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Adversarial examples in computer vision
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Not only in computer vision

Movie Review (Positive (POS) <> Negative (NEG))

Original (Label: NEG) The characters, cast in impossibly contrived situations, are totally estranged from reality.

Attack (Label: POS) The characters, cast in impossibly engineered circumstances, are fully estranged from reality.

Original (Label: POS) It cuts to the knot of what it actually means to face your scares, and to ride the overwhelming metaphorical
wave that life wherever it takes you.

Attack (Label: NEG) It cuts to the core of what it actually means to face your fears, and to ride the big metaphorical wave that
life wherever it takes you.

SNLI (Entailment (ENT), Neutral (NEU), Contradiction (CON))

Premise Two small boys in blue soccer uniforms use a wooden set of steps to wash their hands.

Original (Label: CON) The boys are in band uniforms.

Adversary (Label: ENT)  The boys are in band garment.

Premise A child with wet hair is holding a butterfly decorated beach ball.

Original (Label: NEU) The child is at the beach.

Adversary (Label: ENT)  The youngster is at the shore.
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Bag of Tricks for Adversarial Training

Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu

ICLR 2021

Code: https://github.com/P2333/Bag-of-Tricks-for-AT



Where we converged after so many efforts (w.r.t. defenses)? ?%
OFits

Adversarlal Training (+ blablabla)

practically works well, able to defend adaptive attacks (to some extent)
e occupies top solutions in different adversarial competitions
e computation can be reduced by one-step adv (FastAT) or reuse compute. (FreeAT)
* recent work of positively applying AT on traditional tasks

Certlfled Defense

provide quantitative bounds for certified robustness
* requires convex approximations
e promising but practically less effective than AT (fortunately they could be compatible)
* point-wise certification (is not that certified), can maliciously craft low-bound test sets



Milestones of adversarial training frameworks (2014-2019) E%

BIM-AT TRADES

Can defend multi-step attacks Winner of NeurlPS 2019 Adversarial Competition
(Kurakin et al. 2016) (Zhang et al. 2019)

FGSM-AT PGD-AT

Seminal work of AT Propose min-max framework for AT
(Goodfellow et al. 2014) (Madry et al. 2018)



What happened in 2020? E%

Rice et al. (ICML 2020) find that simply €d rIy stopping the training

process of PGD-AT can attain the gains from almost all the previously
proposed improvements, including the state-of-the-art TRADES.

Test robust Test standard

Train robust = Train standard

 TRADES also applied early stopping
by decaying learning rate at 75th
epoch and used the checkpoint of
76th epoch.

Error
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(From Rice et al.)



What happened in 2020? %-
&

Gowal et al. (2020) find that TRADES actually performs better than PGD-AT

Key takeaways. Contrary to the suggestion of Rice et al. (2020) (i.e., “the original PGD-based
adversarial training method can actually achieve the same robust performance as state-of-the-art
method”, see Sec. 2.1), TRADES (when combined with early-stopping — as our setup dictates) is
more competitive than classical adversarial training. The results also highlight the importance of
strong evaluations beyond PGD?° (including evaluations of the validation set used for early stop-

ping).
(From Gowal et al.)
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Gowal et al. (2020) find that TRADES actually performs better than PGD-AT

Key takeaways. Contrary to the suggestion of Rice et al. (2020) (i.e., “the original PGD-based
adversarial training method can actually achieve the same robust performance as state-of-the-art
method”, see Sec. 2.1), TRADES (when combined with early-stopping — as our setup dictates) is
more competitive than classical adversarial training. The results also highlight the importance of
strong evaluations beyond PGD?° (including evaluations of the validation set used for early stop-

ping).
(From Gowal et al.)

Paradox???

Zhang et al. (2018): TRADES performs better than PGD-AT m
Rice et al. (2020): PGD-AT performs better than TRADES
Gowal et al. (2020): TRADES performs better than PGD-AT '



Who is wrong? Nobody

Zhang et al. (2018):
TRADES (weight decay 2x10~%)
PGD-AT (weight decay 2x10™%)

Rice et al. (2020):
TRADES (weight decay 2x10~%)
PGD-AT (weight decay 5x10™%)

Gowal et al. (2020):
TRADES (weight decay 5x107%)
PGD-AT (weight decay 5x10™%)

Slightly different values of
weight decay can lead to
largely different conclusions

in the adversarial setting!

Overlooked training settings
could affect our evaluations
on the defenses, especially
in public benchmarks.




Training settings in previous work are highly inconsistent

Method Lt Total epoch Batch | Weight I Early stop Warm-up
o (L.r. decay) size decay |(train / attack)|(Lr. / pertub.)

Madry et al. (2018) 0.1 200 (100, 150) 128 |2 x 1074 No/No No/No
Cai et al. (2018) 0.1 300 (150, 250) 200 | 5x 1074 No / No No / Yes
Zhang et al. (2019b) 0.1 76 (75) 128 | 2x 1074 Yes / No No / No
Wang et al. (2019) 0.01 120 (60, 100) 128 |1 x1074 No / Yes No / No
Qin et al. (2019) 0.1 110 (100, 105) 256 | 2x 1074 No/ No No / Yes
Mao et al. (2019) 0.1 80 (50, 60) 50 |2x104 No/No No/No
Carmon et al. (2019) 0.1 100 (cosine anneal) | 256 | 5 x 10~ No /No No / No
Alayrac et al. (2019) 0.2 64 (38, 46, 51) 128 | 5x 1074 No/No No/No
Shafahi et al. (2019b) | 0.1 200 (100, 150) 128 | 2x 1074 No/No No/No
Zhang et al. (2019a) 0.05 105 (79, 90, 100) 256 | 5x 1074 No / No No /No
Zhang & Wang (2019)| 0.1 200 (60, 90) 60 | 2x10~% No / No No / No
Atzmon et al. (2019) | 0.01 100 (50) 32 |1x1074 No /No No/No
Wong et al. (2020) 0~0.2 30 (one cycle) 128 | 5 x 104 No/No Yes / No
Rice et al. (2020) 0.1 200 (100, 150) 128 | 5x 1074 Yes / No No/No
Ding et al. (2020) 0.3 128 (51,77, 102) 128 | 2x 1074 No/No No/No
Pang et al. (2020a) 0.01 200 (100, 150) 50 |1x10°* No/No No/No
Zhang et al. (2020) 0.1 120 (60, 90, 110) 128 | 2 x 1074 No / Yes No/ No
Huang et al. (2020) 0.1 | 200 (cosine anneal) | 256 | 5 x 10~4 No / No Yes / No
Cheng et al. (2020) 0.1 200 (80, 140, 180) | 128 | 5 x 1074 No / No No/No
Lee et al. (2020) 0.1 200 (100, 150) 128 | 2 x 1074 No / No No/No
Xu et al. (2020) 0.1 120 (60, 90) 256 |1 x1074 No / No No/No




Early stopping adversarial intensity

Base Early stopping attack iter. Warmup on Lr. Warmup on perturb.

40/70 | 40/100 | 60/ 100 10 15 20 10 15 20
Clean | 82.52 ] 86.52 86.56 85.67 || 82.45 | 82.64 | 82.31 | 82.64 | 82.75 | 82.78
PGD-10| 53.58 || 52.65 53.22 5290 || 53.43 | 53.29 | 53.35 | 53.65 | 53.27 | 53.62
AA | 48.51 || 46.6 46.04 45.96 || 48.26 | 48.12 | 48.37 | 48.44 | 48.17 | 48.48

* Improved clean accuracy and faster training
* The performance under the stronger AutoAttack is degraded.




Warmup w.r.t. learning rate or perturbation

Early stopping attack iter.

Warmup on L.r.

Warmup on perturb.

Base
40/70 | 40/100 | 60/ 100 10 15 20 10 15 20
Clean | 82.52 | 86.52 86.56 85.67 82.45 | 82.64 | 82.31 | 82.64 | 82.75 | 82.78
PGD-10| 53.58 | 52.65 53.22 52.90 5343 | 53.29 | 53.35 | 53.65 | 53.27 | 53.62
AA 48.51 46.6 46.04 4596 | 48.26 | 48.12 | 48.37 | 48.44 | 48.17 | 48.48

* The effects of warmup are not significant




Batch size

Table 3: Test accuracy (%) under different batch
size and learning rate (1.r.) on CIFAR-10. The
basic L.r. is 0.1, while the scaled L.r. is, e.g., 0.2 for
batch size 256, and 0.05 for batch size 64.

ResNet-18

Batch Basic l.r. Scaled l.r.
size | Clean | PGD-10 | Clean | PGD-10
64 80.08 51.31 82.44 52.48
128 82.52 53.58 - -
256 83.33 52.20 82.24 52.52
512 83.40 50.69 82.16 53.36

WRN-34-10

Batch Basic l.r. Scaled l.r.
size | Clean | PGD-10 | Clean | PGD-10
64 84.20 54.69 85.40 54.86
128 86.07 56.60 - -
256 86.21 52.90 85.89 56.09
512 86.29 50.17 86.47 55.49

Larger batch size may not be better
Linear scaling rule for learning rate

is beneficial




Mode for batch normalization when computing PGD

Table 7: Test accuracy (%) under different BN modes on CIFAR-10. We evaluate across several
model architectures, since the BN layers have different positions in different models.

BN Model architecture
mode | ResNet-18 | SENet-18 | DenseNet-121 | GoogleNet | DPN26 | WRN-34-10
train 82.52 82.20 85.38 83.97 83.67 86.07
Clean eval 83.48 84.11 86.33 85.26 84.56 87.38
- +0.96 +1.91 +0.95 +1.29 +0.89 +1.31
train 53.58 54.01 56.22 53.76 53.88 56.60
PGD-10 | eval 53.64 53.90 56.11 53.77 53.41 56.04
- +0.06 -0.11 -0.11 +0.01 -0.47 -0.56
train 48.51 48.72 51.58 48.73 48.50 52.19
AA eval 48.75 48.95 51.24 48.83 48.30 51.93
- +0.24 +0.23 -0.34 +0.10 -0.20 -0.26

* Eval BN mode (used in TRADES) lead to higher clean accuracy while keeping
similar robust accuracy, compared to train BN mode (used in PGD-AT)



Label smoothing

Table 17: Test accuracy (%) under different label smoothing on CIFAR-10. The model is ResNet-
18 trained by PGD-AT. We evaluate under PGD-1000 with different number of restarts and step
sizes. Here we use the cross-entropy (CE) objective and C&W objective (Carlini & Wagner, 2017a),
respectively. We also evaluate under the SPSA attack (Uesato et al., 2018) for 10, 000 iteration steps,
with batch size 128, perturbation size 0.001 and learning rate of 1/255.

Evaluation method Label smoothing
Attack Restart | Step size 0 0.1 0.2 0.3 0.4
1 2/255 5245 | 5295 | 53.08 | 53.10 | 53.14
PGD-1000 5 2/255 5241 | 52.89 | 53.01 | 53.04 | 53.03
(CE objective) 10 2/255 52.31 | 52.85 | 52.92 | 53.02 | 52.96

10 0.5/255 | 52.63 | 52.94 | 53.33 | 53.30 | 53.25
2/255 50.64 | 50.76 | 51.07 | 50.96 | 50.54

PGD-1000 5 2/255 50.58 | 50.66 | 50.93 | 50.86 | 50.44
(C&W objective) 10 2/255 50.55 | 50.59 | 50.90 | 50.85 | 50.44
10 0.5/255 | 50.63 | 50.73 | 51.03 | 51.04 | 50.52
SPSA-10000 1 1/255 61.69 | 61.92 | 6193 | 61.79 | 61.53




Label smoothing

Table 4: Test accuracy (%) under differ-
ent degrees of label smoothing (LS) on
CIFAR-10. More evaluation results under,
e.g., PGD-1000 can be found in Table 17.

ResNet-18

LS | Clean | PGD-10 | AA | RayS

0 | 82.52 53.58 | 48.51 | 53.34
0.1 | 82.69 54.04 | 48.76 | 53.71
0.2 | 82.73 5422 | 49.20 | 53.66
0.3 | 82.51 5434 | 49.24 | 53.59
0.4 | 82.39 54.13 | 48.83 | 53.40

WRN-34-10

LS | Clean | PGD-10 | AA | RayS

0 | 86.07 56.60 | 52.19 | 60.07
0.1 | 85.96 56.88 | 52.74 | 59.99
0.2 | 86.09 57.31 53.00 | 60.28
0.3 | 85.99 57.55 5270 | 61.00
0.4 | 86.19 57.63 52.71 | 60.64

o
T
2
[=]

Moderate label smoothing (LS=0.1~0.2)
combined with adversarial training can
improve robustness.

Excessive label smoothing (LS>0.4) could
degrade robustness.

Can be treated as a confidence calibration,
according to the 80%~85% clean accuracy
of adversarially trained models.



Optimizer
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Table 5: Test accuracy (%) using different optimizers on CIFAR-10. The model is ResNet-18 (results
on WRN-34-10 is in Table 15). The initial learning rate for Adam and AdamW is 0.0001.

Mom | Nesterov | Adam | AdamW | SGD-GC | SGD-GCC
Clean 82.52 82.83 83.20 81.68 82.77 82.93
PGD-10 | 53.58 53.78 48.87 46.58 53.62 53.40
AA 48.51 48.22 44.04 42.39 48.33 48.51

* SGD momentum is good enough



Weight decay
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Figure 1: (a) Test accuracy w.r.t. different values of weight decay. The reported checkpoints
correspond to the best PGD-10 accuracy (Rice et al., 2020). We test on two model architectures, and
highlight (with red circles) three most commonly used weight decays in previous work; (b) Curves
of test accuracy w.r.t. training epochs, where the model is WRN-34-10. We set weight decay be
1x107%,2x 1074, and 5 x 10™%, respectively. We can observe that smaller weight decay can learn
faster but also more tend to overfit w.r.t. the robust accuracy. In Fig. 4, we early decay the learning
rate before the models overfitting, but weight decay of 5 x 10~ still achieve better robustness.
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Figure 4: Curves of test accuracy w.r.t. training epochs, where the model is WRN-34-10. Here we
early decay the learning rate at 40 and 45 epochs for the cases of weight decay 1 x 10™% and 2 x 1074,
just before they overfitting. We can see that the models can achieve the same clean accuracy as weight
decay 5 x 10~%, but still worse robustness.
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Figure 5: Curves of test accuracy w.r.t. training epochs. The model architecture is WRN-34-10,
and 1s standardly trained on CIFAR-10. We can observe that the final performance of each model is
comparable, which means that clean accuracy is less sensitive to different values of weight decay.
This observation also holds for the adversarially trained models as shown in Fig. 1.



Weight decay
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Figure 3: Random normal cross-sections of the decision boundary for PGD-AT with different weight
decay. The model architecture is WRN-34-10. Following the examples in Moosavi-Dezfooli et al.
(2019), we craft PGD-10 perturbation as the normal direction v, and r be a random direction, under
the /-, constraint of 8 /255. The values of x-axis and y-axis represent the multiplied scale factors.



Model architecture

57 r
® GoogleNet

® DenseNet-121
56+ @ DenseNet-201

DPN-26
@ O DPN-92

N RegNetX (200MF)

® RegNetX (400MF)
¢ ® ResNet-18
ResNet-50
® ResNeXt-29
531 | | | | @ SENet-18

PGD-10 accuracy (%)

82 83 84 85
Clean accuracy (%)

« Skip connections are helpful (but may require higher inference time)



Activation function
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Table 6: Test accuracy (%) under different non-linear activation function on CIFAR-10. The model
is ResNet-18. We apply the hyperparameters recommended by Xie et al. (2020) on ImageNet for the
activation function. Here the notation ¥ indicates using weight decay of 5 x 10~°, where applying
weight decay of 5 x 10~ with these activations will lead to much worse model performance.

ReLU | Leaky. | ELU* | CELU* | SELU* | GELU | Softplus | Tanh*
Clean | 82.52 | 82.11 | 82.17 | 81.37 78.88 | 80.42 | 82.80 | 80.13
PGD-10 | 53.58 | 53.25 | 52.08 | 51.37 4953 | 5221 | 5430 | 49.12

e Swish could perform better (Xie et al. 2020, Gowal et al. 2020)



Combined (PGD-AT)

Architecture Label Weight Activa}ion BN Accuracy
smooth decay function mode | Clean PGD-10 AA
0 1x 1074 ReLU train | 85.87 4945  46.43
0 2 x 1074 RelLLU train | 86.14 52.08 48.72
0 5x 1074 ReL.U train | 86.07 56.60  52.19
WRN-34-10 0 5x107%  ReLU eval | 8738 5604 5193
0 5x 107*  Softplus  train | 86.60 56.44  52.70
0.1 5x 107*  Softplus  train | 86.42 5722  53.01
0.1 5x 10=*  Softplus eval | 86.34 56.38 52.21
0.2 5x 10=*  Softplus  train | 86.10  56.55 5291
0.2 5x 107*  Softplus  eval | 86.98  56.21  52.10
0 1x10~% RelLU train | 86.21  49.74  47.58
0 2 x 1074 ReLLU train | 86.73 51.39 49.03
0 5x107*  ReLU train | 86.97 57.57 53.26
WRN-34-20 0 5x107*  ReLU eval | 87.62  57.04  53.14
0 5x 10=%*  Softplus  train | 85.80 57.84  53.64
0.1 5x 10=*  Softplus  train | 85.69 57.86  53.66
0.1 5x 10=*  Softplus  eval | 87.86 57.33  53.23
02  5x107*  Softplus  train | 84.82  57.93  53.39
0.2 5x 107%*  Softplus  eval | 87.58 57.19  53.26




Combined (TRADES)

Threat model: !, constraint, ¢ = 0.031

Architecture | Weight decay BN mode Activation | Clean PGD-10 AA
2 x 104 train RelLU 83.86 5496  51.52
2 x 104 eval ReLU 85.17 55.10  51.85
WRN-34-101 5 104 train ReLU | 84.17 57.34 5351
5x 10~* eval ReLU 8534 5854  54.64
5x 1074 eval Softplus | 84.66  58.05  54.20
5x 104 eval ReLU 8693 5793 54.42
WRN-34-20 1 5 104 eval Softplus | 85.43  57.94  54.32
Threat model: {~, constraint, € = 8 /255
Architecture | Weight decay BN mode Activation | Clean PGD-10 AA
2 x 10~* train RelLU 84.50 54.60 50.94
2 x 10~ eval ReLU | 85.17 5458 51.54
WRN-34-10 5x 10~* train RelLU 84.04 5741 53.83
5x 1074 eval ReLU | 8548 5745  53.80
5x 104 eval Softplus | 84.24  57.59  53.88
2 x 10~* train RelLU 84.50 53.86  51.18
2 x 10~ eval ReLU | 8548 5321  50.59
WRN-34-20 5x 10~* train ReLU 85.87  57.40  54.22
5x 104 eval ReLU 86.43 5791  54.39
5x 1074 eval Softplus | 85.51  57.50  54.21




Simply change the weight decay (TRADES)

Threat model: (., constraint, ¢ = 8/255

Method Architecture Clean AA
Ours (TRADES) WRN-34-20 86.43 54.39
Ours (TRADES) WRN-34-10 | 85.49 +0.24 | 53.94 +0.10
Pang et al. (2020c¢) WRN-34-20 85.14 53.74
Zhang et al. (2020) | WRN-34-10 84.52 53.51
Rice et al. (2020) WRN-34-20 85.34 53.42
Qin et al. (2019) WRN-40-8 86.28 52.84
Threat model: V, constraint, ¢ = 0.031

Method Architecture Clean AA
Ours (TRADES) WRN-34-10 | 85.45 £0.09 | 54.28 +0.24
Huang et al. (2020) | WRN-34-10 83.48 53.34
Zhang et al. (2019b) | WRN-34-10 84.92 53.08
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Combined (FastAT and FreeAT)

Defense Label Weight BN Accuracy
‘ smooth decay mode | Clean PGD-10 AA
0 2x 10=*  train | 82.19 4747  42.99
FastAT 0 5x107% train | 82.93 4848  44.06
(Wong et al., 2020) 0 5x 107* eval | 84.00 48.16 43.66
0.1 5x107* train | 82.83  48.76  44.50
0 2 x 10™*  train | 87.42 47.66 44.24
Free AT 0 5x107* train | 88.17 4890  45.66
(Shafahi et al., 2019b) 0 5x 10~% eval | 88.26  48.50 4549
0.1 5x107* train | 88.07 49.26 4591




Of{0
Takeaways ?%
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Takeaways:

(i) Slightly different values of weight decay could largely affect the robustness of trained models;
(ii) Moderate label smoothing and linear scaling rule on lL.r. for different batch sizes are beneficial;
(iii) Applying eval BN mode to craft training adversarial examples can avoid blurring the distribution;
(iv) Early stopping the adversarial steps or perturbation may degenerate worst-case robustness;

(v) Smooth activation benefits more when the model capacity is not enough for adversarial training.

* Adversarial training is more sensitive to these usually overlooked
hyperparameters, compared to standard training.

* Standardize the basic training setting enables fairer benchmarks.

Code: https://github.com/P2333/Bag-of-Tricks-for-AT



Bottleneck of adversarial training

Note: # indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).

# paper model architecture clean report. AA
1 (Gowal et al., 2020)# available WRN-70-16 91.10 65.87 65.88
2 (Gowal et al., 2020)# available WRN-28-10 89.48 62.76 62.80
3 (Wu et al., 2020a)#* available WRN-34-15 87.67 60.65 60.65
4 (Wu et al., 2020b)* available WRN-28-10 88.25 60.04 60.04
5 (Carmon et al., 2019)# available WRN-28-10 89.69 62.5 59.53
6 (Gowal et al., 2020) available WRN-70-16 85.29 5714 57.20
7 (Sehwag et al., 2020)* available WRN-28-10 88.98 - 5714
8 (Gowal et al., 2020) available WRN-34-20 85.64 56.82 56.86
9 (Wang et al., 2020)* available WRN-28-10 87.50 65.04 56.29
10 (Wu et al., 2020b) available WRN-34-10 85.36 56.17 56.17
1" (Alayrac et al., 2019)* available WRN-106-8 86.46 56.30 56.03
12 (Hendrycks et al., 2019)# available WRN-28-10 87.11 574 54.92
13 (Pang et al., 2020c) available WRN-34-20 86.43 5439 54.39
14 (Pang et al., 2020b) available WRN-34-20 85.14 - 53.74

(From https://github.com/fra31/auto-attack)

Gowal et al. use TRADES:

 weight decay 5x10~*
 WRN-70-16 with Swish activation
* more data

Less significant improvement
since 2018



How to bypass this bottleneck?

Research routines of adversarial training and adversarial detection
are relatively independent in previous works. Incorporate the

rejection / detection module into the adversarially trained models.

(a new work public soon)

Include test-time purification, by introducing auxiliary models or
tasks. Convert passive defenses into dynamic ones.
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Max-Mahalanobis Training
Part 1

(Max-Mahalanobis Linear Discriminant Analysis Networks)

Tianyu Pang, Chao Du, and Jun Zhu

ICML 2018

Code: https://github.com/P2333/Max-Mahalanobis-Training



Motivation

* Paradigm of feed-forward deep nets

Non-linear Linear
Transformation Classifier

Active area of research Much less active

(AlexNet; VGG nets; ResNets; (Softmax regression)
GoogleNets; DenseNets;)



Inspiration one: LDA is more efficient than LR

* Efron et al.(1975) show that if the input distributes as a mixture of
Gaussian, then linear discriminant analysis (LDA) is more efficient
than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate

* However, in practice data points hardly distributes as a mixture of
Gaussian in the input space.



Inspiration two: neural networks are powerful

* Deep generative models (e.g., GANs) are successful.

Deep generative models
—

DNN

i i b e i
EIE B S &

Simple Distribution Complex Distribution
(Gaussian/Mixture of Gaussian) (Data distribution)



Inspiration two: neural networks are powerful

* Deep generative models (e.g., GANs) are successful.

* The reverse direction should also be feasible.

expl-03+2)

Deep generative models
—

DNN
—
Our Method

(MM-LDA networks) o
Simple Distribution Complex Distribution

(Gaussian/Mixture of Gaussian) (Data distribution)

E—p— S i AL 2 4 ik e AL it
T T i T l
2 o i i




Our method

* Models the feature distribution in DNNs as a mixture of Gaussian.

* Applies LDA on the feature to make predictions.



How to treat the Gaussian parameters? E%
'

* Wan et al. (CVPR 2018) also model the feature distribution as a
mixture of Gaussian. However, they treat the Gaussian parameters
(1; and X) as extra trainable variables.

* We treat them as hyperparameters calculated by our algorithm,
which can provide theoretical guarantee on the robustness.

* The induced mixture of Gaussian model is named Max
Mahalanobis Distribution (MMD).



Max-Mahalanobis Distribution (MMD) =%

* Making the minimal Mahalanobis distance between two
Gaussian components maximal.

U2 M3 Ha

H1

L=2 L = L=4
Straight Line Equilateral Regular
Triangle Tetrahedron




Robustness w.r.t Gaussian parameters

y

2ije[L]

Distributing as a MMD can maximize RB.



Can we further improve MMLDA?



Max-Mahalanobis Training
Part 2

(Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness)

Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen and Jun Zhu

ICLR 2020

Code: https://github.com/P2333/Max-Mahalanobis-Training



Motivation

100 -

(0]
o
1

NN
o

Accuracy

N
o
1

o
1

MNIST

(@)
o
1

= Adversarial train
wes - Adversarial test
=== Standard test

0 20000 40000 60000
Training Steps

100 A

80

60 -

40

20 A

CIFAR10

m— Adversarial train
we - Adversarial test
== Standard test

0 20000 40000 60000 80000
Training Steps

The same dataset, e.g., CIFAR-10, which enables good standard accuracy

may not suffice to train robust models.

(Schmidt et al. NeurlPS 2018)



. . o0
Possible Solutions ?%
r

* Introducing extra labeled data
(Hendrycks et al. ICML 2019)

* Introducing extra unlabeled data
(Alayrac et al. NeurlIPS 2019; Carmon et al. NeurlPS 2019)



. . o0
Possible Solutions ?%
r

* Introducing extra labeled data
(Hendrycks et al. ICML 2019)

* Introducing extra unlabeled data
(Alayrac et al. NeurlIPS 2019; Carmon et al. NeurlPS 2019)

* Our solution: Increase sample density to induce locally
sufficient training data for robust learning



Sample Density

Given a training dataset D with N input-label pairs, and the feature mapping Z trained by the
objective L(Z(x),y) on this dataset, we define the sample density nearby the feature point z = Z(z)
following the similar definition in physics (Jackson, 1999) as

AN
SD(z) = ————. 2
) = Yol(aB) )
Here Vol(-) denotes the volume of the input set, A B is a small neighbourhood containing the feature
point z, and AN = |Z(D) N AB| is the number of training points in A B, where Z(D) is the set of

all mapped features for the inputs in D. Note that the mapped feature 2 is still of the label y.

Lgcg € [€1,C1 + AC] ___ Lyumc € [€1, €1+ AC]
bl (medium sample density); - = (low sample density)
% : ¥3- f
: o : o> :

11 [ :
| okp S :
o o

1 1
[ o=
| oy | oy
o 1ol

1 1
% o
| I._} .
I I :
i 1 O L Lgcp € [C2,C; +AC)
: :0+ (medium sample density)i
o 11 :

SCE 5 MMC
® Prefixed feature center of label y in Lyyc 4 Moving directions of learned features during training

@ Learned features of training data with label y - — . Contours of the objective loss (C; > C;, AC is a small value)




Generalized Softmax Cross Entropy Loss (g-SCE loss) %%
Ol
We define g-SCE loss as
Lesce(Z(x),y) = —1; log [softmax(h)], Including MIMLDA
where h;, = —(z — ,uz-)TEi(z — u;) + B; is the logits in quadratic form.
We note that the SCE loss is included in the family of g-SCE loss as
exp(W;' z + b;) exp(—|lz — 3Will3 + b; + z[[Wil|3)

softmax(Wz + b); = = :
( ) e e&PW 2 +b) Y exp(=llz — sWill3 + b + z[[Will3)




Induced Sample Density of g-SCE Loss

Theorem 1. (Proof in Appendix A.1) Given (z,y) € D, ;, 2 = Z(z) and Ly.sce(z,y) = C, if there

are Y, = oyl, X5 = o1, and oy, # 0y, then the sample density nearby the feature point z based on
the approximation in Eq. (6) is

N, :-p,:(C Mur—pzl2  Bp—B:
B. - log(C.—1) | 2 ’ (O'k—O',;) Ok — 0
k:,k:+ Or—0F

where for the input-label pair in Dy, ;, there is Lq.sce ~ py, ;,(¢).

oo, loss value = oo

Sso oo, loss value = 0
PR

° \.21
— ~
Nﬁk, loss value=C* ~ e M, 1, loss value=C*
S

‘.
-
P
/ .”
- ¢ / Zp
A 22

oo, loss value = 0
oo, loss value = oo

The case: o, > o7y, The case: 0, < 05,
(Preferred by models since lower loss values)

r



The ‘Curse’ of Softmax Function ;%

Lesce(Z(x),y) = —1; log [softmax(h)],

U

* The softmax makes the loss value only depend on the relative relation among logits.

* This causes indirect and unexpected supervisory signals on the learned features.



Our Method: Max-Mahalanobis Center (MMC) Loss

'/exp(_ lz—p3l13y D ]
LMMLDA(Z(LU),y) =(— lOg = — log

[z—pf I3
le[L] exp(—- gl )

1

Lvmve(Z(z),y) = §||Z — M;”g

* No softmax normalization




Induced Sample Density of MMC Loss @%

Theorem 2. (Proof in Appendix A.2) Given (z,y) € Dx, z = Z(x) and Lyyc(z,y) = C, the
sample density nearby the feature point z is

SD(z) N .ﬁc), )

C =
where for the input-label pair in Dy, there is Lypc ~ pr(c).

oo, loss value — o

\@‘, loss value=0
/ ®

o
- Zy

oo, loss value = oo

== Moving directions in training @ Feature points




Toy Demo on Faster Convergence

Center loss o °

MMC loss

Full-batch Mini-batch 20/1000

Mini-batch 5/1000



Empirical Faster Convergence

70
60 |

=

S 50|

I

s

S 40

o

=

3 30

% :

= 20
10

Training time (hours)

mm SCE mm Center w=MMLDA mm AT (SCE)
mm AT (MMC-100)
mm MMC-10 MMC-100 s L-GM == AT (MMC-10)




White-box Robustness (Adaptive Attacks)

EI%
e
i
[=] vy

Perturbation ¢ = 8 /255 Perturbation ¢ = 16/255

Methods Clean | PGDY¥ | PGDY | PGDY | PGDY | PGDY | PGD: | PGDY" | PGDS
SCE 92.9 <1 3.7 <1 3.6 <1 2.9 <1 2.6
Center loss 92.8 <1 4.4 <1 4.3 <1 3.1 <1 2.9
MMLDA 92.4 <1 16.5 <1 9.7 <1 6.7 <1 5.5
L-GM 92.5 37.6 19.8 8.9 4.9 26.0 11.0 2.5 2.8
MMC-10 (rand) 92.3 43.5 29.2 20.9 18.4 31.3 17.9 8.6 11.6
MMC-10 92.7 48.7 36.0 26.6 24.8 36.1 25.2 13.4 17.5
AT (SCE) 83.7 70.6 49.7 69.8 47.8 48.4 26.7 31.2 16.0
AT? (MMC-10) | 83.0 69.2 54.8 67.0 53.5 58.6 47.3 44.7 45.1
ATY) (SCE) 80.9 69.8 554 69.4 53.9 53.3 34.1 38.5 21.5
AT MMC-10) | 81.8 70.8 56.3 70.1 55.0 54.7 37.4 39.9 27.7

CIFAR-10
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Improving Adversarial Robustness via
Promoting Ensemble Diversity

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu

ICML 2019

Code: https://github.com/P2333/Adaptive-Diversity-Promoting



Previous Defense Strategies

Single model defense:

v
'O OZ | e.g., adversarial training

= 4|
(‘/

Base Model

Enhanced Model



Previous Defense Strategies

Ensemble model defense:

—

1;%@; 5@

‘i%‘!

Member 1 Member 2 Member 3




Previous Defense Strategies

Ensemble model defense:

Member 1 Member 2 Member 3



Previous Defense Strategies

Ensemble model defense:

S —

A
Cat Cat

Member 1 Member 2 Member 3




Our Strategy

Training ensembles with diversity:

Member 1 Member 2 Member 3



Our Strategy

Training ensembles with diversity:

Member 1 Member 2 Member 3
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Adaptive Diversity Promoting
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* Promoting diversity on
non-maximal predictions

correspond to all potentially
wrong labels returned for
the adversarial examples



Formulas of ADP %%
[=] vy

Based on the intuitive insights, we define the ensemble diversity as
ED = det(M,}, M)

where M, = (Fl,,--- ,FE) e RE-D*E are normalized non-maximal prediction.
This definition is based on the fact that

det(M\) My,) = Vol2({FE }cx))



Formulas of ADP

So the ADP regularizer is

ADP,, g(z,y) = o - H(F) + B - log (ED)



Formulas of ADP

So the ADP regularizer is

ADP, s(z,y) = a- H(F) + B - log (ED)

U

the optimal solution of the minimization problem (6) satisfies

the equations F* = 1,, where k € [K].
G

" Theorem 1. (Proof in Appendix A) If o = 0, then V(3 > 0,

~N

J




Formulas of ADP

So the ADP regularizer is

ADP,, g(z,y) = a- H(F) + B - log (ED)

U

G heorem 2. (Proof in Appendix A) When oo > 0 and 8 = 0,\
the optimal solution of the minimization problem (6) satisfies

the equations F;‘ =F, F;= lL_iy and
1 F,(L—1)

(7)

— - 2%
F, K °1-F, "

there k€ |K|and j € [L|\{y}. /




Formulas of ADP

So the ADP regularizer is

ADP, s(z,y) = a- H(F) + B - log (ED)

ﬁorollary 1. Ifthereis K | (L

\_ 0,

optimal solution of the minimization problem (6) satisfies the
Eq. (7). Besides, let S = {s1,,- -

the index set [L|\{y}, L=L. Then
the optimal solution further satisfies:
K([l;fy), J € Sk
FF={F,, i=y 8)

— 1), thenVa, B > 0, ﬂh

, S K} be any partztzon of

otherwise. /




Experiments
PGD (untargeted)
@ 0,04 0.12 0.14
Baseline »ece| 013 0.04 0.12
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oy oy e
weoon|  0.05 0.38 0.41
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Adversarial transferability among individual members of ensembles
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Towards Robust Detection of Adversarial Examples

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu

NeurlPS 2018

Code: https://github.com/P2333/Reverse-Cross-Entropy



We Detect Adversarial Examples, and How?

Design new detectors:

e Kernel density detector (Feinman et al. 2017)
e LID detector (Ma et al. ICLR 2018)



We Detect Adversarial Examples, and How? E%
'

Design new detectors:

e Kernel density detector (Feinman et al. 2017)
e LID detector (Ma et al. ICLR 2018)

Train the models to better collaborate with existing detectors



Reverse Cross Entropy %%
'

[=]
Cross-Entropy (CE): | Reverse Cross-Entropy (RCE):
| 1,: One-hot label . R, : Reverse label
0001000000 1114111111
2eg8g85gsd { } I!alc!!ll:”r {9’9’9’0’9’9’9’9’9’9}

)
)
by

I
I

-\

<

P

=)
oQ
~

"
—

>
)
)
try

I

I

-

<

o

=)
oQ
~

-y
—



The RCE Training Method

Phase 1: Reverse Training
Training the model by minimizing the RCE loss

Phase 2: Reverse Logits
Negating the logits fed to the softmax layer to give predictions
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Theorem 2. (Proof in Appendix A) Let (x,y) be a given training data. Under the Lo.-norm, if there
is a training error & < + that ||S(Z,e(x, 0%)) — Ryl . < o, then we have bounds

IS(=Zpre(x, %)) — Lyl < (L —1)?

Theoretical Analysis E%
v

and Vj, k # v, , ,
S(=Zpre(,0R)); — S(=Zpre(x,0R)) k| < 27 (L — 1)

Property 1: Consistent and Unbiased
When the training error &« — 0, the prediction tends to the one-hot label

Property 2: Tighter Bound
The difference between any two non-maximal elements decreases as O(a?)



The Insights of RCE Training

We first define the non-maximal entropy (non-ME) as:

nonME(x) = — z F(x); lOg(ﬁ(x)i) ,

ERY

where F(x); is the normalized non-maximal predictions.



The Insights of RCE Training

We first define the non-maximal entropy (non-ME) as:

nonME(x) = — z F(x); 10g(ﬁ(x)i) ,

ERY

where F(x); is the normalized non-maximal predictions.

RCE training encourages the maximal prediction to tend to 1,
while maximizing the non-ME.



The Insights of RCE Training

Decision

B The left plot is the decision domain in 2-

/.'/ ) d feature space for 3 classes (each class
.'\ o’ . V4 °
e s v | with one color)
'\\ .\ ‘./ .// . /
Isol; \~. \\ \., - . 6 / TIsoline of
soline of "~ - @ . N // < on-ME=t
non-ME=t '\. ‘ N . " ‘./
"N N “/

~ Qo O
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’ Isoline of
- non-ME=t

1
.. \ ! O | Decision
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The left plot is the decision domain in 2-
d feature space for 3 classes (each class

The Insights of RCE Training E%

Decision
boundary

. R with one color)
N ® ®.
N /7 .
~ 0 9 Isoline of
Isoline of O\ N ’ 6 SOHNe o

non-MF=t non-ME=t

When the non-ME of the returned
predictions are maximized, the learned
features for each class with tend to
locate near the black dash lines, where
the points on the dash lines have the
maximal non-ME.

Isoline of
non-ME=t

Decision

Decision Orlglnal boundary

boundary input z,



The Insights of RCE Training

Decision
boundary

® .
. O //
LR ® ®- ® Then if an adversary want to craft an
~ .
fsoline of "~ @ ®.6 oineof adversarial example based on z, he has
non-ME=t non t

to move further to z, rather than z4 to
obtain a normal value of non-ME.

Isoline of
non-ME=t

Decision

Decision Orlglnal boundary

boundary input z,



The Insights of RCE Training

® Normal examples
@ Adversarial examples that succeed to fool detector
O Adversarial examples that fail to fool detector

Detector allowable region

.\.-/

Detector allowable region

.\.I/

Detector allowable region Detector allowable region

CE RCE

In practice, the learned low-dimensional feature distributions by RCE make it
more difficult to craft an adversarial examples with normal values of non-ME.



Experiments

CE RCE

t-SNE visualization of learned features on CIFAR-10



Experiments

Attack Obj. MNIST . CIFAR-10 .

Confidence | non-ME | K-density | Confidence | non-ME | K-density

FGSM CE 79.7 66.8 98.8 (-) 71.5 66.9 99.7 (-)
RCE 98.8 98.6 99.4 (*) 92.6 914 98.0 (*)

BIM CE 88.9 70.5 90.0 (-) 0.0 64.6 100.0 (-)
RCE 91.7 90.6 91.8 (*) 0.7 70.2 100.0 (*)

ILCM CE 98.4 504 96.2 (-) 16.4 37.1 84.2 (-)
RCE 100.0 97.0 98.6 (*) 64.1 77.8 93.9 (*)

ISMA CE 98.6 60.1 97.7 (-) 99.2 27.3 85.8 (-)
RCE 100.0 99.4 99.0 (*) 99.5 91.9 95.4 (*)

C&W CE 98.6 64.1 994 (-) 99.5 50.2 95.3 (-)
RCE 100.0 99.5 99.8 (*) 99.6 94.7 98.2 (%)

CE 0.0 40.0 91.1 (-) 0.0 28.8 75.4 (-)

C&Whe | pee | 0u1 934 | 99.6 (%) 0.2 536 | 918 ()

AUC-scores (10~2) on adversarial examples




Thanks
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