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Abstract
It is important yet challenging to perform accurate
and interpretable time series forecasting. Though
deep learning methods can boost the forecasting ac-
curacy, they often sacrifice interpretability. In this
paper, we present a new scheme of series saliency
to boost both accuracy and interpretability. By ex-
tracting series images from sliding windows of the
time series, we design series saliency as a mixup
strategy with a learnable mask between the se-
ries images and their perturbed versions. Series
saliency is model agnostic and performs as an adap-
tive data augmentation method for training deep
models. Moreover, by slightly changing the objec-
tive, we optimize series saliency to find a mask for
interpretable forecasting in both feature and time
dimensions. Experimental results on several real
datasets demonstrate that series saliency is effective
to produce accurate time-series forecasting results
as well as generate temporal interpretations.

1 Introduction
Time series forecasting is an important task with wide appli-
cations. Traditional parametric models often have a shallow
architecture (e.g., [Box and Jenkins, 1976; Harvey, 1990]).
By adopting some explicit assumptions, such methods are
easy-to-interpret, but their predictive capabilities are often
limited. Deep architectures have become increasingly pop-
ular for time-series [Gamboa, 2017], including recurrent
neural networks (RNN), nonlinear autoregressive exogenous
neural network (NARX) [Chen et al., 1990], long-short term
memory (LSTM) [Hochreiter and Schmidhuber, 1997], gated
recurrent unit (GRU) [Chung et al., 2014] and neural at-
tention methods. Though effective in improving forecast-
ing accuracy, deep models are hard to interpret the out-
puts [Castelvecchi, 2016], which may hinder their applica-
tions to high stakes applications (e.g., healthcare) where reli-
able interpretation is crucial. Though much progress has been
made on interpreting deep visual or language models [Samek
et al., 2019], it is relatively unexplored to develop both ac-
curate and interpretable methods for multivariate time series
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forecasting, where the 2D time-feature format imposes new
challenges.

Existing work often considers either the time or feature
domain, or treats them separately via a two-stage method.
For example, some attempts have been made to apply the
interpretation methods for general neural networks, such as
LIME [Ribeiro et al., 2016], DeepLift [Shrikumar et al.,
2017] and Shap [Lundberg and Lee, 2017]. They use gra-
dient information to extract feature information for single-
time forecasts after the back-propagation training, thereby
ignoring the crucial temporal information and insufficient
for forecasting interpretation [Mitrea et al., 2009]. An-
other type of solutions transfers the attention methods from
the fields of language or vision [Bahdanau et al., 2014;
Vaswani et al., 2017; Assaf et al., 2019; Shih et al., 2019].
However, the attention values for explaining RNNs or CNNs
are calculated via the relative importance of the different time
steps and there are concerns that they are based on the in-
termediate feature importance instead of model interpreta-
tions [Serrano and Smith, 2019]. More recently, Ismail et
al. [Ismail et al., 2020] develop a two-stage saliency approach
that decouples the time dimension and feature dimension,
thereby may lead to sub-optimal solutions.

In this work, we present a new strategy of series saliency to
boost both forecasting accuracy and interpretability of deep
time series models, by considering the time and feature di-
mensions in a coherent manner. As shown in Fig. 1, we con-
sider multivariate time series as a set of window × feature
series images, and design series saliency as a masked mixup
between series images and their perturbed versions, where the
mask is a learnable matrix. Series saliency is model agnos-
tic and can be used as an effective data augmentation method
to boost the accuracy of deep forecasting models, where the
augmentation strategy is learnable and adaptive, thereby dif-
ferent from the common augmentation methods (e.g., [Iwana
and Uchida, 2020]) that typically apply some pre-fixed oper-
ations on a given training set. Furthermore, by simply chang-
ing the objective function, we can optimize the series saliency
module to find a mask (i.e., heatmap) that identifies impor-
tant regions for forecasting, thereby boosting interpretability.
We present both quantitative and qualitative results on sev-
eral typical time series datasets, which show that our method
achieves better (or comparable) forecasting results and mean-
while provides temporal interpretations for the forecasts.
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Figure 1: (Left): multivariate time series and the corresponding temporal saliency map, where we extract series images from the multivariate
time series, and each series image is associated with a temporal saliency map to identify the informative features for forecasting; (Right):
the proposed series saliency module, where for each series image we perturb the original series to obtain the reference series image, and the
series image and its perturbed version are mixed up by the series saliency map.

2 Methods
We now present our method in detail, which consists of a
series saliency module and its use in both training and inter-
pretation phases.

2.1 Setup and Notations
As shown in Fig. 1, multivariate time series data are spatio-
temporal with two dimensions – time and feature. Formally,
we use S to denote a series of observed time series signal:

S = [s1, s2, · · · , st, · · · ], (1)

where st ∈ RD denotes the feature vector with dimension D
at time t. For every time step t, we aim to predict the future
value st+τ after a given horizon τ . The horizon is chosen
according to the forecasting task settings. For example, for
the traffic usage, the horizon τ of interest ranges from an hour
to a day; while for the stock market data, even a second or
minute ahead forecasting can be meaningful for generating
returns. Besides forecasting accuracy, we are also interested
in interpretation: which features contribute most and which
contributes least for the final forecast predictions?

As stated above, traditional statistical methods (e.g., [Box
and Jenkins, 1976] and [Harvey, 1990]) are easy to inter-
pret by making some explicit model assumptions that can ex-
tract interpretations directly from the learned model param-
eters, while they are often limited in forecasting accuracy.
In contrast, recent progress on deep learning methods leads
to superior prediction capabilities [Goodfellow et al., 2016],
however, they are hard to interpret since the deep model as-
sumptions are stacked with multiple non-linear activation or
blocks.

A key part of an effective model for multivariate time se-
ries forecasting would be the capability on handling the in-
formation from both time and feature dimensions in a co-
herent manner. Recent work develops an attention-based

scheme [Assaf et al., 2019; Shih et al., 2019], which intro-
duces an attention map to “selectively” combine time-feature
information (see Fig. 2 (left)), with the primary focus on inter-
pretation. However, as pointed out in [Ismail et al., 2020], the
attention-based methods can be insufficient for interpreting
multivariate time-series data. We develop a new scheme of
series saliency, which is model-agnostic and can boost both
forecasting accuracy and interpretation, as detailed below.

2.2 Series Saliency
We develop series saliency by drawing inspirations from
the saliency maps [Dabkowski and Gal, 2017] in computer
vision. However, unlike previous work on saliency maps
that mainly focuses on interpetability of deep models, series
saliency is beneficial for improving both forecasting accu-
rarcy and interpretation for time-series data.

Specifically, to consider the time-feature information
jointly, we first represent the multivariate time series as a set
of 2D series images. As shown in Fig. 1, each series image
corresponds to a part of the multivariate time series within a
given time window. Formally, let T be the window size. We
simply set the value of T for various datasets with 2 periodic
patterns (e.g., p = 48 for hourly electricity consumption). A
series image is represented as a matrix X ∈ RD×T , of which
each row corresponds to one feature dimension in the multi-
variate time series. Then, we follow the perturbation strategy
in the smallest destroying region (SDR) principle [Dabkowski
and Gal, 2017] to design the series saliency scheme. We de-
fine a reference series image X̂ by adding noise or Gaussian
blur on each element of the original series image X:

x̂t,i =

{
xt,i + ϵσ1 noise
gσ2(xt,i) blur , (2)

where ϵσ1 ∼ N (µ, σ2
1) is a Gaussian noise and gσ2 is

a Gaussian blur kernel on element xt,i with the maximum
isotropic standard deviation σ2.
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Train Interpretation

Figure 2: The training and interpretation phases with series saliency. Best viewed in color.

In time series data, each series can be composed of
three parts — trend, seasonality and residual [Hyndman and
Athanasopoulos, 2018]. As shown in [Hyndman and Athana-
sopoulos, 2018], blurring is helpful to extract the trend infor-
mation of a time series, and adding some noise can enhance
the local information. When the amount of injected noise or
blurring is small, the reference series images can be treated
as data augmentation in the time domain [Iwana and Uchida,
2020] to learn deep models. However, if the noise (or blur-
ring) is not set properly (e.g., too large), the noise (or blur-
ring) will introduce irregular roughness to cover the original
series, making it difficult for DNNs to learn temporal patterns
in reference data.

To relieve the sensitivity over noise (or blurring), the series
saliency module further introduces a learnable mask M ∈
[0, 1]D×T and selectively combines the reference series im-
age and the original one:

X̃ = M ⊙ X̂ + (E −M)⊙X, (3)

where E is the matrix with all elements be the unit one. As
illustrated in Fig. 1, in such a design, the series saliency mod-
ule can generate data (i.e., X̃) that cover the unexplored in-
put space while maintaining the important characteristics of
the original series image (i.e., X). As we shall see, series
saliency is an effective data augmentation strategy for train-
ing deep models and it is learnable.

Besides augmenting the data for improving training, series
saliency can also be used for interpretation by simply chang-
ing the objective to be optimized. We defer the details to
Section 2.4 after presenting the training procedure.

2.3 Training with Series Saliency
With the series saliency module, we now present the entire
model architecture and its training details. One essential
problem in deep learning models is that the scale of the out-
puts is not sensitive to the scale of inputs. In specific real
time series datasets, the scale of input data often changes in a
non-periodic manner, which can significantly lower the fore-

casting accuracy of deep learning models. We propose to de-
compose the final prediction into a linear part, which primar-
ily focuses on the local scaling issue, plus a non-linear part
containing complex temporal patterns. Fig. 2 (left) shows
the dual-path architecture — a nonlinear deep learning (DL)
module and a linear auto-regressive (AR) module.

The original series images X are converted to the pro-
cessed versions X̃ by our proposed module, and then X̃ are
fed into the DL module to obtain y(r). Here, the DL mod-
ule can be any time series network, e.g., convolution neural
networks, recurrent neural networks, Long short-term mem-
ory (LSTM) [Hochreiter and Schmidhuber, 1997], long- and
short-term temporal pattern neural network (LSTNet) [Lai
et al., 2018] and Self-Attention encoder [Vaswani et al.,
2017] (see experiments for details). For the linear part, we
choose an auto-regressive model and denote its result as y(o):

y(o) =
p∑

k=0

W⊤
k yt−k + b, (4)

where p is the order of the AR model, Wk ∈ RD and b ∈ R
are its coefficients. p can be determined for various datasets
with periodic patterns (e.g., p = 24 for the hourly electricity
consumption). In our experiments, we empirically searched a
good p through validation. The final forecasting is obtained
by combining the outputs of both DL and AR:

ŷ = y(o) + y(r). (5)

Let N be the number of series images in the training set
and φ = {θ,W, b} denote all the unknown parameters. For
notation simplicity, we will use yi to denote the ground-truth
forecasting result of Xi at a particular horizon. We adopt
stochastic gradient descent (SGD) to jointly optimize over φ
and M . Specifically, at each iteration, we draw a mini-batch
B = {(Xi, yi)}ni=1 with size n. Our loss function ℓ(φ,M)
consists of two parts. First, for each (Xi, yi) ∈ B, we follow
the diagram in Fig. 2 to get the prediction ŷi (a function of
both φ and M ) via Eq. (5), and accumulate the squared error
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∥ŷi − yi∥2 into the loss ℓ(φ,M). Second, to fully leverage
the training set, we also send the original series image Xi

into both the DNN and AR model (i.e., bypassing the series
saliency module in Fig. 2 to get another prediction ŷ′i (a func-
tion of φ only) via Eq. (5), and accumulate the squared error
∥ŷ′i − yi∥2 into the loss ℓ(φ,M). Our overall training ob-
jective is to minimize a regularized version of loss ℓ(φ,M):

L1(φ,M) = ℓ(φ,M) + λ1ℓm(M) + λ2ℓr(M), (6)
where ℓm(M) and ℓr(M) are regularization terms on the
mask M , λ1 and λ2 are the corresponding coefficients.

The effect of the regularizer ℓm(M) is to control the
amount of perturbation. As stated before, if M is close to
E, the reference series image will dominate and may degen-
erate the performance. To discourage such degenerating case,
we choose the common 2-norm, i.e., ℓm(M) = ∥M∥2.

The design of ℓr(M) is a bit more subtle. Note that a key
difference exists between our series images and the natural
images in computer vision — the rows (i.e., features) of series
images are permutable without affecting the content, while
switching the rows of a nature image would destroy its se-
mantic meaning. In our case, we would expect the feature
importance matrix M to be row-wisely orthogonal. There-
fore, we define the regularizer term ℓr(M):

ℓr(M) = ∥MM⊤ − I∥F , (7)
where I is the identity matrix and ||·||F is the Frobenius norm.
Such orthogonality is beneficial for interpretation, and can
boost the training as well (see ablation study in Section 3.2).

With the overall objective L1, we use back-propagation to
calculate its gradient and apply SGD to update (φ,M). We
would like to highlight a key difference from the traditional
data augmentation [Iwana and Uchida, 2020]. Unlike the tra-
ditional methods, which typically augment the data for once
with some pre-fixed strategies (e.g., perturbation with a fixed
noise), our augmentation strategy is adaptive by iteratively
updating the mask M of the series saliency module. Such a
scheme makes the model to better focus on informative parts
that are good for forecasting, as we shall see in experiments.

2.4 Interpretation with Series Saliency
Now, we show that with the series saliency module, we can
easily derive an interpretation strategy for forecasting.

Let X∗ be the a series image in the testing set with ground-
truth forecasting y∗ at a particular horizon τ . Let φ∗ de-
note the optimal parameters of the DNN and AR models after
training. We follow the diagram in Fig. 2 to get the prediction
ŷ∗ (a function of M ) via Eq. (5), and calculate the squared er-
ror ∥ŷ∗ − y∗∥2. The goal of interpretation is to find the most
salient evidence that influences the model performance mea-
sured by square error. In series saliency, the most salient fea-
ture regions are found by identifying the highly representative
mask, which summarizes compactly the effect of deleting fea-
ture regions, either setting values to zeros or Gaussian noise,
to explain the behaviour of the DL part. For the AR part, the
weights are easy-to-interpret because of its linearity [Hynd-
man and Athanasopoulos, 2018]. On the other hand, the AR
part mainly assists DL models to address the local scaling is-
sue, so it is not essential to focus on the explanation of the AR

part. Formally, we formulate interpretation as minimizing the
following objective:

L2(M ;X∗) = −∥ŷ∗ − y∗∥2 + λ1ℓm(M) + λ2ℓr(M), (8)

where ℓm(M) and ℓr(M) are the same regularization terms
as in training. Then, we use back-propagation to calculate
the gradient of L2 and apply SGD to update M only. Af-
ter convergence, the optimal M provides an interpretation of
important features for forecasting on instance X∗.

3 Experiments
We now present experimental results by comparing the per-
formance of four widely-used deep learning models with
and without the proposed series saliency module on various
datasets. We also give an ablation study on the mask and AR
model components. Then we show extensive qualitative re-
sults on how saliency heatmaps interpret the forecasts.

3.1 Experimental Setting
(1) Datasets: We use three time series datasets electricity,
Air-quality, Industry data The three datasets are representa-
tive (from difficult to easy). (2) Metrics: We use two evalua-
tion metrics, namely relative squared error (RSE) and empiri-
cal correlation coefficient (CORR). For RSE, lower values are
better, while for CORR higher values are better. The datasets
and the metrics have been widely used in many papers about
time series forecasting (e.g., LSTNet, TPA-LSTM) [Lai et
al., 2018; Shih et al., 2019]. (3) Deep Learning Module:
We use four state-of-the-art architectures for comparison (i.e.,
CNN, GRU+Attention, LSTNet and Self-Attention encoder).
These four deep learning models achieve superior forecast-
ing performance and in the following results they are used as
the deep learning module to get interpreted by the proposed
series saliency method.

3.2 Results on Forecasting
Table 1 presents the CORR values of various methods on the
three datasets with different forecasting horizons. We can see
that using the series saliency module can boost the forecasting
accuracy of various deep models on the Air quality dataset,
especially when the forecasting horizon is large. This is be-
cause the model complexity increases with the horizon, and
data augmentation may help explore more useful temporal
information. We also observe that among all the deep archi-
tectures in comparison, the Self-Attention encoder with the
series saliency gives the best performance in most settings,
mainly because of the powerful representation capability of
the transformer encoder model. Therefore, in the sequel, we
will use the Self-Attention encoder as the main architecture
to do further analysis.

Ablation Study
We now present an ablation study to demonstrate the effec-
tiveness of our design components, including regularization
terms and and the auto-regressive path in our architecture.

First, we examine how the auto-regressive module helps on
the forecasting when series saliency (i.e., data augmentation)
is used. We compare the following variants:
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Air Quality Industry Electricity
Methods τ = 3 τ = 6 τ = 12 τ = 3 τ = 6 τ = 12 τ = 3 τ = 6 τ = 12

CNN 0.775 ± 0.003 0.701 ± 0.001 0.636 ± 0.001 0.919 ± 0.022 0.909 ± 0.019 0.841 ± 0.008 0.883 ± 0.004 0.871 ± 0.002 0.866 ± 0.004
GRU 0.804 ± 0.003 0.712 ± 0.002 0.639 ± 0.003 0.953 ± 0.003 0.936 ± 0.013 0.904 ± 0.011 0.878 ± 0.001 0.877 ± 0.003 0.867 ± 0.002

LSTNet 0.777 ± 0.001 0.708 ± 0.004 0.624 ± 0.004 0.949 ± 0.004 0.934 ± 0.003 0.876 ± 0.011 0.922 ± 0.004 0.913 ± 0.002 0.906 ± 0.002
SA 0.813 ± 0.002 0.722 ± 0.003 0.643 ± 0.003 0.961 ± 0.002 0.942 ± 0.005 0.905 ± 0.009 0.919 ± 0.007 0.907 ± 0.001 0.902 ± 0.003

CNN w/ SS 0.779 ± 0.005 0.723 ± 0.009 0.641 ± 0.007 0.941 ± 0.006 0.927 ± 0.004 0.881 ± 0.001 0.898 ± 0.004 0.893 ± 0.002 0.892 ± 0.007
GRU w/ SS 0.809 ± 0.003 0.716 ± 0.012 0.649 ± 0.003 0.955 ± 0.001 0.935 ± 0.002 0.912 ± 0.003 0.905 ± 0.004 0.889 ± 0.008 0.878 ± 0.003

LSTNet w/ SS 0.794 ± 0.008 0.724 ± 0.002 0.641 ± 0.003 0.959 ± 0.004 0.938 ± 0.001 0.901 ± 0.002 0.928 ± 0.003 0.918 ± 0.003 0.907 ± 0.001
SA w/ SS 0.819 ± 0.003 0.732 ± 0.009 0.658 ± 0.001 0.965 ± 0.003 0.955 ± 0.016 0.916 ± 0.004 0.923 ± 0.003 0.915 ± 0.001 0.911 ± 0.002

Table 1: The CORR values of various methods on air quality, industry and electricity datasets when horizon τ = {3, 6, 12}. Best performance
in boldface. We report the mean and standard deviations in ten runs.

• w/ SS: The model in Fig. 2 with series saliency (SS).
• w/o SS: The model in Fig. 2, but without series saliency;
• w/o AR: The model in Fig. 2 with series saliency, but

without the auto-regressive component.
Fig. 3 (left) shows the results. We do not use any perturba-
tion in w/o SS. We can see that both the series saliency (i.e.,
adaptive data augmentation) and the auto-regressive modules
are helpful to boost the performance — dropping either one
would lead to degenerated performance.

Second, we do a finer investigation on the effects of the
regularization terms in learning the series saliency module
during training. We compare the following variants:

• w/o SS: The model in Fig. 2, but without the series
saliency module (i.e., no data augmentation);

• Fixed augmentation: Augment the series images for
once with some prefixed strategies (perturbation with a
fixed noise) [Iwana and Uchida, 2020].

• Type1: The entire model in Fig. 2 trained by minimizing
the loss only (i.e., without ℓr and ℓm).

• Type2: The entire model in Fig. 2 trained by minimizing
the loss with ℓm regularizer (i.e., without ℓr).

• w/ SS: The entire model in Fig. 2 trained with both ℓr
and ℓm regularizers as in Eq. (6).

Fig. 3 (right) shows the results. Again, we can see that
series saliency can boost the forecasting results (i.e., higher
CORR). Also, being an adaptive strategy, series saliency is
more effective for training deep models than the pre-fixed
data augmentation method [Iwana and Uchida, 2020]. The
regularizer term ℓm has little effect on improving the model
performance, while ℓr is much more influential. By consider-
ing the decouple of feature importance in time series help the
neural networks understand time series data accurately.

3.3 Results on Interpretation
We present both qualitative and quantitative results.

Qualitative Analysis
We apply the series saliency methods with the Self-Attention
encoder model on the air quality dataset. Fig. 5 visualizes the
learned mask component when forecasting the selected future
value with horizon τ = 6. As the color bar shows, from blue
to red means that the features become more and more impor-
tant. We can see that the features from time interval [20, 30]
have the largest saliency, which corresponds to the extreme

Figure 3: The CORR values of various methods on the air quality
dataset with horizon τ = 6.

low value in feature 1 representing the concentration of CO
and high value in feature 5 representing the concentration of
benzene.

We also visualize the correspondence between saliency
mask, the original time series data and the data frequencies
on the electricity dataset. Fig. 4 shows the results. We can
see that the data of channel 250 has the high value of the
saliency mask and reflects a periodic structure (top left in
Fig. 4). In contrast, the data of channel 36 has the low value
of the saliency mask and reflects a relatively acylic structure
(top right in Fig. 4). Furthermore, to prove the periodicity
of our selected a channels, we map the corresponding feature
to a frequency domain by a fast fourier transform procedure
(FFT) [Nussbaumer, 1981] and show the frequency result be-
low the data of the two channels.

Quantitative Comparison
Finally, similar as in [Ismail et al., 2020], we present a quan-
titative metric to evaluate the interpretability for time series
forecasting and compare with various baselines.

Specifically, for each testing example X , we use a given in-
terpretation method to generate the feature importance map,
and select the top k features. Then, we add the random Gaus-
sian noise on the selected features, and feed the perturbed ver-
sion into the pretrained model for forecasting. Given a testing
set, we calculate the corresponding CORR value. We change
the value of k = [10%, ..., 90%], and obtain the decreasing
CORR curve with different k (i.e., different perturbation lev-
els). Finally, we calculate the area under the CORR curve as
the quantitative metric and denote it by AUCORR. The lower
AUCORR values mean that we select the more important fea-
tures ßand the interpretation method is more effective.

We compare with a wide range of baselines includ-
ing Grad [Baehrens et al., 2010], DeepLift [Shrikumar et
al., 2017], feature ablation [Suresh et al., 2017], Occlu-
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Figure 4: Saliency visualization on the electricity dataset with horizon τ = 6 and T = 120. Note that feature 250 corresponding to higher
salient region is often periodic, while feature 36 corresponding to weaker salient region is acyclic. Best viewed in color.

Figure 5: Correspond interpretable region in temporal saliency map.
The series saliency is visualized on the air quality data with fore-
casting horizon τ = 6 (Best viewed in color).

sion [Zeiler and Fergus, 2014], Shapely sampling [Castro et
al., 2009] and attention [Petersen and Posner, 2012]. Also, to
examine the effect of regularizers in interpretation, we con-
sider the following variants of our method:

• w/ SS: The model in Fig. 2 interpreted with both ℓr and
ℓm regularizers as in Eq. (8);

• Type1: The model in Fig. 2 interpreted by minimizing
the loss L2 only (i.e., without ℓr and ℓm);

• Type2: The model in Fig. 2 interpreted by minimizing
the loss L2 with ℓr regularizer (i.e., without ℓm).

Table 2 and Fig. 6 show the results. We can see that the
series saliency map by our method can obtain the best quanti-
tative interpretation results compared to those by other inter-
pretation results (e.g., DeepLift and attention). Moreover, the
two regularization terms ℓm and ℓr are useful to improve the
interpretation results. In general, although we can’t guarantee
any selected future values will have the representative inter-
pretation in qualitative analysis (e.g., Fig. 5), the performance
of our method is quantitatively superior to other competitors.

Figure 6: CORR curves of Self-Attention encoder for industry data
with horizon τ = 6. Best performance in boldface

4 Conclusions
We present a novel scheme of series saliency to boost both
accuracy and interpretability for multivariate time series fore-
casting. By extracting series images from sliding windows of
the time series, we design series saliency as a mixup approach
with a learnable mask defined on the series images and their
perturbed versions. Series saliency acts as an adaptive data
augmentation method for training deep models, and mean-
while by slightly changing the objective, it can be optimized
to find a mask for interpretable forecasting in both feature and
time dimensions. Experimental results show the superiority
of series saliency over various baselines.
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A Details of Datasets
Electricity The UCI electricity load diagrams dataset [Mitrea et al., 2009] contains 370 customer power consumption per
unit time. There is no missing value in this dataset, recording the power consumption per 15 minutes (KWH) from 2011 to
2014. Each column of the data represents a customer (370 columns in total), each row represents a quarter (140,256 rows in
total), and all time labels are subject to Portuguese time.
Air-Quality The Air-Quality dataset [UCI, 2006] contains 9,358 instances of hourly averaged responses from an array of 5
metal chemical sensors embedded in Air quality Device. Data was recorded from March 2004 to February 2005 (one year).
The device was located on the field in a significantly polluted area.
Industry data The data of Hangseng Stock Composite Index (HSCI) and another eleven industry stock indices are obtained
from the Wind platform. Eleven industry stock indices include consumer good manufacturing, consumer service, energy,
finance, industry, information technology, integrated industry, raw material, real estate, and utilities. The dataset covers the
time period from September 2006 up to September 2019.

Datasets T D L

Electricity 26,304 321 1 hour
Air-Quality 9,358 12 1 hour
Industry Stock Composite Index 3,205 12 1 day

Table 3: Dataset statistics, where T is length of time series or data size, D is the number of variables, and L is the sample rate. The three
datasets are representative (from easy to difficult). The sample rate ranges from hour to day, and the dimension is from 12 to 321.

B Metric Description
We choose two widely used metrics to measure the performance on multivariate time series forecasting datasets. The first one
is the root relative squared error (RSE), which is the scaled version of the widely used Root Mean Square Error (RMSE) to
remove the influence of data scale:

RSE =

qPt1
t=t0

Pn
i=1(yt,i � ˆyt,i)2

qPt1
t=t0

Pn
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2
(9)

The second metric is the empirical correlation coefficient (CORR), and the CORR is the measure of correlation between actual
and forecast variables in time series.
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where y and ŷ are the ground truth and the predicted value, respectively. y denotes the mean of set y values within a given set
(e.g., testing set). For RSE, the lower the better, whereas for CORR, the higher the better. These datasets and the metrics of
RSE and CORR have been widely used in many papers about time series forecasting.

C Detailed Experimental Settings
C.1 Base module
The four state-of-art deep learning methods for comparison are CNN, GRU, LSTNet and Self-Attention encoder, as detailed
below:

• CNN : Convolutional nerual network [Goodfellow et al., 2016] was designed to ensure only past information for forecast-
ing. We use 7-layer CNN to do time series forecasting.

• GRU + Attention: GRU [Chung et al., 2014] had been used in time series forecasting and combined with attention to
improve interpretability.

• LSTNet : LSTNet [Lai et al., 2018] is a model using CNN and RNN for multivariate time series forecasting. The architec-
ture uses convolutional network and the Recurrent Neural Network (RNN) to extract short-term local dependency patterns
among variables and to discover long-term patterns for time series trends.

• Self-Attention encoder: Transformer-based [Vaswani et al., 2017] architecture has been modified for forecasting. We
design a variant of Transformer with encoder-only structure which consists of L blocks of multi-head Self-Attention
layers and position-wise feed forward layers.



C.2 Hyperparameters
Since the model structure is universal for all methods, we adjust the same optimal hyperparameters on the training data. Firstly,
we use the Adam algorithm for the optimization with learning rate 10�4 and weigth decay 10�3. For data preprocessing, we
scale the data into the range [0, 1] by batch normalization to avoid extreme values and improve the computation stability. We
set �1 = 10�3 and �2 = 10�3 in both L1 and L2. We select the batch size according to the size of each dataset (either 64 or
128).

D Forecasting Visualization and Interpretation Features on More Datasets
Because the Self-Attention encoder obtains the best performance, we evaluate the forecasting results of Self-Attention encoder
visually in series saliency on all the three datasets. As shown in Fig.s 7,8,9, our method gives accurate forecasts. The proposed
model clearly yields better forecasts around the flat line after the peak and in the valley.

horizon=3

horizon=6

horizon=12

Figure 7: Prediction results for self-attention encoder in series saliency on air quality with horizon ⌧ = {3, 6, 12} and window size T = 64.
The feature is the true hourly averaged concentration CO in mg/m3

Because the Self-Attention encoder obtains the best performance, we visualize the series saliency on other datasets, including
the air quality and industry stock composite index, for horizon ⌧ = 6. As shown in Fig. 10 and Fig. 11, we could analyze the
series saliency and obtain the corresponding feature importance.



horizon=3

horizon=6

horizon=12

Figure 8: Prediction results for Self-Attention encoder in series saliency on electricity with horizon ⌧ = {3, 6, 12} and window size T = 168.
The feature is power consumption of No.7 powerplant. The model learned the periodicity of electricity data.

horizon=3

horizon=6

horizon=12

Figure 9: Prediction results for Self-Attention encoder in series saliency on industry stock indicies with ⌧ = {3, 6, 12} and window size
T = 168. The feature is No.1 stock indicies of Hangseng Stock Composite Index.



Figure 10: Series saliency for Self-Attention encoder on industry stock indicies with horizon ⌧ = 6 and window size T = 64. The highlighted
area corresponds to the dramatic change in the industry stock indices. The phenomenon shows that the stock indices influences the forecasting
greatly.
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Figure 11: Series saliency for Self-Attention encoder on air quality with horizon ⌧ = 6 and window size T = 64. The highlighted area
corresponds that benzene increases sharply in air quality. As you known, benzene is harmful, which impacts air quality greatly.



E Empirical results
The full set of results (including RSE and CORR) is shown in Table 4 and Table 5. We ran the experiments for 10 times and
present the full results (mean and standard deviations).

Air Quality Industry Electricity
Methods ⌧ = 3 ⌧ = 6 ⌧ = 12 ⌧ = 3 ⌧ = 6 ⌧ = 12 ⌧ = 3 ⌧ = 6 ⌧ = 12

CNN 0.775 ± 0.003 0.701 ± 0.001 0.636 ± 0.001 0.919 ± 0.022 0.919 ± 0.019 0.841 ± 0.008 0.883 ± 0.004 0.871 ± 0.002 0.866 ± 0.004
GRU 0.804 ± 0.003 0.712 ± 0.002 0.639 ± 0.003 0.953 ± 0.003 0.936 ± 0.013 0.904 ± 0.011 0.878 ± 0.001 0.877 ± 0.003 0.867 ± 0.002

LSTNet 0.777 ± 0.001 0.708 ± 0.004 0.623 ± 0.004 0.949 ± 0.004 0.934 ± 0.003 0.876 ± 0.011 0.922 ± 0.004 0.913 ± 0.002 0.906 ± 0.002
Self-Attention 0.813 ± 0.002 0.722 ± 0.003 0.643 ± 0.003 0.961 ± 0.002 0.942 ± 0.005 0.905 ± 0.009 0.919 ± 0.007 0.907 ± 0.001 0.902 ± 0.003
CNN w/ Type1 0.765 ± 0.002 0.712 ± 0.001 0.637 ± 0.003 0.923 ± 0.006 0.921 ± 0.002 0.835 ± 0.001 0.889 ± 0.002 0.882 ± 0.007 0.876 ± 0.001
GRU w/ Type1 0.807 ± 0.004 0.713 ± 0.005 0.642 ± 0.011 0.959 ± 0.009 0.926 ± 0.002 0.905 ± 0.012 0.883 ± 0.001 0.879 ± 0.006 0.869 ± 0.003

LSTNet w/ Type1 0.788 ± 0.001 0.683 ± 0.002 0.643 ± 0.002 0.952 ± 0.007 0.931 ± 0.001 0.879 ± 0.006 0.922 ± 0.001 0.912 ± 0.005 0.906 ± 0.008
SA w/ Type1 0.814 ± 0.001 0.717 ± 0.005 0.639 ± 0.004 0.963 ± 0.003 0.949 ± 0.003 0.907 ± 0.001 0.919 ± 0.007 0.908 ± 0.004 0.903 ± 0.003

CNN w/ Type2 0.764 ± 0.001 0.721 ± 0.002 0.639 ± 0.003 0.944 ± 0.005 0.924 ± 0.003 0.864 ± 0.007 0.891 ± 0.001 0.891 ± 0.003 0.882 ± 0.006
GRU w/ Type2 0.808 ± 0.004 0.710 ± 0.001 0.641 ± 0.003 0.957 ± 0.008 0.939 ± 0.007 0.911 ± 0.003 0.899 ± 0.002 0.883 ± 0.007 0.877 ± 0.005

LSTNet w/ Type2 0.791 ± 0.003 0.704 ± 0.001 0.645 ± 0.004 0.956 ± 0.007 0.934 ± 0.008 0.887 ± 0.002 0.924 ± 0.003 0.916 ± 0.003 0.904 ± 0.008
SA w/ Type2 0.814 ± 0.001 0.729 ± 0.006 0.646 ± 0.005 0.954 ± 0.002 0.953 ± 0.003 0.914 ± 0.002 0.926 ± 0.003 0.911 ± 0.001 0.903 ± 0.003
CNN w/ SS 0.779 ± 0.005 0.723 ± 0.009 0.641 ± 0.007 0.941 ± 0.006 0.927 ± 0.004 0.881 ± 0.001 0.898 ± 0.004 0.893 ± 0.002 0.892 ± 0.007
GRU w/ SS 0.809 ± 0.003 0.716 ± 0.012 0.649 ± 0.003 0.955 ± 0.001 0.935 ± 0.002 0.912 ± 0.003 0.905 ± 0.004 0.889 ± 0.008 0.878 ± 0.003

LSTNet w/ SS 0.794 ± 0.008 0.724 ± 0.002 0.641 ± 0.003 0.959 ± 0.004 0.938 ± 0.001 0.901 ± 0.002 0.928 ± 0.003 0.918 ± 0.003 0.907 ± 0.001
SA w/ SS 0.819 ± 0.003 0.732 ± 0.009 0.658 ± 0.001 0.965 ± 0.003 0.955 ± 0.016 0.916 ± 0.004 0.923 ± 0.003 0.915 ± 0.001 0.911 ± 0.002

Table 4: Empirical CORR results of air quality, industry and electricity when horizon ⌧ = {3, 6, 12}. Best performance in boldface. We
report the mean and standard deviations in ten runs. For CORR, the higher the better.

Air Quality Industry Electricity
Methods ⌧ = 3 ⌧ = 6 ⌧ = 12 ⌧ = 3 ⌧ = 6 ⌧ = 12 ⌧ = 3 ⌧ = 6 ⌧ = 12

CNN 0.309 ± 0.001 0.362 ± 0.007 0.405 ± 0.002 0.162 ± 0.003 0.168 ± 0.006 0.208 ± 0.008 0.101 ± 0.004 0.105 ± 0.006 0.107 ± 0.004
GRU 0.312 ± 0.011 0.357 ± 0.012 0.397 ± 0.002 0.202 ± 0.006 0.192 ± 0.009 0.222 ± 0.001 0.119 ± 0.007 0.125 ± 0.005 0.132 ± 0.004

LSTNet 0.327 ± 0.003 0.362 ± 0.006 0.407 ± 0.008 0.181 ± 0.010 0.191 ± 0.005 0.228 ± 0.004 0.089 ± 0.001 0.098 ± 0.003 0.104 ± 0.006
Self-Attention 0.301 ± 0.002 0.353 ± 0.003 0.387 ± 0.008 0.147 ± 0.006 0.172 ± 0.007 0.186 ± 0.001 0.088 ± 0.008 0.095 ± 0.007 0.101 ± 0.010
CNN w/ Type1 0.303 ± 0.006 0.361 ± 0.002 0.401 ± 0.002 0.168 ± 0.005 0.161 ± 0.004 0.199 ± 0.005 0.099 ± 0.003 0.101 ± 0.005 0.103 ± 0.006
GRU w/ Type1 0.307 ± 0.009 0.342 ± 0.002 0.386 ± 0.005 0.185 ± 0.003 0.184 ± 0.004 0.214 ± 0.006 0.113 ± 0.009 0.119 ± 0.004 0.128 ± 0.009

LSTNet w/ Type1 0.314 ± 0.008 0.361 ± 0.008 0.399 ± 0.006 0.180 ± 0.007 0.189 ± 0.003 0.225 ± 0.002 0.088 ± 0.003 0.092 ± 0.005 0.099 ± 0.006
SA w/ Type1 0.298 ± 0.004 0.351 ± 0.002 0.366 ± 0.005 0.134 ± 0.006 0.169 ± 0.001 0.181 ± 0.002 0.086 ± 0.003 0.096 ± 0.005 0.097 ± 0.005

CNN w/ Type2 0.299 ± 0.003 0.355 ± 0.005 0.398 ± 0.004 0.158 ± 0.008 0.164 ± 0.006 0.196 ± 0.009 0.093 ± 0.003 0.099 ± 0.004 0.101 ± 0.001
GRU w/ Type2 0.301 ± 0.003 0.337 ± 0.002 0.356 ± 0.001 0.179 ± 0.004 0.187 ± 0.007 0.205 ± 0.006 0.109 ± 0.008 0.115 ± 0.003 0.119 ± 0.002

LSTNet w/ Type2 0.299 ± 0.007 0.356 ± 0.002 0.389 ± 0.001 0.178 ± 0.008 0.193 ± 0.005 0.222 ± 0.001 0.087 ± 0.011 0.093 ± 0.006 0.098 ± 0.005
SA w/ Type2 0.291 ± 0.001 0.348 ± 0.003 0.362 ± 0.006 0.125 ± 0.006 0.166 ± 0.001 0.178 ± 0.002 0.085 ± 0.002 0.091 ± 0.002 0.094 ± 0.001
CNN w/ SS 0.298 ± 0.007 0.351 ± 0.004 0.392 ± 0.001 0.153 ± 0.004 0.166 ± 0.002 0.191 ± 0.003 0.090 ± 0.002 0.103 ± 0.001 0.102 ± 0.004
GRU w/ SS 0.292 ± 0.004 0.323 ± 0.002 0.342 ± 0.006 0.177 ± 0.009 0.176 ± 0.007 0.199 ± 0.002 0.106 ± 0.008 0.112 ± 0.005 0.112 ± 0.009

LSTNet w/ SS 0.297 ± 0.009 0.349 ± 0.004 0.387 ± 0.000 0.173 ± 0.001 0.179 ± 0.002 0.218 ± 0.005 0.086 ± 0.004 0.094 ± 0.008 0.094 ± 0.006
SA w/ SS 0.288 ± 0.003 0.341 ± 0.003 0.351 ± 0.003 0.119 ± 0.003 0.159 ± 0.003 0.174 ± 0.003 0.081 ± 0.002 0.089 ± 0.001 0.091 ± 0.002

Table 5: Empirical RSE results of air quality, industry and electricity when horizon ⌧ = {3, 6, 12}. Best performance in boldface. We report
the mean and standard deviations in ten runs. For RSE, the lower the better.
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