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Adversarial Examples

Puffer: 97.99% | Crab: 100.00%

From Dong et al. (CVPR 2018)



How to Defend Adversarial Attacks?

Possible strategy one:

To correctly classify adversarial examples

* Optimal

e Difficult to achieve

 Computationally expensive (adversarial training)



How to Defend Adversarial Attacks?

Possible strategy two:

To detect and filter out adversarial examples
e Suboptimal

e Little computation

 Methods borrowed from anomaly detection



We Detect Adversarial Examples, and How?

Design new detectors:

e Kernel density detector (Feinman et al. 2017)
e LID detector (Ma et al. ICLR 2018)



We Detect Adversarial Examples, and How?

Design new detectors:

» Kernel density detector (Feinman et al. 2017)
* LID detector (Ma et al. ICLR 2018)

Train the models to better collaborate with existing detectors



Reverse Cross Entropy

Cross-Entropy (CE): | Reverse Cross-Entropy (RCE):
| 1,: One-hot label - R, : Reverse label
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The RCE Training Method

Phase 1: Reverse Training
Training the model by minimizing the RCE loss

Phase 2: Reverse Logits
Negating the logits fed to the softmax layer to give predictions



Theoretical Analysis

Theorem 2. (Proof in Appendix A) Let (z,y) be a given training data. Under the Lo.-norm, if there
is a training error & < 1 that ||S(Z,,e(x,0%)) — Ry ||, < o, then we have bounds

IS(=Zpre(@,0%)) — 1yll, < (L —1)?

and Vi, k # v, , ,
S(=Zpre(®,0R)); — S(=Zpre(x, 0R))x| < 207 (L — 1)~

Property 1: Consistent and Unbiased
When the training error &« — 0, the prediction tends to the one-hot label

Property 2: Tighter Bound
The difference between any two non-maximal elements decreases as O(a?)



The Insights of RCE Training

We first define the non-maximal entropy (non-ME) as:

nonME(x) = — z F(x); lOg(ﬁ(x)i) ,

ERY

where F(x); is the normalized non-maximal predictions.



The Insights of RCE Training

We first define the non-maximal entropy (non-ME) as:

nonME(x) = — z F(x); 10g(ﬁ(x)i) ,

ERY

where F(x); is the normalized non-maximal predictions.

RCE training encourages the maximal prediction to tend to 1,
while maximizing the non-ME.



The Insights of RCE Training
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The left plot is the decision domain in 2-
d feature space for 3 classes (each class
with one color)

When the non-ME of the returned
predictions are maximized, the learned
features for each class with tend to
locate near the black dash lines, where
the points on the dash lines have the
maximal non-ME.
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When the non-ME of the returned
predictions are maximized, the learned
features for each class with tend to
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The Insights of RCE Training

Decision
boundary
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The Insights of RCE Training

® Normal examples
@ Adversarial examples that succeed to fool detector
O Adversarial examples that fail to fool detector

Detector allowable region

.\.-/

Detector allowable region

.\.I/

Detector allowable region Detector allowable region

CE RCE

In practice, the learned low-dimensional feature distributions by RCE make it
more difficult to craft an adversarial examples with normal values of non-ME.



Experiments

Table 1: Classification error rates (%) on test sets.

Method MNIST | CIFAR-10
Resnet-32 (CE) 0.38 7.13
Resnet-32 (RCE) 0.29 7.02
Resnet-56 (CE) 0.36 6.49
Resnet-56 (RCE) 0.32 6.60

Classification error rates (%) on normal test examples



Experiments

CE RCE

t-SNE visualization of learned features on CIFAR-10



Experiments
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Classification accuracy under different attack methods



Experiments

Attack Obj. MNIST . CIFAR-10 .

Confidence | non-ME | K-density | Confidence | non-ME | K-density

FGSM CE 79.7 66.8 98.8 (-) 71.5 66.9 99.7 (-)
RCE 98.8 98.6 99.4 (*) 92.6 914 98.0 (*)

BIM CE 88.9 70.5 90.0 (-) 0.0 64.6 100.0 (-)
RCE 91.7 90.6 91.8 (*) 0.7 70.2 100.0 (*)

ILCM CE 98.4 504 96.2 (-) 16.4 37.1 84.2 (-)
RCE 100.0 97.0 98.6 (*) 64.1 77.8 93.9 (%)

ISMA CE 98.6 60.1 97.7 (-) 99.2 27.3 85.8 (-)
RCE 100.0 99.4 99.0 (*) 99.5 91.9 95.4 (*)

C&W CE 98.6 64.1 99.4 (-) 99.5 50.2 95.3 (-)
RCE 100.0 99.5 99.8 (*) 99.6 94.7 98.2 (%)

CE 0.0 40.0 91.1 (-) 0.0 28.8 75.4 (-)

C&Whe | pee | 0u1 934 | 99.6 (%) 0.2 536 | 91.8(%)

AUC-scores (10~ %) when detecting adversarial examples




Experiments

MNIST CIFAR-10
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Minimal distortion when applying the C&W attack under oblivious threat model,
i.e., the adversary knows the classifier but does not know the detector



Experiments

Obi MNIST CIFAR-10
J- Ratio | Distortion | Ratio | Distortion
CE | 17.12 0 1.26
RCE 77 31.59 12 3.89

Table 3: The ratios (%) of fo(x™) > 0 and minimal distortions of
the adversarial examples crafted by C&W-wb. Model is Resnet-32.

The results when apply the C&W attack under white-box threat model|, i.e., the
adversary also know the detector. The ‘Ratio’: the ratio of adversarial examples
that induce higher values of detection metric than a threshold.



Experiments
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The visualization of the adversarial examples crafted by white-box C&W attack



Experiments

Res.-32 (CE) | Res.-32 (RCE)

Res.-56 (CE) 75.0 90.8
Res.-56 (RCE) 30.1 84.9

Table 4: AUC-scores (10~ 2) on CIFAR-10. Resnet-32 is the
substitute model and Resnet-56 is the target model.

AUC-scores (10~2) under the black-box threat model. We use the adversarial
examples crafted on Resnet-32 to feed to Resnet-56



