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Abstract

Learning from multi-view data is important in many applications, such as image
classification and annotation. In this paper, we present a large-margin learning
framework to discover a predictive latent subspace representation shared by mul-
tiple views. Our approach is based on an undirected latent space Markov network
that fulfills a weak conditional independence assumption that multi-view observa-
tions and response variables are independent given a set of latent variables. We
provide efficient inference and parameter estimation methods for the latent sub-
space model. Finally, we demonstrate the advantages of large-margin learning on
real video and web image data for discovering predictive latent representations
and improving the performance on image classification, annotation and retrieval.

1 Introduction

In many scientific and engineering applications, such as image annotation [28] and web-page clas-
sification [6], the available data usually come from diversedomains or are extracted from different
aspects, which will be referred to asviews. Standard predictive methods, such as support vector
machines, are built with all the variables available, without taking into consideration the presence
of distinct views. These methods would sacrifice the predictive performance [7] and may also be
incapable of performingview-level analysis[12], such as predicting the tags for image annotation
and analyzing the underlying relationships amongst views.Different from the existing work that has
been done on exploring multi-view information to alleviatethe difficult semi-supervised learning
[6, 12, 2, 14] and unsupervised clustering [8] problems, ourgoal is to develop a statistical framework
that learns apredictivesubspace representation shared by multiple views when labels are provided
and perform view-level analysis, particularly view-levelpredictions.

To discover a subspace representation shared by multi-viewdata, the unsupervised canonical cor-
relation analysis (CCA) [17] and its kernelized version [1]ignore the widely available supervised
information, such as image categories. Therefore, they could discover a subspace with weak predic-
tive ability. The multi-view fisher discriminant analysis (FDA) [13] provides a supervised approach
to finding such a projected subspace. However, this deterministic approach cannot provide view-
level predictions, such as image annotation; and it would also need a density estimator in order to
apply the information criterion [9] to detect view disagreement. In this paper, we consider a prob-
abilistic approach to model multi-view data, which can perform both the response-level predictions
(e.g., image classification) and view-level predictions (e.g., image annotation).

Specifically, we propose a large-margin learning approach to discovering a predictive subspace rep-
resentation for multi-view data. The approach is based on a genericmulti-view latent space Markov
network(MN) that fulfills a weak conditional independence assumption that the data from different
views and the response variables are conditionally independent given a set of latent variables. This
conditional independence is much weaker than the typical assumption (e.g., in the seminal work of
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co-training [6]) that multi-view data are conditionally independent given the very low dimensional
response variables [14]. Although directed Bayesian networks (BNs) (e.g., latent Dirichlet allocation
(LDA) [5] and probabilistic CCA [3]) can also be designed to fulfill the conditional independence,
the posterior inference can be hard because all the latent variables are coupled together given the
input variables [26]. Therefore, we ground our approach on the undirected MNs. Undirected latent
variable models have shown promising performance in many applications [26, 20]. In the multi-
view MN, conditioned on latent variables, each view defines ajoint distribution similar to that in a
conditional random field (CRF) [18] and thus it can effectively extract latent topics from structured
data. For example, considering word ordering information could improve the quality of discovered
latent topics [23] compared to a method (e.g., LDA) solely based on the natural bag-of-word rep-
resentation, and spatial relationship among regions in an image is also useful for computer vision
applications [15]. To learn the multi-view latent space MN,we develop a large-margin approach,
which jointly maximizes the data likelihood and minimizes the hinge-loss on training data. The
learning and inference problems are efficiently solved witha contrastive divergence method [25].
Finally, we concentrate on one special case of the large-margin mult-view MN and extensively eval-
uate it on real video and web image datasets for image classification, annotation and retrieval tasks.
Our results show that the large-margin approach can achievesignificant improvements in terms of
prediction performance and discovered latent subspace representations.

The paper is structured as follows. Sec 2 and Sec 3 present themulti-view latent space MN and
its large-margin training. Sec 4 presents a special case. Sec 5 presents empirical results and Sec 6
concludes.

2 Multi-view Latent Space Markov Networks ...H1 HK

X1 XN Z1 ZMZ2X2

Figure 1: Multi-view Markov
networks withK latent variables.

The unsupervised two-view latent space Markov network is shown
in Fig. 1, which consists of two views of input dataX := {Xn}
andZ := {Zm} and a set of latent variablesH := {Hk}. For
ease of presentation, we assume that the variables on each view
are connected via a linear-chain. Extensions to multiple views and
more complex structures on each view can be easily done, after we have presented the constructive
definition of the model distribution. The model is constructed based on an underlying conditional
independence assumption that given the latent variablesH, the two viewsX andZ are independent.

Graphically, we can see that both the exponential family Harmonium (EFH) [26] and its extension
of dual-wing Harmonium (DWH) [28] are special cases of multi-view latent space MNs. Therefore,
it is not surprising to see that multi-view MNs inherit the widely advocated property of EFH that
the model distribution can be constructively defined based on local conditionals on each view.
Specifically, we first define marginal distributions of the data on each view and the latent variables.
For each view, we consider the first-order Markov network. Bythe random field theory, we have

p(x) = exp
{∑

i

θ>i φ(xi, xi+1)− A(θ)
}
, and p(z) = exp

{∑

j

η>j ψ(zj , zj+1)−B(η)
}
,

whereφ andψ are feature functions,A andB are log partition functions. For latent variablesH,
each componenthk has an exponential family distribution and therefore the marginal distribution
is:

p(h) =
∏

k

p(hk) =
∏

k

exp
{
λ>
k ϕ(hk)−Ck(λk)

}
,

whereϕ(hk) is the feature vector ofhk, Ck is another log-partition function.

Next, the joint model distribution is defined by combining the above components in the log-domain
and introducing additional terms that couple the random variablesX,Z andH. Specifically, we have

p(x,z,h) ∝ exp
{∑

i

θ>i φ(xi, xi+1)+
∑

j

η>j ψ(zj, zj+1)+
∑

k

λ>
k ϕ(hk)

+
∑

ik

φ(xi, xi+1)
>Wk

i ϕ(hk)+
∑

jk

ψ(zj , zj+1)
>Uk

jϕ(hk)
}
. (1)

Then, we can directly write the conditional distributions on each view with shifted parameters,
p(x|h)=exp

{∑
i θ̂

>
i φ(xi, xi+1)−A(θ̂)

}
, whereθ̂i=θi+

∑
k W

k
i ϕ(hk);

p(z|h)=exp
{∑

j η̂
>
j ψ(zj , zj+1)−B(η̂)

}
, whereη̂j=ηj+

∑
k U

k
jϕ(hk); and

p(h|x,z)=∏
kexp

{
λ̂>
k ϕ(hk)−Ck(λ̂k)

}
, whereλ̂k=λk+

∑
i W

k
i φ(xi, xi+1)+

∑
j U

k
jψ(zj , zj+1).
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We can see that conditioned on the latent variables, bothp(x|h) and p(z|h) are defined in the
exponential form with a pairwise potential function, whichis very similar to conditional random
fields [18]. Reversely, we can start with defining the local conditional distributions as above and
directly write the compatible joint distribution, which isof the log-linear form as in (1). We will use
Θ to denote all the parameters(θ, η, λ,W,U).

Since the latent variables are not directly connected, the complexity of inferring the posterior distri-
bution ofH is the same as in EFH when all the input data are observed, as reflected in the factorized
form ofp(h|x, z). Therefore, multi-view latent space MNs do not increase thecomplexity on testing
if our task depends solely on the latent representation (i.e., expectation ofH), such as information
retrieval [26], classification, clustering etc. However, the complexity of parameter estimation and
inferring the posterior distribution of each view (e.g.,X) will be increased, depending on the struc-
ture on the view. For the simple case of linear-chain, the inference can be efficiently done with a
forward-backward message passing scheme [18]. For a general model structure, which may contain
many loops, approximate inference such as variational methods [22] is needed to perform the task.
We will provide more details when presenting the learning problem.

Up to now, we have sticken on unsupervised multi-view latentspace MNs, which are of wide use
in discovering latent subspace representations shared by multi-view data. In this paper, however,
we are more interested in the supervised setting where each input sample is associated with a
supervised response variable, such as image categories. Accordingly, our goal is to discover a
predictivesubspace by exploring the supervised information. The supervised multi-view latent
space MNs are defined similarly as above, but with an additional view of response variablesY .
Now, the conditional independence is:X, Z andY are independent ifH is given. As we have
stated, this assumption is much weaker than the typical conditional independence assumption that
X andZ are independent givenY . Based on the constructive definition, we only need to specify
the conditional distribution ofY givenH. In principle,Y can be continuous or discrete. Here, we
consider the discrete case, wherey ∈ {1, · · · , T }, and define

p(y|h) = exp{V>f(h, y)}∑
y′ exp{V>f(h, y′)} , (2)

wheref(h, y) is the feature vector whose elements from(y − 1)K + 1 to yK are those ofh and all
others are0. Accordingly,V is a stacking parameter vector ofT sub-vectorsVy, of which each one
corresponds to a class labely. Then, the joint distributionp(x, z,h, y) has the same form as in Eq.
(1), but with an additional term ofV>f(h, y) = V>

y h in the exponential.

We note that a supervised version of DWH, which will be denoted by TWH (i.e., triple wing Harmo-
nium), was proposed in [29], and the parameter estimation was done by maximizing the joint data
likelihood. However, the resultant TWH model does not yieldimproved performance compared to
the naive method that combines an unsupervised DWH for discovering latent representations and
an SVM for classification. This observation further motivates us to develop a more discriminative
learning approach to exploring the supervised informationfor discovering predictive latent subspace
representations. As we shall see, integrating the large-margin principle into one objective function
for joint latent subspace model and prediction model learning can yield much better results, in terms
of prediction performance and predictiveness of discovered latent subspace representations.

3 Parameter Estimation: a Large Margin Approach

To learn the supervised multi-view latent space MNs, a natural method is the maximum likelihood
estimation (MLE), which has been widely used to train directed [24, 30] and undirected latent vari-
able models [26, 20, 28, 29]. However, likelihood-based parameter estimation pays additional efforts
in defining a normalized probabilistic model as in Eq. (2), ofwhich the normalization factor can
make the inference hard, especially in directed models [24]. Moreover, the standard MLE could re-
sult in non-conclusive results, as reported in [29] and verified in our experiments. These have been
motivating us to develop a more discriminative learning approach. An arguably more discriminative
way to learn a classification model is to directly estimate the decision boundary, which is the essen-
tial idea underlying the very successful large-margin classifiers (e.g., SVMs). Here, we integrate the
large-margin idea into the learning of supervised multi-view latent space MNs for multi-view data
analysis, analogous to the development of MedLDA [31], which is directed and has single-view. For
brevity, we consider the general multi-class classification, as defined above.
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3.1 Problem Definition

As in the log-linear model in Eq. (2), we assume that the discriminant functionF (y,h;V) is linear,
that is,F (y,h;V) = V>f(h, y), wheref andV are defined the same as above. For prediction, we
take the expectation over the latent variableH and define the prediction rule as

y∗ := argmax
y

Ep(h|x,z)[F (H, y;V)] = argmax
y

V>Ep(h|x,z)[f(H, y)], (3)

where the expectation can be efficiently computed with the factorized form ofp(h|x, z) whenx and
z are fully observed. If missing values exist inx or z, an inference procedure is needed to compute
the expectation of the missed components, as detailed belowin Eq. (5).

Then, learning is to find an optimalV∗ that minimizes a loss function. Here, we minimize the hinge
loss, as used in SVMs. Given training dataD = {(xd, zd, yd)}Dd=1, the hinge loss of the predictive
rule (3) is

Rhinge(V) :=
1

D

∑

d

max
y

[∆`d(y)−V>Ep(h|x,z)[∆fd(y)]],

where∆`d(y) is a loss function that measures how different the prediction y is compared to the
true labelyd, andEp(h|x,z)[∆fd(y)] = Ep(h|x,z)[f(Hd, yd)]− Ep(h|x,z)[f(Hd, y)]. It can be proved
that the hinge loss is an upper bound of the empirical lossRemp := 1

D

∑
d ∆`(y

∗
d). Applying the

principle ofregularized risk minimization, we define the learning problem as solving

min
Θ,V

L(Θ) +
1

2
C1‖V‖22 + C2Rhinge(V), (4)

whereL(Θ) := −∑
d log p(xd, zd) is the negative data likelihood andC1 andC2 are non-negative

constants, which can be selected via cross-validation. Note thatRhinge is also a function ofΘ.

Since problem (4) jointly maximizes the data likelihood andminimizes a training loss, it can be
expected that by solving this problem we can find a predictivelatent space representationp(h|x, z)
and a prediction model parameterV, which on the one hand tend to predict as accurate as possible
on training data, while on the other hand tend to explain the data well.

3.2 Optimization

Variational approximation with Contrastive Divergence: Since the data likelihoodL(Θ) is
generally intractable to compute, our method is based on theefficient contrastive divergence
technique [16, 25, 26, 28]. Specifically, we derive a variational approximationLv(q0, q1) of the
negative log-likelihoodL(Θ) , that is:

Lv(q0, q1) := R(q0(x, z,h), p(x, z,h)) −R(q1(x, z,h), p(x, z,h)),

whereR(q, p) is the relative entropy, andq0 is a variational distribution withx andz clamped to
their observed values whileq1 is a distribution with all variables free. Forq(q0 or q1) in general, we
make thestructuredmean field assumption [27] that1 q(x, z,h) = q(x)q(z)q(h).

Solving the approximate problem: Applying the variational approximationLv in problem (4), we
get an approximate objective functionL(Θ,V, q0, q1). Then, we can develop an alternating mini-
mization method, which iteratively minimizesL(Θ,V, q0, q1) overq0 and(Θ,V). The distribution
q1 is reconstructed once the optimalq0 is achieved, see [25] for details.

The problem of solvingq0 andq1 is theposterior inferenceproblem. Specifically, for a variational
distributionq (can beq0 or q1) in general, we keep(Θ,V) fixed and update each marginal as

q(x) = p(x|Eq(H)[H]), q(z) = p(z|Eq(H)[H]), and q(h) =
∏

k

p(hk|Eq(X)[X],Eq(Z)[Z]). (5)

For q0, (x, z) are clamped at their observed values, and onlyq0(h) is updated, which can be very
efficiently done because of its factorized form. The distribution q1 is achieved by performing the
above updates starting fromq0. Several iterations can yield a goodq1. Again, we can see that both
q(x) andq(z) are CRFs, with the expectation ofH as the condition. Therefore, for linear-chain
models, we can use a message passing scheme [18] to infer their marginal distributions, as needed
for parameter estimation and view-level prediction (e.g.,image annotation), as we shall see. For
generally structured models, approximate inference techniques [22] can be applied.

After we have inferredq0 and q1, parameter estimation can be done by alternating between
(1) estimatingV with Θ fixed: this problem is learning a multi-class SVM [11], whichcan be

1The parametric form assumptions ofq, as made in previous work [28, 29], are not needed.
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efficiently done with existing solvers; and (2) estimatingΘ with V fixed: this can be solved with
sub-gradient descent, where the sub-gradient is computed as:

∇θi=−Eq0 [φ(xi, xi+1)] + Eq1 [φ(xi, xi+1)],
∇ηj=−Eq0 [ψ(zj , zj+1)] + Eq1 [ψ(zj , zj+1)],
∇λk=−Eq0 [ϕ(hk)] + Eq1 [ϕ(hk)],

∇Wk
i =−Eq0 [φ(xi, xi+1)ϕ(hk)

>]+Eq1 [φ(xi, xi+1)ϕ(hk)
>]−C2

1
D

∑
d(Vȳdk −Vydk)

∂Eq0 [hk]

∂Wk
i

,

∇Uk
j=−Eq0 [ψ(zj , zj+1)ϕ(hk)

>]+Eq1 [ψ(zj , zj+1)ϕ(hk)
>]−C2

1
D

∑
d(Vȳdk −Vydk)

∂Eq0 [hk]

∂Uk
j

,

whereȳd = argmaxy[∆`d(y)+V>Eq0 [f(Hd, y)] is theloss-augmented prediction, and the expec-
tationEq0 [φ(xi, xi+1)] is actually the count frequency ofφ(xi, xi+1), likewise forEq0 [ψ(zj , zj+1)].

Note that in our integrated max-margin formulation, the sub-gradients ofW andU contain an
additional term (i.e., the third term) compared to the standard DWH [28] with contrastive divergence
approximation. This additional term introduces a regularization effect to the latent subspace model.
If the prediction labelyd differs from the true label̄yd, this term will be non-zero and it biases the
model towards discovering a better representation for prediction.

4 Application to Image Classification, Annotation and Retrieval

We have developed the large-margin framework with a genericmulti-view latent space MN to model
structured data. In order to carefully examine the basic learning principle and compare with existing
work, in this paper, we concentrate on a simplified but very rich case that the data on each view
are not structured, which has been extensively studied in EFH [26, 28, 29] for image classification,
annotation and retrieval. We denote the specialized model by MMH (max-margin Harmonium).
In theory, extensions to model structured multi-view data can be easily done under the general
framework, and the only needed change is on the step of inferring q1, which can be treated as a
black box, given the wide literature on approximate inference [22]. We defer the systematical study
in this direction to the full extension of this work.

Specifically, we consider two-views, wherex is a vector of discrete word features (e.g., image tags)
andz is a vector of real-valued features (e.g., color histograms). Eachxi is a Bernoulli variable
that denotes whether theith term of a dictionary appears or not in an image, and eachzj is a real
number that denotes the normalized color histogram of an image. We assume that each real-valued
hk follows a univariate Gaussian distribution. Therefore, wedefine the conditional distributions as

p(xi=1|h)= 1

1 + e−(αi+Wi·h)
, p(zj |h)=N (zj|σ2

j (βj+Uj·h), σ
2
j ), p(hk|x, z)=N (hk|x>W·k+z

>U·k, 1),

whereWi· andW·k denote theith row andkth column ofW, respectively. Alike forUi· andU·k.

With the above definitions, we can follow exactly the same procedure as above to do parameter
estimation. For the step of inferringq0 andq1, the distributions ofx, z andh are all fully factorized.
Therefore, the sub-gradients can be easily computed. Details are deferred to the Appendix.

Testing: For classification and retrieval, we need to infer the posterior distribution ofH and its
expectation. In this case, we haveEp(h|x,z)[H] = v, wherevk = x>W·k + z>U·k, ∀1 ≤ k ≤ K.
Therefore, theclassificationrule isy∗ = argmaxy V

>f(v, y). For retrieval, the expectationv of
each image is used to compute a similarity (e.g., cosine) between images. Forannotation, we use
x to represent tags, which are observed in training. In testing, we infer the posterior distribution
p(x|z), which can be approximately computed by running the update equations (5) withz clamped
at its observed values. Then, tags with high probabilities are selected as annotation.

5 Experiments

We report empirical results on TRECVID2003 and flickr image datasets. Our results demonstrate
that the large-margin approach can achieve significantly better performance on discovering predic-
tive subspace representations and the tasks of image classification, annotation and retrieval.

5.1 Datasets and Features

The first dataset is the TRECVID2003 video dataset [28], which contains 1078 manually labeled
video shots that belong to 5 categories. Each shot is represented as a 1894-dim vector of text features
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Figure 2:t-SNE 2D embedding of the discovered latent space representation by (Left) MMH, (Middle) DWH
and (Right) TWH on the TRECVID video dataset (Better viewed in color).

and a 165-dim vector of HSV color histogram, which is extracted from the associated keyframe. We
evenly split this dataset for training and testing. The second one is a subset selected from NUS-
WIDE [10], which is a big image dataset constructed from flickr web images. This dataset contains
3411 images about 13 animals, includingcat, tiger, etc. See Fig. 6 for example images for each
category. For each image, six types of low-level features [10] are extracted, including 634-dim real
valued features (i.e., 64-dim color histogram, 144-dim color correlogram, 73-dim edge direction
histogram, 128-dim wavelet texture and 225-dim block-wisecolor moments) and 500-dim bag-of-
word representation based on SIFT [19] features. We randomly select 2054 images for training and
use the rest for testing. The online tags are also downloadedfor evaluating image annotation.

5.2 Discovering Predictive Latent Subspace Representations

We first evaluate the predictive power of the discovered latent subspace representations.

Fig. 2 shows the 2D embedding of the discovered 10-dim latentrepresentations by three models
(i.e., MMH, DWH and TWH) on the video data. Here, we use the t-SNE algorithm [21] to find
the embedding. We can see that clearly the latent subspace representations discovered by the large-
margin based MMH show a strong grouping pattern for the images belonging to the same category,
while images from different categories tend to be separatedfrom each other on the 2D embedding
space. In contrast, the latent subspace representations discovered by the likelihood-based unsuper-
vised DWH and supervised TWH do not show a clear grouping pattern, except for the first category.
Images from different categories tend to mix together. These observations suggest that the large-
margin based latent subspace model can discover more predictive or discriminative latent subspace
representations, which will result in better prediction performance, as we shall see.

To quantitatively evaluate the predictiveness of the discovered latent subspace representations, we
compute the pair-wise average KL-divergence between the per-class average distribution over latent
topics2. As shown on the top of each plot in Fig. 2, the large-margin based MMH obtains a much
larger average KL-divergence than the other likelihood-based methods. This again suggests that
the latent subspace representations discovered by MMH are more discriminative or predictive. We
obtain the similar observations and conclusions on the flickr dataset (see Fig. 3 for some example
topics), where the average KL-divergence scores of 60-topic MMH, DWH and TWH are 3.23, 2.56
and 0.463, respectively.

Finally, we examine the predictive power of discovered latent topics. Fig. 3 shows five example
topics discovered by the large-margin MMH on the flickr imagedata. For each topicHk, we show
the 5 top-ranked images that yield a high expected value ofHk, together with the associated tags.
Also, to qualitatively visualize the discriminative powerof each topic among the 13 categories, we
show the average probability of each category distributed on the particular topic. From the results,
we can see that many of the discovered topics are very predictive for one or several categories. For
example, topics 3 and 4 are discriminative in predicting thecategorieshawkandwhales, respectively.
Similarly, topics 1 and 5 are good at predictingsquirrel andzebra, respectively. We also have some
topics which are good at discriminating a subset of categories against another subset. For example,
the topic 2 is good at discriminating{squirrel, wolf, rabbit} against{tiger, whales, zebra}; but it is
not very discriminative betweensquirrelandwolf.

2To compute this score, we first turn the expected value ofH to be non-negative by subtracting each element
by the smallest value and then normalize it into a distribution over theK topics. The per-class average is
computed by averaging the topic distributions of the imageswithin the same class. For a pair of distributionsp
andq, the average KL-divergence is1/2(R(p, q) +R(q, p)).
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Figure 3:Example latent topics discovered by a 60-topic MMH on the flickr animal dataset.

5.3 Prediction Performance on Image Classification, Retrieval, and Annotation
5.3.1 Classification
We first compare the MMH with SVM, DWH, TWH, Gaussian Mixture (GM-Mix), Gaussian Mix-
ture LDA (GM-LDA), and Correspondence LDA (CorrLDA) on the TRECVID data. See [4] for
the details of the last three models. We use theSVM struct 3 to solve the sub-step of learningV in
MMH and build an SVM classifier, which uses both the text and color histogram features without
distinguishing them in different views. For each of the unsupervised DWH, GM-Mix, GM-LDA and
CorrLDA, a downstream SVM is built with the same tool based onthe discovered latent represen-
tations. Fig. 4 (a) shows the classification accuracy of different models, where CorrLDA is omitted
because of its too low performance. We can see that the max-margin based multi-view MMH per-
forms consistently better than any other competitors. In contrast, the likelihood-based TWH does
not show any conclusive improvements compared to the unsupervised DWH. These results show
that supervised information can help in discovering predictive latent space representations that are
more suitable for prediction if the model is appropriately learned, e.g., by using the large-margin
method. The superior performance of MMH compared to the flat SVM demonstrates the usefulness
of modeling multi-view inputs for prediction. The reasons for the inferior performance of other
models (e.g., CorrLDA and GM-Mix) are analyzed in [28, 29].

Fig. 4 (b) shows the classification accuracy on the flickr animal dataset. For brevity, we compare
MMH only with the best performed DWH, TWH and SVM. For these methods, we use the 500-
dim SIFT and 634-dim real features, which are treated as two views of inputs for MMH, DWH
and TWH. Also, we compare with the single-view MedLDA [31], which uses SIFT features only.
To be fair, we also evaluate a version of MMH that uses SIFT features, and denote it by MMH
(SIFT). Again, we can see that the large-margin based multi-view MMH performs much better than
any other methods, including SVM which ignores the presenceof multi-view features. For the
single-view MMH (SIFT), it performs comparably (slightly better than) with the large-margin based
MedLDA, which is a directed BN. With the similar large-margin principle, MMH is an important
extension of MedLDA to the undirected latent subspace models and for multi-view data analysis.

5.3.2 Retrieval
For image retrieval, each test image is treated as a query andtraining images are ranked based on
their cosine similarity with the given query, which is computed based on latent subspace representa-
tions. An image is considered relevant to the query if they belong to the same category. We evaluate
the retrieval results by computing the average precision (AP) score and drawing precision-recall
curves. Fig. 4 (c) compares MMH with four other models when the topic number changes. Here,

3http://svmlight.joachims.org/svmmulticlass.html
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Figure 4:Classification accuracy on the (a) TRECVID 2003 and (b) flickrdatasets and (c) the average preci-
sion curve and the two precision-recall curves for image retrieval on TRECVID data.
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Figure 6:Example images from the 13 categories on the flickr animal dataset with predicted annotations. Tags
in blue are correct annotations while red ones are wrong predictions. The other tags are neutral.

we show the precision-recall curves when the topic number isset at 15 and 20. We can see that
for the AP measure, MMH outperforms all other methods in mostcases, and MMH consistently
outperforms all the other methods in the measure of precision-recall curve. On the flickr dataset, we
have similar observations. The AP scores of the 60-topic MMH, DWH, and TWH are 0.163, 0.153
and 0.158, respectively. Due to space limitation, we defer the details to a full extension.

5.3.3 Annotation MMH DWH TWH sLDA
F1@1 0.165 0.144 0.145 0.077
F1@2 0.221 0.186 0.192 0.124
F1@3 0.245 0.202 0.218 0.146
F1@4 0.258 0.208 0.228 0.159
F1@5 0.262 0.210 0.236 0.169
F1@6 0.259 0.208 0.240 0.171
F1@7 0.256 0.206 0.239 0.175

Figure 5:Top-N F1-measure.

Finally, we report the annotation results on the flickr dataset, with
a dictionary of 1000 unique tags. The average number of tags
per image is about4.5. We compare MMH with DWH and TWH
with two views of inputs–X for tag andZ for all the 634-dim
real-valued features. We also compare with the sLDA annotation
model [24], which uses SIFT features and tags as inputs. We use
the top-N F1-measure [24], denoted byF1@N . With 60 latent topics, the top-N F-measure scores
are shown in Fig. 5. We can see that the large-margin based MMHsignificantly outperforms all the
competitors. Fig. 6 shows example images from all the 13 categories, where for each category the
left image is generally of a good annotation quality and the right one is relatively worse.

6 Conclusions and Future Work

We have presented a generic large-margin learning framework for discovering predictive latent sub-
space representations shared by structured multi-view data. The inference and learning can be effi-
ciently done with contrastive divergence methods. Finally, we concentrate on a specialized model
with applications to image classification, annotation and retrieval. Extensive experiments on real
video and web image datasets demonstrate the advantages of large-margin learning for both predic-
tion and predictive latent subspace discovery. In future work, we plan to systematically investigate
the large-margin learning framework on structured multi-view data analysis, e.g., on text mining [23]
and computer vision [15] applications.
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