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Adversarial Examples in Computer Vision 

(Dong et al. CVPR 2018)



Not only in Computer Vision 

BERT model (Jin et al. AAAI 2020) GNN model (Dai et al. ICML 2018)

Reinforcement Learning (Lin et al. IJCAI 2017) Audio (Carlini and Wagner. S&P 2018)

……
Recommend System,

LIDAR,



Counter-intuitive?

Why these models with such high performance will make such ridiculous mistakes?



Counter-intuitive?

Why these models with such high performance will make such ridiculous mistakes?

In expectation, happens in 99% cases

In worst case, happens in 1% cases



Why 1% Matters?

• Potential Risk
In safety-critical areas including payment, security, health care, finance, automatic drive, etc. 

• Public Trust
People are suspicious and rigorous of new technologies, and barely tolerate high-risk defects.
For example, the accident of Tesla automatic driving system.



How to Defend Adversarial Attacks? 

Possible strategy one:

To correctly classify adversarial examples
• Optimal 
• Difficult to achieve
• Computationally expensive (adversarial training)



How to Defend Adversarial Attacks? 

Possible strategy two:

To detect and filter out adversarial examples
• Suboptimal
• Little computation
• Methods borrowed from anomaly detection



Possible strategy one:

Max-Mahalanobis Training
(ICML 2018 + ICLR 2020)

Full list of our papers and codes



Max-Mahalanobis Training

Part I

(ICML 2018)
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• Paradigm of feed-forward deep nets

Non-linear 
Transformation

Linear 
Classifier

Input Output

Active area of research
(AlexNet; VGG nets; ResNets; 

GoogleNets; DenseNets;)

Much less active
(Softmax regression)

Motivation



•Design a new network architecture for better 
performance in the adversarial setting.

Motivation



•Design a new network architecture for better 
performance in the adversarial setting.

• Substitute a new linear classifier for softmax 
regression (SR).

Motivation



So what is a suitable new linear classifier?



Inspiration one: LDA is more efficient than LR

• Efron et al.(1975) show that if the input distributes as a mixture of 
Gaussian,  then linear discriminant analysis (LDA) is more efficient 
than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate



Inspiration one: LDA is more efficient than LR

• Efron et al.(1975) show that if the input distributes as a mixture of 
Gaussian,  then linear discriminant analysis (LDA) is more efficient 
than logistic regression (LR).

• However, in practice data points hardly distributes as a mixture of 
Gaussian in the input space.

LDA needs less training data than LR to obtain certain error rate



• Deep generative models (e.g., GANs) are successful.
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• Deep generative models (e.g., GANs) are successful.

• The reverse direction should also be feasible.

Our Method
(MM-LDA networks)

Deep generative models

Simple Distribution
(Gaussian/Mixture of Gaussian)

Complex Distribution
(Data distribution)

DNN

Inspiration two: neural networks are powerful



Our method 

• Models the feature distribution in DNNs as a mixture of Gaussian.

• Applies LDA on the feature to make predictions.



• Wan et al. (CVPR 2018) also model the feature distribution as a 
mixture of Gaussian. However, they treat the Gaussian parameters 
(𝜇! and Σ) as extra trainable variables.
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• Wan et al. (CVPR 2018) also model the feature distribution as a 
mixture of Gaussian. However, they treat the Gaussian parameters 
(𝜇! and Σ) as extra trainable variables.

• We treat them as hyperparameters calculated by our algorithm, 
which can provide theoretical guarantee on the robustness. 

• The induced mixture of Gaussian model is named Max 
Mahalanobis Distribution (MMD).

How to treat the Gaussian parameters?



• Making the minimal Mahalanobis distance between two 
Gaussian components maximal.
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Max-Mahalanobis Distribution (MMD)



Some formal derivations



• The robustness on a point with label 𝑖 (Moosavi-Dezfoolo et al. , 
CVPR 2016): 

min
"#!

𝑑!," ,

where 𝑑!," is the local minimal distance of a point with label 𝑖 to an 
adversarial example with label 𝑗.

Definition of Robustness 



• The robustness on a point with label 𝑖 (Moosavi-Dezfoolo et al. , 
CVPR 2016): 

min
"#!

𝑑!," ,

where 𝑑!," is the local minimal distance of a point with label 𝑖 to an 
adversarial example with label 𝑗.

• We further define the robustness of the classifier as:
𝐑𝐁 = min

!,"∈[']
𝔼(𝑑!,") .

Definition of Robustness 



Theorem 1. The expectation of the distance 𝔼 𝑑!,# is a function of the Mahalanobis 
distance ∆!,# as

𝔼 𝑑!,# =
2
𝜋 exp −

∆!,#$

8 +
1
2∆!,# 1 − 2𝛷(−

∆!,#
2 )

where 𝛷 (*) is the normal cumulative distribution function.

Robustness w.r.t Gaussian parameters 



Theorem 1. The expectation of the distance 𝔼 𝑑!,# is a function of the Mahalanobis 
distance ∆!,# as

𝔼 𝑑!,# =
2
𝜋 exp −

∆!,#$

8 +
1
2∆!,# 1 − 2𝛷(−

∆!,#
2 )

where 𝛷 (*) is the normal cumulative distribution function.

Robustness w.r.t Gaussian parameters 

𝐑𝐁 ≈ 𝐑𝐁 = 𝟏
𝟐
min
!,"∈[']

∆!,",



𝐑𝐁 ≈ 𝐑𝐁 = 𝟏
𝟐
min
!,"∈[']

∆!,",

Distributing as a MMD can maximize 𝐑𝐁. 

Theorem 1. The expectation of the distance 𝔼 𝑑!,# is a function of the Mahalanobis 
distance ∆!,# as

𝔼 𝑑!,# =
2
𝜋 exp −

∆!,#$

8 +
1
2∆!,# 1 − 2𝛷(−

∆!,#
2 )

where 𝛷 (*) is the normal cumulative distribution function.

Robustness w.r.t Gaussian parameters 



Can we further improve MMLDA?



Max-Mahalanobis Training

Part II

(ICLR 2020)



Motivation

The same dataset, e.g., CIFAR-10, which enables good standard accuracy 
may not suffice to train robust models.

(Schmidt et al. NeurIPS 2018)



Possible Solutions

• Introducing extra labeled data 
(Hendrycks et al. ICML 2019)

• Introducing extra unlabeled data 
(Alayrac et al. NeurIPS 2019; Carmon et al. NeurIPS 2019)



Possible Solutions
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• Our solution: Increase sample density to induce locally 
sufficient training data for robust learning



Possible Solutions

• Introducing extra labeled data 
(Hendrycks et al. ICML 2019)

• Introducing extra unlabeled data 
(Alayrac et al. NeurIPS 2019; Carmon et al. NeurIPS 2019)

• Our solution: Increase sample density to induce locally 
sufficient training data for robust learning

Q1: What is the definition of sample density?

Q2: Can existing training objectives induce high sample density?



Sample Density

!""# ∈ %&, %& + ∆%
(low sample density)

!""# ∈ %*, %* + ∆%
(high sample density)

+,∗

!.#/ ∈ %&, %& + ∆%
(medium sample density)

!.#/ ∈ %*, %* + ∆%
(medium sample density)

SCE MMC

Learned features of training data with label 0
Prefixed feature center of label 0 in ℒ223

Contours of the objective loss (45 > 47, ∆4 is a small value)
Moving directions of learned features during training



Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as

where                                                                     is the logits in quadratic form.
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Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as

where                                                                     is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as

Including MMLDA



The Contour of g-SCE Loss 

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours
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The Contour of g-SCE Loss 

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

Log-Sum-Exp function, which is a soft maximum function



The Contour of g-SCE Loss 

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

where                         , and 

approximately



The Contour of g-SCE Loss 

We can the approximate loss as

such that 

approximatelyapproximately



The Neighborhood ∆𝑩 in Sample Density

Based on the above approximation, we can now approximate the neighborhood 

approximately



Induced Sample Density of g-SCE Loss



The ‘Curse’ of Softmax Function

• The softmax makes the loss value only depend on the relative relation among logits. 

• This causes indirect and unexpected supervisory signals on the learned features.



Our Method: Max-Mahalanobis Center (MMC) Loss



Our Method: Max-Mahalanobis Center (MMC) Loss

• No softmax normalization



Induced Sample Density of MMC Loss



Mini-batch 5/1000Mini-batch 20/1000Full-batch

Toy Demo on Faster Convergence

Center loss

MMC loss



Empirical Faster Convergence
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White-box Robustness (Adaptive Attacks)

CIFAR-10



White-box Robustness (Adaptive Attacks)
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White-box Robustness (Adaptive Attacks)

CIFAR-10



Black-box Robustness (Exclude Gradient Masking)
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Different Architectures



Thanks


