5	≤ 1	9.7	≤ 1	6.7	≤ 1	5.5	
L-GM	92.5	37.6	19.8	8.9	4.9	26.0	11.0	2.5	2.8	
MMC-10 (rand)	92.3	43.5	29.2	20.9	18.4	31.3	17.9	8.6	11.6	
MMC-10	92.7	48.7	36.0	26.6	24.8	36.1	25.2	13.4	17.5	
AT ₁₀ ^{tar} (SCE)	83.7	70.6	49.7	69.8	47.8	48.4	26.7	31.2	16.0	
AT_{10}^{tar} (MMC-10)	83.0	69.2	54.8	67.0	53.5	58.6	47.3	44.7	45.1	
AT ^{un} ₁₀ (SCE)	80.9	69.8	55.4	69.4	53.9	53.3	34.1	38.5	21.5	
AT ₁₀ (MMC-10)	81.8	70.8	56.3	70.1	55.0	54.7	37.4	39.9	27.7	

CIFAR-10

White-box Robustness (Adaptive Attacks)

	Part I		Part II ($\epsilon = 8/255$)		Part II (ϵ	=16/255)	Part III	
Methods	C&W ^{tar}	C&W ^{un}	SPSA ^{tar} ₁₀	SPSA ^{un} ₁₀	SPSA ₁₀ ^{tar}	SPSA ^{un} ₁₀	Noise	Rotation
SCE	0.12	0.07	12.3	1.2	5.1	≤ 1	52.0	83.5
Center loss	0.13	0.07	21.2	6.0	10.6	2.0	55.4	84.9
MMLDA	0.17	0.10	25.6	13.2	11.3	5.7	57.9	84.8
L-GM	0.23	0.12	61.9	45.9	46.1	28.2	59.2	82.4
MMC-10	0.34	0.17	69.5	56.9	57.2	41.5	69.3	87.2
AT ₁₀ ^{tar} (SCE)	1.19	0.63	81.1	67.8	77.9	59.4	82.2	76.0
AT ₁₀ ^{tar} (MMC-10)	1.91	0.85	79.1	69.2	74.5	62.7	83.5	75.2
AT ₁₀ ^{un} (SCE)	1.26	0.68	78.8	67.0	73.7	60.3	78.9	73.7
AT ₁₀ ^{un} (MMC-10)	1.55	0.73	80.4	69.6	74.6	62.4	80.3	75.8

CIFAR-10

Black-box Robustness (Exclude Gradient Masking)

Target Model

		Perturbation $\epsilon = 8/255$				Perturbation $\epsilon = 16/255$				
Methods	Cle.	PGD ₁₀ ^{tar}	PGD ₁₀	PGD ₅₀ ^{tar}	PGD ₅₀ ^{un}	PGD ₁₀ ^{tar}	PGD ₁₀ ^{un}	PGD ₅₀ ^{tar}	PGD ₅₀ ^{un}	
CIFAR-10										
SCE (Res.32)	93.6	≤ 1	3.7	≤ 1	3.6	≤ 1	2.7	≤ 1	2.9	
MMC (Res.32)	92.7	48.7	36.0	26.6	24.8	36.1	25.2	13.4	17.5	
SCE (Res.110)	94.7	≤ 1	3.0	≤ 1	2.9	≤ 1	2.1	≤ 1	2.0	
MMC (Res.110)	93.6	54.7	46.0	34.4	31.4	41.0	30.7	16.2	21.6	
CIFAR-100										
SCE (Res.32)	72.3	≤ 1	7.8	≤ 1	7.4	≤ 1	4.8	≤ 1	4.7	
MMC (Res.32)	71.9	23.9	23.4	15.1	21.9	16.4	16.7	8.0	15.7	
SCE (Res.110)	74.8	≤ 1	7.5	≤ 1	7.3	≤ 1	4.7	≤ 1	4.5	
MMC (Res.110)	73.2	34.6	22.4	23.7	16.5	24.1	14.9	13.9	10.5	

Thanks