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Adversarial Examples in Computer Vision
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Alps: 94.39%

Puffer: 97.99% | Crab: 100.00%

(Dong et al. CVPR 2018)



Not only in Computer Vision

Movie Review (Positive (POS) <> Negative (NEG))

Original (Label: NEG)

The characters, cast in impossibly contrived situations, are totally estranged from reality.

Attack (Label: POS) The characters, cast in impossibly engineered circumstances, are fully estranged from reality.
Original (Label: POS) It cuts to the knot of what it actually means to face your scares, and to ride the overwhelming metaphorical
wave that life wherever it takes you.
Attack (Label: NEG) It cuts to the core of what it actually means to face your fears, and to ride the big metaphorical wave that
life wherever it takes you.
SNLI (Entailment (ENT), Neutral (NEU), Contradiction (CON))
Premise Two small boys in blue soccer uniforms use a wooden set of steps to wash their hands.

Original (Label: CON)
Adversary (Label: ENT)

The boys are in band uniforms.
The boys are in band garment.

Premise
Original (Label: NEU)
Adversary (Label: ENT)

A child with wet hair is holding a butterfly decorated beach ball.
The child is at the beach.
The youngster is at the shore.

unlabeled video
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video prediction model

adversary

BERT model (Jin et al. AAAI 2020)

planning

possible sequence of actions adversarial example
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Reinforcement Learning (Lin et al. IJCAI 2017)
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GNN model (Dai et al. ICML 2018)
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LIDAR,

best of times, 000000
it was the
worst of times"

"it is a truth

:> universally
acknowledged

that a single"

Audio (Carlini and Wagner. S&P 2018)



Counter-intuitive?

Why these models with such high performance will make such ridiculous mistakes?



Counter-intuitive?

In worst case, happens in 1% cases

|

Why these models with such high performance will make such ridiculous mistakes?

!

In expectation, happens in 99% cases



Why 1% Matters?

 Potential Risk

In safety-critical areas including payment, security, health care, finance, automatic drive, etc.

 Public Trust

People are suspicious and rigorous of new technologies, and barely tolerate high-risk defects.
For example, the accident of Tesla automatic driving system.



How to Defend Adversarial Attacks?

Possible strategy one:

To correctly classify adversarial examples

* Optimal

e Difficult to achieve

 Computationally expensive (adversarial training)



How to Defend Adversarial Attacks?

Possible strategy two:

To detect and filter out adversarial examples
e Suboptimal

e Little computation

 Methods borrowed from anomaly detection



Possible strategy one:

: . il:,_.'I-'
Max-Mahalanobis Training
(ICML 2018 + ICLR 2020)
Eﬁ' -Lr.

Full list of our papers and codes




Max-Mahalanobis Training
Part |

(ICML 2018)



Motivation

* Paradigm of feed-forward deep nets

Non-linear Linear

Transformation Classifier
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Non-linear Linear
Transformation Classifier

Active area of research

(AlexNet; VGG nets; ResNets;
GoogleNets; DenseNets;)



Motivation

* Paradigm of feed-forward deep nets

Non-linear Linear
Transformation Classifier

Active area of research Much less active

(AlexNet; VGG nets; ResNets; (Softmax regression)
GoogleNets; DenseNets;)



Motivation

* Design a new network architecture for better
performance



Motivation

* Design a new network architecture for better
performance

e Substitute a for softmax
regression (SR).



So what is a suitable new linear classifier?



Inspiration one: LDA is more efficient than LR

* Efron et al.(1975) show that if the input distributes as a mixture of
Gaussian, then linear discriminant analysis (LDA) is more efficient
than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate



Inspiration one: LDA is more efficient than LR E_g}'rh

* Efron et al.(1975) show that if the input distributes as a mixture of
Gaussian, then linear discriminant analysis (LDA) is more efficient
than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate

* However, in practice data points hardly distributes as a mixture of
Gaussian in the input space.
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Inspiration two: neural networks are powerful

EI el IEI

Fl'l-h..r

* Deep generative models (e.g., GANs) are successful.

expl-0+2)

Deep generative models
—

DNN
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Simple Distribution Complex Distribution
(Gaussian/Mixture of Gaussian) (Data distribution)
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Inspiration two: neural networks are powerful AFVa

* Deep generative models (e.g., GANs) are successful.

* The reverse direction should also be feasible.

expl-0+2)

Deep generative models
—

DNN
—
Our Method

(MM-LDA networks) o
Simple Distribution Complex Distribution

(Gaussian/Mixture of Gaussian) (Data distribution)
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Our method

* Models the feature distribution in DNNs as a mixture of Gaussian.

* Applies LDA on the feature to make predictions.



How to treat the Gaussian parameters? ?ﬁ;"r‘:.

* Wan et al. (CVPR 2018) also model the feature distribution as a
mixture of Gaussian. However, they treat the Gaussian parameters
(1; and X) as extra trainable variables.



How to treat the Gaussian parameters? 1_3;"#-‘:.

* Wan et al. (CVPR 2018) also model the feature distribution as a
mixture of Gaussian. However, they treat the Gaussian parameters
(1; and X) as extra trainable variables.

* We treat them as hyperparameters calculated by our algorithm,
which can provide theoretical guarantee on the robustness.



How to treat the Gaussian parameters? 1_&?'#’:.

* Wan et al. (CVPR 2018) also model the feature distribution as a
mixture of Gaussian. However, they treat the Gaussian parameters
(1; and X) as extra trainable variables.

* We treat them as hyperparameters calculated by our algorithm,
which can provide theoretical guarantee on the robustness.

* The induced mixture of Gaussian model is named Max
Mahalanobis Distribution (MMD).



Max-Mahalanobis Distribution (MMD) TE

* Making the minimal Mahalanobis distance between two
Gaussian components maximal.

Uy U3 Hy
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Some formal derivations



Definition of Robustness

* The robustness on a point with label i (Moosavi-Dezfoolo et al.,
CVPR 2016):
min d
J#F1
where d; ; is the local minimal distance of a point with label i to an
adversarial example with label j.

i,j’



Definition of Robustness ?ﬁ;"ﬁ.

* The robustness on a point with label i (Moosavi-Dezfoolo et al.,
CVPR 2016):

mlnd
]-'/—'l

where d; ; is the local minimal distance of a point with label i to an
adversarlal example with label ;.

 We further define the robustness of the classifier as:
RB = mln IE(dl])

i,jE[L



Robustness w.r.t Gaussian parameters




Robustness w.r.t Gaussian parameters

[

RB ~ RB = - min A, |,
2i,je[L]



Robustness w.r.t Gaussian parameters

y

2ije[L]

Distributing as a MMD can maximize RB.



Can we further improve MMLDA?



Max-Mahalanobis Training
Part Il

(ICLR 2020)



Motivation
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The same dataset, e.g., CIFAR-10, which enables good standard accuracy

may not suffice to train robust models.

(Schmidt et al. NeurlPS 2018)



Possible Solutions

* Introducing extra labeled data
(Hendrycks et al. ICML 2019)

* Introducing extra unlabeled data
(Alayrac et al. NeurlIPS 2019; Carmon et al. NeurlPS 2019)
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* Introducing extra labeled data
(Hendrycks et al. ICML 2019)

* Introducing extra unlabeled data
(Alayrac et al. NeurlIPS 2019; Carmon et al. NeurlPS 2019)

Our solution: Increase sample density to induce locally
sufficient training data for robust learning



Possible Solutions E_g;"a-‘:.

* Introducing extra labeled data
(Hendrycks et al. ICML 2019)

* Introducing extra unlabeled data
(Alayrac et al. NeurlIPS 2019; Carmon et al. NeurlPS 2019)

* Our solution: Increase sample density to induce locally
sufficient training data for robust learning

Q1: What is the definition of sample density?

Q2: Can existing training objectives induce high sample density?



Sample Density

Given a training dataset D with N input-label pairs, and the feature mapping Z trained by the
objective L(Z(x),y) on this dataset, we define the sample density nearby the feature point z = Z(z)
following the similar definition in physics (Jackson, 1999) as

AN
SD(z2) = ————. 2
A IN) @)
Here Vol(-) denotes the volume of the input set, A B is a small neighbourhood containing the feature
point z, and AN = |Z(D) N AB| is the number of training points in AB, where Z(D) is the set of

all mapped features for the inputs in D. Note that the mapped feature 2 is still of the label y.
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® Prefixed feature center of label y in Lyyc 4 Moving directions of learned features during training

@ Learned features of training data with label y - — . Contours of the objective loss (C; > C;, AC is a small value)




Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as
Lesce(Z(x),y) = —1; log [softmax(h)],

where h;, = —(z — ,u,z-)TEi(z — u;) + B; is the logits in quadratic form.



Generalized Softmax Cross Entropy Loss (g-SCE loss) ?ﬁ;"ﬁ.

We define g-SCE loss as
Losce(Z(x),y) = —1; log [softmax(h)],

where h;, = —(z — ,u,z-)TZZ-(z — u;) + B; is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as

softmax(Wz + b); = exp(Wy' 2 + bi) — exp(— ||z — %W"”% 1o + iHWzH%)
e &P(W, z+b1) Yy exp(—llz — sWill3 + b + 7 [[Wi3)




Generalized Softmax Cross Entropy Loss (g-SCE loss) 1_3;"&%.

We define g-SCE loss as
Lesce(Z(x),y) = —1; log [softmax(h)], Including MIMLDA

where h;, = —(z — ,u,z-)TEi(z — u;) + B; is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as

softmaac(Ws 1), — PO Eb) (e — Wl +b + WD
e &PW 2 +b) 3D exp(—llz — sWill3 + b + 3 [[Wi[3)




The Contour of g-SCE Loss

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

£g-SCE(Z($), y) =C



The Contour of g-SCE Loss

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

‘Cg-SCE(Z(x)a y) =C

y

2ty eXp(h’)):C —> hy=log ZeXp(hz) — log(Ce—1).

eXP(hy)

log (1—|—
I#y




The Contour of g-SCE Loss 1_3;"&%.

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

‘Cg'SCE(Z(x)a y) =C

y

exp(h
log <1—|— Zl#y p( l)> =C = hy=log Zexp (hy)| —log(C.—1).
exp(hy) —

\_'_I

Log-Sum-Exp function, which is a soft maximum function




The Contour of g-SCE Loss ?ﬁ;"ﬁ.

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

‘Cg'SCE(Z(x)a y) =C

y

exp(h
log (1—|— Zl#y p( l)) =(C = hy=log Zexp (hy)| —log(C.—1).
exp(hy) =

@ approximately

hy — hy = —log(Ce — 1),

where C, = exp(C), and § = arg max,, h;.



The Contour of g-SCE Loss 1_3;"&-‘:.

We can the approximate loss as

L, (z) =loglexp(hy — hy) + 1]
such that

hy — hy = —log(Ce — 1) =) L,z =C

ﬁ approximately ﬁ approximately

h, =log Z exp(h;) | — log(C.—1) > Lysce(Z(x),y) =C
REa




The Neighborhood AB in Sample Density

Based on the above approximation, we can now approximate the neighborhood

AB = {z € RYL(z,y) € [C,C + AC]}

@ approximately

AB,; = {z € RYL, ;(2) € [C,C

AC|}



Induced Sample Density of g-SCE Loss

Theorem 1. (Proof in Appendix A.1) Given (z,y) € D, ;, 2 = Z(z) and Ly.sce(z,y) = C, if there

are Y, = oyl, X5 = o1, and oy, # 0y, then the sample density nearby the feature point z based on
the approximation in Eq. (6) is

N,_:-p, :(C) Npr—pil|3  Br—Bs;
k.k Pk oroy |k —pill2 k— Dk
SD(z) = and Bk,,;: (0k—07)? +—7, (7)
B - +log(Ce-—1) 2 Ok — 0k Ok — 0k
k,k Or—0§
where for the input-label pair in D, ;, there is Ly.sce ~ D, 7.(C).
0o, loss value = oo
Sso oo, loss value = 0
So 21
& Z
* \.i
M, 1., loss value=C S~ M loss value=C*
-~
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=
/ .”
- > / Zy
- 22

oo, loss value = 0
oo, loss value = oo

The case: o}, > 075 The case: 0}, < 05,

(Preferred by models since lower loss values)



The ‘Curse’ of Softmax Function 1_3;"&%.

Lesce(Z(x),y) = —1; log [softmax(h)],

U

* The softmax makes the loss value only depend on the relative relation among logits.

* This causes indirect and unexpected supervisory signals on the learned features.
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Our Method: Max-Mahalanobis Center (MMC) Loss

— log




Our Method: Max-Mahalanobis Center (MMC) Loss

'/exp(_ lz—pill3y D
ﬁMMLDA(Z($)7y) = log

Lyvvc(Z(x),y)

* No softmax normalization

le[L] exp( 2
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Induced Sample Density of MMC Loss

Theorem 2. (Proof in Appendix A.2) Given (z,y) € Dy, z = Z(x) and Lyyc(z,y) = C, the

sample density nearby the feature point z is

SD(z) N .gc),

C =
where for the input-label pair in Dy, there is Lypc ~ pr(c).

oo, loss value — o
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== Moving directions in training @ Feature points
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Toy Demo on Faster Convergence }_g;"ﬁ.
E-H?H-_:
Center loss . o o
® ® '
MMC loss

Full-batch Mini-batch 20/1000 Mini-batch 5/1000



Empirical Faster Convergence

70
60 |

=

S 50|

I

s

S 40

o

=

3 30

"% :

= 20
10

Training time (hours)

mm SCE mm Center muMMLDA mm AT (SCE)

= MMC-10 == MMC-100 mm L-GM  mmAT (MMC-10)

m= AT (MMC-100)




White-box Robustness (Adaptive Attacks)

Perturbation ¢ = 8/255

Perturbation ¢ = 16/255

Methods Clean | PGDY¥ | PGDY | PGDY | PGDY | PGDY | PGD!? | PGDY" | PGDS
SCE 92.9 2 1 3.7 <1 3.6 <1 2.9 <1 2.6
Center loss 92.8 <1 4.4 <1 4.3 <1 3.1 <1 2.9
MMLDA 92.4 <1 16.5 <1 9.7 <1 6.7 <1 5.5
L-GM 92.5 37.6 19.8 8.9 4.9 26.0 11.0 2.5 2.8
MMC-10 (rand) | 92.3 43.5 29.2 20.9 18.4 31.3 17.9 8.6 11.6
MMC-10 92.7 48.7 36.0 26.6 24.8 36.1 25.2 13.4 17.5
ATY® (SCE) 83.7 70.6 49.7 69.8 47.8 48.4 26.7 31.2 16.0
ATYS (MMC-10) | 83.0 69.2 54.8 67.0 53.5 58.6 47.3 44.7 45.1
ATY? (SCE) 80.9 69.8 55.4 69.4 53.9 53.3 34.1 38.5 21.5
ATYH (MMC-10) | 81.8 70.8 56.3 70.1 55.0 54.7 37.4 39.9 27.7

CIFAR-10
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White-box Robustness (Adaptive Attacks) :TEJ .
£
Part I Part I (¢=8/255) | Part II (=16/255) Part III

Methods C&W™ | C&W"™ | SPSAYS | SPSAYS | SPSAY | SPSAYY | Noise | Rotation
SCE 0.12 0.07 12.3 1.2 5.1 < 52.0 83.5
Center loss 0.13 0.07 21.2 6.0 10.6 2.0 554 84.9
MMLDA 0.17 0.10 25.6 13.2 11.3 3 57.9 84.8
L-GM 023 0.12 61.9 45.9 46.1 28.2 59.2 82.4
MMC-10 0.34 0.17 69.5 56.9 57.2 41.5 69.3 87.2
ATYS (SCE) 1.19 0.63 81.1 67.8 77.9 594 82.2 76.0
AT (MMC-10) 1.91 0.85 79.1 69.2 74.5 62.7 83.5 152
ATY5 (SCE) 1.26 0.68 78.8 67.0 3.7 60.3 78.9 13.7
AT (MMC-10) 1.55 0.73 80.4 69.6 74.6 62.4 80.3 75.8

CIFAR-10



Black-box Robustness (Exclude Gradient Masking) Agevact:
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O
PGDY, ¢ = 8/256 MIMYR, & = 8/256 PGDY, ¢ = 16/256 MIMY ¢ = 16/256

< SCE

E MMC-10

F..; MMC-100

':;:: AT (SCE)

=

Z AT (MMC-10) 0.54

0.57 0.51

AT (MMC-100)

Target Model



Different Architectures

Perturbation ¢ = 8/255

Perturbation ¢ = 16/255

Methods Cle. | PGDY | PGDY | PGD¥ | PGD% | PGD | PGD | PGDY | PGDY

CIFAR-10

SCE (Res32) | 936 | <1 3.7 < 3.6 <1 2.7 <1 2.9

MMC (Res.32) | 927 | 487 | 360 | 26.6 24.8 36.1 25.2 13.4 17.5

SCE (Res.110) | 947 | <1 3.0 <1 2.9 <1 2.1 <1 2.0

MMC (Res.110) | 93.6 | 547 | 460 | 344 31.4 41.0 | 307 16.2 21.6
CIFAR-100

SCE (Res32) | 723 | <1 7.8 21 7.4 <1 4.8 <1 4.7

MMC (Res.32) | 719 | 239 | 234 15.1 21.9 16.4 16.7 8.0 15.7

SCE (Res.110) | 748 | <1 7.5 £ 1 73 <1 4.7 <1 45

MMC (Res.110) | 732 | 34.6 | 224 | 237 16.5 24.1 14.9 13.9 10.5
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