
Towards Robust Detection of Adversarial Examples

Tianyu Pang, Chao Du, Yinpeng Dong and Jun Zhu

Department of Computer Science and Technology
Tsinghua University

NeurIPS | 2018 TSAIL



From Dong et al. (CVPR 2018)

Adversarial Examples 



How to Defend Adversarial Attacks? 

Possible strategy one:

To correctly classify adversarial examples
• Optimal 
• Difficult to achieve
• Computationally expensive (adversarial training)



How to Defend Adversarial Attacks? 

Possible strategy two:

To detect and filter out adversarial examples
• Suboptimal
• Little computation
• Methods borrowed from anomaly detection



We Detect Adversarial Examples, and How?

Design new detectors:

• Kernel density detector (Feinman et al. 2017)
• LID detector (Ma et al. ICLR 2018) 
• ……



We Detect Adversarial Examples, and How?

Design new detectors:

• Kernel density detector (Feinman et al. 2017)
• LID detector (Ma et al. ICLR 2018) 
• ……

Train the models to better collaborate with existing detectors



Reverse Cross Entropy
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Cross-Entropy (CE): Reverse Cross-Entropy (RCE):

1": One-hot label

𝓛𝑪𝑬 = −𝟏𝒚 * 𝐥𝐨𝐠(𝐅)

𝑅": Reverse label

𝓛𝑹𝑪𝑬 = −𝑹𝒚 * 𝐥𝐨𝐠(𝐅)
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The RCE Training Method

Phase 1: Reverse Training
Training the model by minimizing the RCE loss

Phase 2: Reverse Logits
Negating the logits fed to the softmax layer to give predictions



Theoretical Analysis

Property 1: Consistent and Unbiased
When the training error 𝜶⟶ 𝟎, the prediction tends to the one-hot label 

Property 2: Tighter Bound
The difference between any two non-maximal elements decreases as 𝚶(𝜶𝟐)



The Insights of RCE Training

We first define the non-maximal entropy (non-ME) as:

nonME x = −?
@A"

B𝐹 𝑥 @ log B𝐹 𝑥 @ ,

where B𝐹 𝑥 @ is the normalized non-maximal predictions.



The Insights of RCE Training

We first define the non-maximal entropy (non-ME) as:

nonME x = −?
@A"

B𝐹 𝑥 @ log B𝐹 𝑥 @ ,

where B𝐹 𝑥 @ is the normalized non-maximal predictions.

RCE training encourages the maximal prediction to tend to 1, 
while maximizing the non-ME.



The Insights of RCE Training
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C When the non-ME of the returned 
predictions are maximized, the learned 
features for each class with tend to 
locate near the black dash lines, where 
the points on the dash lines have the 
maximal non-ME. 

The left plot is the decision domain in 2-
d feature space for 3 classes (each class 
with one color)
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The Insights of RCE Training
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Then if an adversary want to craft an 
adversarial example based on 𝒛𝟎, he has 
to move further to 𝒛𝟐 rather than 𝒛𝟏 to 
obtain a normal value of non-ME.



The Insights of RCE Training

In practice, the learned low-dimensional feature distributions by RCE make it 
more difficult to craft an adversarial examples with normal values of non-ME.

Detector allowable region

Normal examples
Adversarial examples that succeed to fool detector

CE

Adversarial examples that fail to fool detector

RCE

Detector allowable region
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Experiments

Classification error rates (%) on normal test examples



Experiments

CE RCE

t-SNE visualization of learned features on CIFAR-10



Experiments

Classification accuracy under different attack methods
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Experiments

AUC-scores (𝟏𝟎I𝟐) when detecting adversarial examples



Experiments

Minimal distortion when applying the C&W attack under oblivious threat model, 
i.e., the adversary knows the classifier but does not know the detector 
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Experiments

The results when apply the C&W attack under white-box threat model, i.e., the 
adversary also know the detector. The ‘Ratio’: the ratio of adversarial examples 
that induce higher values of detection metric than a threshold. 



Experiments

The visualization of the adversarial examples crafted by white-box C&W attack
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Experiments

AUC-scores (𝟏𝟎I𝟐) under the black-box threat model. We use the adversarial 
examples crafted on Resnet-32 to feed to Resnet-56


