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Abstract: The increase in massive data processing and computing in datacenters in recent years
has resulted in the problem of severe energy consumption, which also leads to a significant carbon
footprint and a negative impact on the environment. A growing number of IT companies with
operating datacenters are adopting renewable energy as part of their energy supply to offset the
consumption of brown energy. In this paper, we focused on a green datacenter using hybrid energy
supply, leveraged the time flexibility of workloads in the datacenter, and proposed a thermal-aware
workload management method to maximize the utilization of renewable energy sources, considering
the power consumption of both computing devices and cooling devices at the same time. The critical
knob of our approach was workload shifting, which scheduled more delay-tolerant workloads and
allocated resources in the datacenter according to the availability of renewable energy supply and
the variation of cooling temperature. In order to evaluate the performance of the proposed method,
we conducted simulation experiments using the Cloudsim-plus tool. The results demonstrated that the
proposed method could effectively reduce the consumption of brown energy while maximizing the
utilization of green energy.

Keywords: green datacenter; renewable energy; workload management; power consumption;
thermal-aware

1. Introduction

In recent years, with the rapid spreading and development of cloud computing technology around
the world, a large number of computing operations in the datacenters need to respond rapidly and
efficiently to ensure service capabilities. However, the growing demand for cloud infrastructure has
led to a dramatic increase in the power consumption of datacenters, which has become a significant
issue need to be solved. Datacenters around the world consume a lot of energy each year, and the
average power consumed by each datacenter is almost equal to the power consumed by 25,000 homes
in the United States [1]. In 2017, there were approximately 8 million datacenters around the world
that consumed 416.2 terawatt hours of electricity [2]. This is equivalent to 2% of the total electricity
consumption in the world and is expected to reach 5% of global electricity consumption by 2020.
As estimated, the energy cost of a datacenter approximately accounts for nearly 50% of the total
operating cost of the datacenter. This results in most of the total electrical energy consumed not being
sufficiently utilized. One of the major reasons for this is that the datacenter has a certain proportion of
idle energy consumption during its operation. Even at very low utilization rates, such as 10% CPU
usage, the power consumed exceeds 50% of the peak power [3]. Some methods that dynamically
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migrate or consolidate tasks on some less-utilized servers or turn off idle servers have been proven to
be energy-efficient strategies [4–6]. However, most of these studies only considered the computing
power consumption of the datacenter or the cooling power consumption separately, without combining
them together.

In recent years, the use of green energy sources such as solar energy, wind energy, and tidal energy
has become a global trend in building green sustainable datacenters [7–9]. Kong et al. [10] conducted
a survey on the renewable energy used and carbon emission in many datacenters. Compared with
brown energy, green energy has lots of advantages, such as being natural, renewable, clean, and low
cost. However, the generation of the renewable energy such as wind, solar, and tidal energy are usually
intermittent and unstable. Hence, a way to accurately predict the amount of available renewable
energy is worth being studied in order to make full use of renewable sources in the datacenters.
In recent years, famous IT companies such as Microsoft, Google, Amazon, and IBM were all operating
large-scale datacenters around the world to cope with the growing computation demand, and they
were also trying to use the renewable energy as partial supply to their datacenter to further reduce the
energy cost. Therefore, a way to effectively manage such energy supply in the datacenter becomes an
important issue for these service providers.

Nowadays, most datacenters support various types of workloads, including critical interactive
workloads and batch-type workloads, wherein the latter can be deferred for a certain time to be
processed. In general, interactive workloads include web browsing, real-time gaming, data query,
and other workloads which need an immediate response. In contrast, batch-type workloads like image
processing, scientific applications, and financial data analysis can be scheduled later as long as they
could be completed before their deadlines [11]. This provides the feasibility of scheduling workloads
in the datacenter in the time dimension.

The main objective of this paper is to manage workloads effectively in a green datacenter, aiming
at making full use of renewable energy and minimizing the total power cost of the datacenter. In this
paper we adopt solar energy as the renewable energy supply in the experiments. Due to fluctuant
energy input and dynamically changing workload over time, we adjusted the number of workloads in
each time slot and the temperature supplied by the cooling device to maximize the use of renewable
energy. In this way, the brown power consumption of both IT devices and cooling devices could be
decreased. Moreover, we adopted the neural network model to predict the amount of solar power
generated to facilitate more accurate workload allocation decisions. This paper is an extended version
of our prior work [12]. The biggest difference between this paper and the previous version is that we
considered two types of workloads at the same time (interactive workloads and batch-type workloads).
In addition, due to the unstable solar power generation, we conducted a prediction of the amount
of solar energy generated in advance to better schedule the batch-type jobs, set more methods for
comparison, and produce a more detailed analysis of results. And the number of words has increased
by 50%.

The remainder of this paper is organized as follows. Section 2 introduces some related work on
datacenter energy management. Section 3 presents the problem definition and the model used in this
paper. Section 4 depicts the architecture of the green datacenter and the solar power prediction method.
Section 5 describes the methods and strategies we designed to solve the defined problem. Section 6
analyzes the experiment results by comparing three different strategies. At last, Section 7 concludes
the whole paper and discusses possible future work.

2. Related Work

In recent years, the establishment of green datacenters and the use of renewable energy have
become a hot research topic. The main ideas of these studies are to save energy in datacenters from
different aspects. For example, research has been carried out on resource management, scheduling of
virtual machines, and balancing load management in datacenters.
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2.1. Energy Saving Approaches in Datacenters by Performance Adjustment

In response to the high energy consumption in datacenters, some researchers have proposed
various methods to reduce the energy consumption of datacenters from different aspects. Liu et al. [13]
analyzed the composition of energy consumption of cloud computing datacenters and analyzed related
research on energy management in cloud datacenters. They put forward that the energy consumption
of the datacenter is composed of about 50% of the computing energy consumption and 40% of the
air conditioning refrigeration energy consumption. The remaining 15% of energy consumption is
mainly consumed by storage equipment and power distribution systems. This means that about half
of the energy consumption of the datacenter is consumed by non-computing devices. Zhang et al. [14]
studied the minimization problem of datacenter energy consumption that satisfies quality of service
(QoS) and server CPU average temperature constraints. They proposed an energy minimization
algorithm based on Lyapunov optimization theory to reduce the total energy consumption of the
datacenter. Salma et al. [15] presented a non-traditional optimization technique, which minimizes the
execution time and in turn reduces computation cost. Eduardo et al. [16] proposed methods to save
energy by dynamically controlling the switches of servers in the cluster, and also proposed a series of
methods for balanced or unbalanced loads. Sungkap et al. [17] proposed an ambient temperature-aware
capping to maximize power efficiency while minimizing overheating. Wang et al. [18] put forward an
analytical model, which describes datacenter resources with heat transfer properties and workloads
with thermal features. Then, they proposed two thermal-aware tasks-scheduling algorithms that aim
to lower temperatures and cooling system power consumption in a datacenter. Luo et al. [19] proposed
an IT workload management method to process delay-tolerant jobs that have the same deadline of
completion while maintaining their quality of service (QoS). Their approach has a workload shaping
stage, which decides to admit the workload, and a scheduling stage, which aims to minimize the
electricity costs of the datacenter; however, they did not include the power of the cooling system.
Overall, methods to reduce energy consumption mainly include the migration and consolidation of
virtual machines, powering off the host when the host is idle, and the delayed execution of tasks.
Moreover, their results prove that the proposed methods can reduce the energy consumption of the
datacenter to a certain extent.

2.2. Energy Saving Approaches in Datacenters by Virtual Machine Consolidation

Consolidating or migrating virtual machines can also save energy in the datacenter. In order
to reduce energy consumption and ensure high compliance with service level agreements,
Fahimeh et al. [4] proposed a reinforcement-learning-based dynamic consolidation method to minimize
the number of active hosts according to the current resource requirement. Beloglazov et al. [20] proposed
an adaptive heuristic algorithm for VM (Virtual Machine) consolidation based on the analysis of
the historical data of VM resource utilization. Atefeh et al. [21] proposed two online deterministic
algorithms, migrating virtual machines to the nearby datacenters with surplus renewable energy
in order to save brown energy. Islam et al. [22] proposed a novel resource management algorithm,
to optimally control the server capacity provisioning, virtual machine CPU allocation, and load
distribution for minimizing the datacenter power consumption while satisfying the quality of service,
IT peak power, and maximum server temperature constraints. Previous work [23] presented a novel
VM scheduling mechanism for reducing the energy consumption of datacenter. They considered
both load-balance and thermal-awareness to achieve the goal. Qouneh et al. [24] proposed to borrow
virtual computing resources from GPU VMs and reallocate them to CPU VMs. In this way, they can
minimize server power cost while maintaining overall server performance. This method is also a
way to adjust the load of the datacenter to achieve energy saving goals. Prior work [25] defined and
developed a set of performance and energy-aware strategies for resource allocation, task scheduling,
and for the hibernation of virtual machines. They combined energy and performance-aware scheduling
policies in order to transfer virtual machines into an idle state and the efficiency achieved by applying
the proposed models has been tested using a realistic large-scale cloud computing system simulator.
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Therefore, the consolidation and migrating of virtual machines also has an impact on the energy
consumption of the datacenter.

2.3. Approaches to Improve the Energy Efficiency

There are also some researchers who improve energy efficiency by adjusting datacenter energy
usage strategies. Dami’an et al. [26] proposed an intelligent system for various energy policies in
response to high energy consumption in datacenters. In the case of a high utilization rate, if appropriate
policies are adopted, energy consumption of about 20% can be saved without the performance of the
datacenter experiencing a significant impact. Nosayba et al. [27] provided a multi-faceted study of
temperature management in datacenters. They used a large collection of field data from different
production environments to study the impact of temperature on hardware reliability, including
the reliability of the storage subsystem, the memory subsystem and server reliability as a whole.
Sharma et al. [28] presented a workload distribution method to make the temperature distribution of
the datacenter more uniform. They used computational fluid dynamics (CFD) models to evaluate the
effectiveness of thermal policies through fault injection simulations and computational dynamics of load
calculations. Kien et al. [29] studied the impact of load placement policies on cooling and maximum
datacenter temperatures in cloud service providers that operate multiple geographically distributed
datacenters. Then, they proposed dynamic load distribution policies that consider all electricity-related
costs as well as transient cooling effects. Above all, it can be seen that some energy-aware methods can
also improve the energy efficiency to a great extent.

2.4. Renewable Energy Utilization in Datacenters

Nowadays, some IT companies operating large-scale datacenter are considering using green
energy as part of their energy supply. Therefore, there are some studies have researched how to
schedule loads in the datacenter and, in turn, make full use of green energy. Li et al. [30] proposed a
lightweight server power management scheme that maintains application performance by switching
between wind energy and traditional power. Goiri et al. [31] proposed the GreenSlot framework for
scheduling tasks and the GreenHadoop framework for MapReduce type tasks [32]. These proposals are
based on the prediction of the availability of renewable energy, through different scheduling strategies
to maximize the use of green energy. Wang et al. [33] also focused on green datacenters, using solar
energy as part of the energy supply in datacenters, and proposed a green-energy-aware virtual machine
migration strategy to maximize the use of solar energy. There are some studies that proposed to
schedule or allocate tasks by forecasting renewable energy in advance. Baris et al. [34] designed an
adaptive datacenter tasks scheduler to maximize the use of renewable energy. They utilize short-term
prediction of solar and wind energy production to scale the number of tasks according to the expected
energy availability. Grange et al. [35] presented an approach for scheduling batch jobs with due date
constraints, which takes into account the availability of the renewable energy to reduce the need of
brown energy and, therefore, running cost. The approach they proposed differs from the existing
methods by providing a scheduling algorithm agnostic of the electrical infrastructure. A separate
system, managing the renewable sources, provides an arbitrary objective function, which is used to
guide the scheduling heuristic. Courchelle et al. [36] have studied both the storage and utilization of
photovoltaic energy. They detailed their design of a scheduler that uses solar energy production to
make an off-line decision. This enables the virtual machine to be dispatched to the datacenter by the
proposed different algorithms, thereby reducing brown energy consumption. These researches did not
consider the comprehensive energy factor of datacenter, some of these studies only consider one type of
workload, and others do not consider the high energy consumption of datacenter cooling equipment.
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2.5. Simulation Tools Comparison

In recent years, researchers have proposed a variety of simulation tools to solve different problems
for cloud computing. Dzmitry et al. [37] presented a simulation environment for energy-aware cloud
computing datacenters, where the simulation tool GreenCloud is a packet-level simulator. Damián et al. [38]
proposed the simulation tool SCORE, which is dedicated to the simulation of energy-efficient monolithic
and parallel-scheduling models and for the execution of heterogeneous, realistic, and synthetic workloads.
They also presented a different simulation tool for cloud computing, GAME-SCORE, which implements
a scheduling model based on the Stackelberg game [39]. Leandro et al. [40] proposed CoolEmAll project,
which is used for modeling and simulating energy-efficient and thermal-aware datacenters. The aim
of CoolEmAll is to address energy-thermal efficiency of datacenters by combining the optimization of
IT, cooling, and workload management. Due to the fact that the simulation tool Cloudsim proposed in
Reference [41] is an open source tool, it is more suitable for simulating the problem solved in our paper.
Therefore, we chose the Cloudsim tool to simulate the method we proposed.

Compared with the prior work, the main contributions of our work include:

• This paper mainly takes into account two types of hybrid workload running upon the datacenter,
including interactive workloads and batch-type workloads. A part of the batch-type workloads
will be deferred to be executed until renewable energy is sufficient. In this way, the variable
energy input can be more efficiently utilized for task processing.

• During the workload management procedure, we also jointly considered the non-IT energy
consumption by adjusting the supply air temperature of the cooling device. We take pre-cooling
actions when there is surplus solar energy, and adjust the temperature setting of the cooling
devices dynamically according to the current surplus energy, thus avoiding the possible waste of
the extra generated power and responding to the need for cooling when solar energy is insufficient.

3. The Architecture of the Green Datacenter

In this section, we present the architecture of the green datacenter using mixed energy supplies
and the prediction model used to forecast the energy generation amount.

3.1. Datacenter Architecture

Assume the datacenter system consists of N hosts, denoted as host 1 to host N. These hosts
complete distributed tasks individually or collaboratively. The resources of the host generally include
CPU, storage, bandwidth (bw). We use cmax to represent the maximum CPU capacity of a host,
the maximum storage and the maximum bw of a host can offer is denoted as smax and bmax, respectively.
We use R(c, s, b) to represent the total resources of a host. The total simulation time is one day and
divided into τ = 24 time slots, and thus the length of each time slot is 60 min. In order to schedule the
tasks and adjust the temperature provided in each time slot, we assume that the supply air temperature
of the cooling device can be set dynamically on demand.

Figure 1 depicts the architecture of the green datacenter powered by both renewable energy and
traditional energy from the utility grid. The grid utility and renewable energy are combined together
through the automatic transfer switch in order to provide power for the datacenter. The IT devices
include servers, storage, and networking switches that support applications and services hosted in
the datacenter. The cooling devices deliver the cooling resources to dispatch the heat generated by IT
equipment. In this paper, the cooling capacity is delivered to the datacenter through the computer
room air conditioning units (CRAC) from the cooling micro-grid that consists of the traditional chiller
plant. The architecture does not consider the energy storage equipment, because the energy storage
equipment has the following shortcomings [32]: (a) The internal resistance and self-discharge of the
battery can result in loss of energy; (b) the battery-related costs predominate in solar powered systems;
and (c) the chemicals in the battery can cause harm to the environment to some extent.
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Figure 1. Green datacenter architecture.

3.2. Renewable Energy Forecasting

Considering the use of renewable energy as a part of the energy supply in the sustainable
datacenter and the fact that the solar power generation is unknown and unstable, we conducted a
prediction of the amount of solar energy generated in advance to better schedule the batch-type jobs.
In this way, the impact of unstable solar energy supply on datacenter scheduling jobs can be avoided to
some extent. There are many researchers who use a variety of methods to predict the amount of power
generation [11,31]. In this paper, we use solar energy as the renewable energy supply. The neural
network model LSTM (long short-term memory) is adopted for solar prediction, which is a recurrent
neural network trained using backpropagation through time and overcomes the vanishing gradient
problem. Because the LSTM model adds a “processor” to determine whether the information is useful
or not, it has a better memory function for historical data than some other neural network models,
and this model is suitable for processing and predicting important events with relatively long intervals
and delays in the time series. We select m-day historical solar power generation data as a training
dataset to predict the solar power generation on day m + 1.

In order to have a precise prediction to achieve a more accurate allocation of jobs, we derived
the data from the public data sharing website [42]. We selected solar power data for sunny days and
cloudy (rainy) days in February, March, and April 2018 as training sets to forecast the amount of solar
power generation of 14 July 2018 and the amount of solar power generation of 8 May 2018, respectively,
where the 14 July 2018 is a sunny day and the 8 May 2018 is a cloudy day. We combined the scikit-learn
library of machine learning for model training and data normalization. The forecast result of a sunny
day shown in Figure 2a,b represents the forecast value under a cloudy (rainy) day, wherein the error
rate between the predicted and actual values remains within 7% and 20% on a sunny day and cloudy
(rainy) day, respectively.
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4. Problem Statement

4.1. Workload Definition

Here, we consider two main types of IT workloads in the sustainable datacenter: Batch-type
and critical interactive type [43,44]. Batch-type workloads are those workloads submitted to a job
queue which will be executed when resources become available. The workloads that need to be
responded immediately but its execution should be completed before their deadlines are called critical
interactive workloads.

To effectively manage the power consumption of the datacenter, we postpone the execution of
some time-flexible workloads. Hereafter, we use I(t) and B(t) to represent the amount of the interactive
workloads and batch-type workloads submitted at time t, respectively. Let ri and rj denote the resources
are allocated to an interactive job i and a batch-type job j, respectively. Denote the dtj as the time of
batch-type job j that can be deferred to be processed, and dtmax as the maximum time a job that can
be delayed. We defer the execution of a batch-type job from time t ∈ τ to t1 ∈ [t, t + dtmax]. ϕ(t, t1)
denotes the number of batch-type jobs submitted at time t that can be deferred to time t1. We use J(t)
to represent the number of total batch-type workloads, which are needed to be processed at time t.
Obviously, the J(t) included the batch-type workloads postponed from previous time slots and a part
of the workloads submitted at time t.

J(t) = B(t) −ϕ(t, t1) +
t−1∑

t′=1

ϕ(t′, t) (1)

where t1 > t and t′ < t ≤ τ. Therefore, the total workloads λ(t) that need to be processed at time t
should be calculated as:

λ(t) = I(t) + J(t). (2)
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4.2. Power Consumption Model

Usually, the computing power consumption is the dominating part of the total power consumption
of the datacenter. The operation of the server includes a variety of hardware devices. The power
consumption of the host is related to the voltage supply and operating frequency and is greatly affected
by the change of the load. Denote Pi

t as the computing power consumption of host i at tth time slot.
We adopt a linear growth approach to calculate power consumption.

Pi
t = Pmax

i · (c + (1− c) · ui) (3)

where the Pi
max represents the maximum power of a host can consume, c is a constant representing the

proportion of idle energy consumption, and ui represents the CPU utilization of a host i.
Hence, the total computing energy consumption PCt in each time slot can be calculated by

PCt =
N∑

i=1

Pt
i (4)

where t = 1, 2 . . . τ.
The power consumption of the cooling system is variable and controllable, which also occupies a

high proportion of the total power consumption of the datacenter. In this paper, the servers are cooled
by traditional air-cooling technology. The power required for cooling is usually related to how much
heat is dissipated. A commonly used measurement coefficient is called CoP (coefficient of performance),
which is generally defined as the ratio of the heat to be dissipated to the power consumption of the
cooling equipment. However, the CoP is directly affected by the cooling temperature. Generally,
the higher cooling temperature will lead to a higher CoP value so that the cooling device itself consumes
less power. We adopt the CoP model in Reference [18], which is obtained from water chilled CRAC
(computer room air conditioner) unit in HP Utility datacenter, as follows:

CoP(Tsup) = 0.0068Tsup
2 + 0.0008Tsup + 0.458 (5)

where Tsup is the supply air temperature of the cooling device. Then, the cooling energy consumption
PACt can be calculated by the following equation:

PACt =
PCt

CoP
(
Tsup

) . (6)

The total energy consumption PTt in a time slot of a datacenter can be calculated as follows:

PTt = PCt + PACt. (7)

4.3. Power Management Problem

Since the target datacenter is supplied by mixed energy sources, we adjust the tasks of the
datacenter to achieve energy-saving effects while making full use of the generated solar energy. In order
to reduce the usage of brown energy, we deferred the execution of some delay-tolerant tasks to the
time when solar energy is sufficient. We define the amount of solar energy that can be supplied at
a moment as St, where t = 1, 2 . . . τ. Usually, the maximum power consumption value of a host is
usually defined in its power consumption model. Therefore, the number of hosts Nt that the datacenter
can keep active under the supply of solar power at each time slot could be estimated as

Nt =
St

Pmax (8)

where Pmax is the maximum power consumption of the host in the current power model.
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4.4. Thermal-Aware Considerations

The power consumption of the servers will make the surrounding environmental temperature
increase, due to the heat recirculation. Through CFD (computational fluid dynamics) analysis, previous
studies [22,45] have proposed a relationship between the power consumption of the host, indicating
that the inlet temperature is governed by the following equation:

Tin = Tsup + D × P (9)

where Tin and Tsup are the vectors of inlet temperature and supplied air temperature, respectively. D
is the heat transfer matrix [46] and P is the vector of the power consumption of hosts in the datacenter.
In order to avoid overheating of the host and maintain a high performance of the host, the maximum
inlet temperature is generally limited. Here, we denote Tmax as the maximum inlet temperature.
Therefore, under the premise of specifying the maximum inlet temperature Tmax of the host, we can
implement the pre-cooling for job management.

Tin ≤ Tmax (10)

Therefore, under the premise of specifying the maximum inlet temperature Tmax of the host, we use
the pre-cooling to calculate the maximum power consumption that the host can consume.

∆T = Tmax −Tsup (11)

Overall, the objective of the optimization problem is to maximize the utilization of solar energy in
each time slot t, which can be depicted as

minimize |St − PTt| (12)

subject to
I(t)∑
i=1

ri +

J(t)∑
j=1

r j ≤ R(cmax, smax, bmax) (13)

dt j <= dtmax, Tin ≤ Tmax (14)

where in Equations (13) and (14) specify the constraints corresponding to the limits of resources,
job deadlines, and the room temperature, respectively.

5. Methods and Strategies

To address the issue proposed and defined in Section 4, we proposed a thermal-aware approach
for workload and power management of the datacenter, and also implemented three other methods
for comparison. We considered the characteristic of different jobs in the datacenter. We mainly took
into account two categories, including interactive workloads and batch-type workloads. As previously
described, the interactive workloads should be responded immediately, while the batch workloads
are delay-tolerant.

5.1. Static Method (ST)

Under this method, the batch-type jobs will be processed when they arrive as soon as possible
without any other scheduling actions.

5.2. Load Balancing Distribution over Time (LB)

Under this strategy, the batch-type jobs are scheduled and distributed evenly over multiple time
slots, while the interactive tasks will be processed immediately after they arrive.
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5.3. Best Effort Strategy (BS)

Under this strategy, a scheduling plan will be made for the submitted batch-type jobs based on
the predicted solar power generation amount. The number of active hosts in a time slot constrained by
the supply of solar energy can be calculated by using Equation (9). Then, it should be judged whether
the current number of interactive jobs could be handled by these hosts. If the number is not enough,
brown energy has to be used to power on some extra hosts according to the demand of jobs.

5.4. Thermal-Aware Workload Management (TM)

Under this strategy, we take both workload and temperature adjustment of the datacenter into
account simultaneously. The critical component of this method is the time-shifting of batch-type jobs
to consume more solar power. On the basis of BS method, we further perform pre-cooling actions
if there is surplus solar energy at tth time slot and there are no jobs need to be processed so as to
deal with more jobs when the solar energy generation becomes insufficient in the future; but if there
are jobs that have not been processed, then we use the surplus solar energy to perform the jobs first.
Specifically, the temperature will be adjusted dynamically according to the amount of surplus solar
energy, denoted as Et as follows,

Et = St − PTt (15)

where t = 1, 2 . . . τ. We can use Equations (4)–(6) and (15) to calculate the temperature, which the
cooling devices should supply given the extra energy from solar generation. In this method, the main
consideration is to perform as many jobs as possible when solar power is sufficient and to decrease
the power consumption of cooling devices. Compared with the first three strategies, this strategy
considered power consumption both IT devices and cooling devices. The pseudo codes of the algorithm
are shown as follows (Algorithm 1).

Algorithm 1: The process of TM method

Input: the number of jobs, solar power generation, Tmax

Output: job schedule plan
1. St ← getSolarPrediction()
2. Nt ← calculate the number of hosts can be powered by the provided solar power at time slot t
3. if the number of hosts Nt is enough to process λ(t) jobs then
4. if Et > 0 then
5. perform the pre-cooling action (decrease the temperature of the cooling device)
6. end if
7. else
8. power on some hosts using brown energy according to the workload demand
9. if Tin < =Tmax and performed pre-cooling then
10. allocate more batch-type jobs
11. update the remaining number of batch-type jobs
12. end if
13. end if
14. return: job schedule plan

6. Evaluation Results

Here, we set up a series of numerical simulation and experiments to evaluate the four methods
proposed in Section 5. We simulated a data center using the CloudSim-plus tool, a cloud computing
simulation tool that was extended based on the 3.0 version of the CloudSim tool, using some of the
features proposed by JDK 1.8. The Cloudsim is developed in the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, at the Computer Science and Software Engineering Department of the
University of Melbourne. We simulate the four methods proposed in this paper under a random load.



Energies 2019, 12, 1494 11 of 18

We specify the Tmax = 30 ◦C, which specifies that the datacenter inside temperature should be less than
30 ◦C [29]. The solar power data are derived from a public solar data sharing website [42].

Due to the particularity of the load model defined in this paper, we did not consider using
actual load tracking data, such as Google traces. Therefore, in order to facilitate the simulation but
without loss of generality, we randomly generated jobs that arrived over time and assumed that some
batch-type jobs would be submitted at middle night and around noon [11]. Then we use the method
proposed in Reference [11] to specify that the maximum time of batch-type jobs could be deferred is
12 h, which means dtmax = 12. Figure 3 shows the number of arrived interactive and batch-type jobs
during each time slot. The number of servers in datacenter and the power consumption parameters
are shown in Table 1.
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Table 1. Parameters Settings.

Parameters Pi
max c N

Values 100 (w) 0.7 500

6.1. Power Consumption

In this subsection, the results illustrate the solar power utilization in detail under the four strategies
described previously. As shown in Figure 4a, the blue column represents solar power usage under
different strategies on a sunny day. It can be seen that the solar utilization of TM method is the highest,
reaching 98%, while ST is the lowest. For the sake of having a clear examination, we show detailed
utilization values in Table 2. We also illustrate the solar utilization on a cloudy (rainy) day shown in
Figure 4b and statistical results in Table 3; we can intuitively obtain that solar power utilization under
the TM strategy is also the highest in cloudy conditions.

Table 2. Solar utilization percentage under sunny weather condition.

Strategies ST LB BS TM

Solar Utilization Percentage 66.2% 66.8% 89.1% 98.2%
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Table 3. Solar utilization percentage under cloudy (rainy) weather condition.

Strategies ST LB BS TM

Solar Utilization Percentage 86.1% 89.2% 96.7% 99.5%Energies 2019, 12, x FOR PEER REVIEW 12 of 18 
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Figure 5 depicts the detailed power consumption under the four strategies, with power
consumption including computing power consumption (batch-type jobs and interactive jobs) and
the cooling power consumption. As shown, Figure 5a–d illustrate the particular power consumption
under the ST, LB, BS, and TM, respectively. Obviously, ST and LB do not make full use of solar energy
but use more of the brown energy for power supply. The power consumption of BS can vary according
to the supplied solar power, but some solar power is also wasted. Compared with the other three
methods, TM can make better use of solar energy by jointly scheduling workloads and adjusting the
cooling temperature. Hence, TM only uses brown energy sources to supply power when necessary.

We also analyzed the detailed power consumption under a cloudy (rainy) day, as shown in
Figure 6d, due to the fact that there are some batch-type jobs that need to be processed in addition to
interactive jobs when there is solar power available, so there is not surplus solar energy for taking
pre-cooling action. This means that the proposed strategy consumes more brown energy on a cloudy
(rainy) day, but it also maximizes the use of solar energy. However, the detailed power consumption in
the other three methods is similar to the situation in sunny weather conditions.

Here, the results illustrate, in detail, the power consumption and solar energy utilization of the
four strategies mentioned previously. As shown in Figure 7, the green column represents the use of
solar power under the current strategy and the orange portion represents the use of brown energy used.
The total power consumption of TM was the most, since it almost consumed all of the generated solar
energy, with the least consumption of brown energy. In contrast, the other three methods consumed
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more brown energy. For a more detailed explanation, we have listed the solar values actually used
under various strategies in Tables 4 and 5 on a sunny and cloudy (rainy) day, respectively. It is clear
that the TM strategy uses the most solar energy in both weather conditions.
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Table 4. Values of actual solar power utilized on a sunny day.

Strategies ST LB BS TM

Values (KW) 53.1 50.4 65.7 72.4
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Table 5. Values of actual solar power utilized on a cloudy (rainy) day.

Strategies ST LB BS TM
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6.2. Job Scheduling Details

As shown in Table 6, we can obtain the average waiting time that batch-type jobs can be responded
to under the four methods. It is obvious that the waiting time under ST is the lowest because this
method gives the response as quickly as possible to the arrived batch-type jobs. However, under the
other three methods, batch-type jobs have different waiting times. The average waiting time under LB
is longest since some batch-type jobs submitted at morning will be evenly deferred to be executed at
all the next time slots. Compared with the BS method, the waiting time of the TM method is relatively
short because more jobs can be performed when the solar energy is insufficient in the afternoon, while
the BS method will postpone more batch-type jobs to be executed at night, which results in a long
waiting time. The average waiting time for batch-type jobs in cloudy (rainy) weather is also given
in Table 7. We can see that the waiting time under each method is longer than in sunny weather
condition. This is because solar energy is not sufficient in cloudy weather, and the TM method does
not work well. However, the waiting time of the TM method is shorter than other strategies except
for the ST method. Therefore, we can obtain the TM method is suitable for various (Service Level
Agreement) SLA-constrained environments, but the energy-saving effect may not be very ideal with
strong SLA constraints.

Table 6. Average waiting time of batch-type jobs on a sunny day.

Methods ST LB BS TM

Average Waiting Time (hour) 0 8.3 5.2 4.8

Table 7. Average waiting time of batch-type jobs on a cloudy (rainy) day.

Methods ST LB BS TM

Average Waiting Time (hour) 0 8.3 6.4 5.9

Figure 8 shows the job scheduling conditions under the four methods. We can see from the figure
that more jobs can be executed when there is sufficient solar power supply under TM. Compared with
BS, there are more jobs were scheduled than BS in several time slots after 12:00. This is because TM
conducted pre-cooling actions, which made the room cooler when solar power was surplus, and thus
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facilitated the later scheduling of more jobs when the solar generation dropped. Furthermore, since a
part of batch-type jobs were processed between 13:00 and 16:00, so fewer jobs were processed than BS
in several time slots after 20:00, which further saved the consumption of the utility grid power.
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6.3. Temperature Provided by the Cooling Device

Figure 9 shows the temperature variation provided by the cooling equipment under BS and TM
strategies. As shown in Figure 9, we can observe that the temperature of TM was lower than BS in
several time slots before 12:00 because the surplus solar energy was not fully utilized and there were
no jobs that needed to be processed at these moments, so TM used the extra solar energy for cooling.
TM could fully consider the extra solar power and carry out pre-cooling actions to cope with the power
consumption demand for a period of time in the future, thereby utilizing the solar energy more.
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7. Conclusions and Future Work

In this paper, we studied renewable-aware and thermal-aware workload management approaches
to fully use the green energy provided for the datacenter and in turn to minimize the total energy cost.
Due to the uncertain nature of renewable energy generation, we use the neural network model to
predict solar energy. After considering the multiple characteristics of workloads and high energy cost
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of the cooling device, the TM strategy proposed in this paper shows a good effect for scheduling hybrid
types of workloads and adjusting the temperature dynamically according to surplus solar energy
supplied in each time slot in the datacenter. However, the TM strategy does not work well when the
solar energy supply is insufficient in cloudy (rainy) weather through experimental analysis. But the
experiment results illustrate that TM can better achieve the energy saving goal as well as minimize the
overall power cost of the datacenter no matter on a sunny or cloudy weather condition.

The method proposed in this paper mainly takes into account two types of hybrid workload
including interactive workloads and batch-type workloads. By delaying the execution of some more
delay-tolerant jobs until the solar energy is sufficient and using excess solar energy for pre-cooling to
cope with the cooling needs for the next period of time, the possible waste of the extra generated solar
power can be avoided, and more jobs can be scheduled when solar energy is supplied.

Currently, our proposed workload scheduling method only considers the amount of renewable
energy generated, in order to help the datacenter maximize the use of solar energy, by scheduling some
batch-type workload and adjusting the supply temperature of the cooling equipment. In the future,
we plan to combine the more demand response signals on the grid side to enable the datacenter to
participate in the response plan by adjusting its load and power consumption.
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