

Efficient Learning of Generative Models via Finite-Difference Score Matching

Introduction

Energy-based model is flexible:

$$p(x) = \frac{\exp(-E(x))}{Z}, Z = \int \exp(-E(x))dx, \qquad \mathcal{J}_{\text{FD-SSM}}(\theta)$$

And can be trained by Score Matching (SM):

$$\mathcal{J}_{SM}(\theta) = E_{p_D(x)} \left[\frac{1}{2} \left| \left| \nabla_x \log p(x) \right| \right|_2^2 + tr(\nabla_x^2 \log p(x)) \right].$$

1st order derivatives 2nd order derivatives

However, higher order derivatives in deep learning is computational expensive:

We propose using Finite Difference (FD) to approximate higher derivatives.

Methodology

There existing a set of coefficients $\{\gamma_i\}_{i=1:T+1}$ and $\{\beta_i\}_{i=1:T+1}$, such that:

$$\frac{\partial^T}{\partial v^T} \mathcal{L}_{\theta}(x) = \frac{T!}{\epsilon^T} \sum_{i=1}^{T+1} \beta_i \mathcal{L}_{\theta}(x+\gamma_i v) + o(1).$$

The 1st order and 2nd order derivatives is given as:

$$\begin{cases} v^{\top} \nabla_{x} \mathcal{L}_{\theta}(x) = \epsilon \frac{\partial}{\partial v} \mathcal{L}_{\theta}(x) = \frac{1}{2} \mathcal{L}_{\theta}(x+v) - \frac{1}{2} \mathcal{L}_{\theta}(x-v) + o(\epsilon^{2}); \\ v^{\top} \nabla_{x}^{2} \mathcal{L}_{\theta}(x)v = \epsilon^{2} \frac{\partial^{2}}{\partial v^{2}} \mathcal{L}_{\theta}(x) = \mathcal{L}_{\theta}(x+v) + \mathcal{L}_{\theta}(x-v) - 2\mathcal{L}_{\theta}(x) + o(\epsilon^{3}) \end{cases}$$

Primary Contacts: Tianyu Pang (pty17@mails.tsinghua.edu.cn), Kun Xu (kunxu.thu@gmail.com); Code: https://github.com/taufikxu/FD-ScoreMatching

Our contributions:

- With theoretical guaranteed consistency
- Accelerate score matching method
- Dat

Ima

Tianyu Pang^{*1}, Kun Xu^{*1}, Chongxuan Li¹, Yang Song², Stefano Ermon², and Jun Zhu¹ ¹Department of Computer Science and Technology, Tsinghua University ²Department of Computer Science, Stanford University

And the corresponding FD-SSM objective function is:

An approximation of higher order derivatives with

linear time and memory complexity

Experimental Results

FD-SM on deep EBM: Out-of-distribution Detection						
Dataset	Algorithm	Time	SVHN	CIFAR	ImageNet	
SVHN	DSM	673 ms	0.49	1.00	0.99	
	FD-DSM	305 ms	0.50	1.00	1.00	
CIFAR	DSM	635 ms	0.91	0.49	0.79	
	FD-DSM	311 ms	0.92	0.51	0.81	
ImageNet	DSM	1125 ms	0.95	0.87	0.49	
	FD-DSM	713 ms	0.95	0.89	0.49	

00126501 2620764 2605959

Deep EBM on MNIST: Consistent performance with better time & memory usage

	Algorithm	SM loss	Time	Mem.
	DSM	-9.47×10^4	282 ms	3.0 G
$(\epsilon).$	FD-DSM *	-9.24×10^4	191 ms	3.2 G
	FD-DSM	-9.27×10^4	162 ms	2.7 G
	SSM	-2.97×10^{7}	673 ms	5.1 G
	SSMVR	-3.09×10^{7}	670 ms	5.0 G
	FD-SSM *	-3.36×10^{7}	276 ms	3.7 G
	FD-SSM	-3.33×10^7	230 ms	3.4 G

Generated results of deep EBM

MNIST

Fashion-MNIST

CelebA

Learning curve of FD-SM vs. SM