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Abstract

Learning from multi-view data is important in many applioats, such as image
classification and annotation. In this paper, we presentgeimargin learning
framework to discover a predictive latent subspace reptaten shared by mul-
tiple views. Our approach is based on an undirected latetesplarkov network
that fulfills a weak conditional independence assumptianthulti-view observa-
tions and response variables are independent given a sateot hariables. We
provide efficient inference and parameter estimation nusHor the latent sub-
space model. Finally, we demonstrate the advantages &-faaygin learning on
real video and web image data for discovering predictiveriatepresentations
and improving the performance on image classification, tatiom and retrieval.

1 Introduction

In many scientific and engineering applications, such ag@@nnotation [28] and web-page clas-
sification [6], the available data usually come from divedteenains or are extracted from different
aspects, which will be referred to aews Standard predictive methods, such as support vector
machines, are built with all the variables available, withtaking into consideration the presence
of distinct views. These methods would sacrifice the pradiqgierformance [7] and may also be
incapable of performingiew-level analysi$12], such as predicting the tags for image annotation
and analyzing the underlying relationships amongst vi@ifferent from the existing work that has
been done on exploring multi-view information to allevidite difficult semi-supervised learning
[6, 12, 2, 14] and unsupervised clustering [8] problemsgmai is to develop a statistical framework
that learns gredictivesubspace representation shared by multiple views whetslabe provided
and perform view-level analysis, particularly view-lepeédictions.

To discover a subspace representation shared by multi-désa; the unsupervised canonical cor-
relation analysis (CCA) [17] and its kernelized version idfjore the widely available supervised

information, such as image categories. Therefore, theldatiscover a subspace with weak predic-
tive ability. The multi-view fisher discriminant analysiBI§A) [13] provides a supervised approach
to finding such a projected subspace. However, this detétigirapproach cannot provide view-

level predictions, such as image annotation; and it woldd aked a density estimator in order to
apply the information criterion [9] to detect view disagment. In this paper, we consider a prob-
abilistic approach to model multi-view data, which can peri both the response-level predictions
(e.g., image classification) and view-level predictiong (dmage annotation).

Specifically, we propose a large-margin learning approaclisicovering a predictive subspace rep-
resentation for multi-view data. The approach is based canagcmulti-view latent space Markov
network(MN) that fulfills a weak conditional independence assuntpthat the data from different
views and the response variables are conditionally indégeigiven a set of latent variables. This
conditional independence is much weaker than the typicalraption (e.g., in the seminal work of



co-training [6]) that multi-view data are conditionallydependent given the very low dimensional
response variables [14]. Although directed Bayesian ndsW@Ns) (e.g., latent Dirichlet allocation
(LDA) [5] and probabilistic CCA [3]) can also be designed tdfill the conditional independence,
the posterior inference can be hard because all the lateiaibles are coupled together given the
input variables [26]. Therefore, we ground our approachhenundirected MNs. Undirected latent
variable models have shown promising performance in mapyicgtions [26, 20]. In the multi-
view MN, conditioned on latent variables, each view defingsirat distribution similar to that in a
conditional random field (CRF) [18] and thus it can effediivextract latent topics from structured
data. For example, considering word ordering informationld improve the quality of discovered
latent topics [23] compared to a method (e.g., LDA) solelgdzhon the natural bag-of-word rep-
resentation, and spatial relationship among regions inreagé is also useful for computer vision
applications [15]. To learn the multi-view latent space Mi& develop a large-margin approach,
which jointly maximizes the data likelihood and minimizé® thinge-loss on training data. The
learning and inference problems are efficiently solved wittontrastive divergence method [25].
Finally, we concentrate on one special case of the larggimarult-view MN and extensively eval-
uate it on real video and web image datasets for image clet#ifin, annotation and retrieval tasks.
Our results show that the large-margin approach can ackigndicant improvements in terms of
prediction performance and discovered latent subspacegeptations.

The paper is structured as follows. Sec 2 and Sec 3 presentutieview latent space MN and
its large-margin training. Sec 4 presents a special case5 peesents empirical results and Sec 6
concludes.

2 Multi-view Latent Space Markov Networks @

The unsupervised two-view latent space Markov network ésvsh ) \§\
in Fig. 1, which consists of two views of input daia := {X } @ @@ X
andZ := {Z,,} and a set of latent variabldd := {H}}.

ease of presentation, we assume that the variables on eewh
are connected via a linear-chain. Extensions to multiptevsiand
more complex structures on each view can be easily done vedt@ave presented the constructive
definition of the model distribution. The model is constattbased on an underlying conditional
independence assumption that given the latent varidb|éke two viewsX andZ are independent.

6gure 1. Multi-view Markov
networks withK latent variables.

Graphically, we can see that both the exponential familynktarium (EFH) [26] and its extension
of dual-wing Harmonium (DWH) [28] are special cases of muléw latent space MNs. Therefore,
it is not surprising to see that multi-view MNs inherit thedsly advocated property of EFH that
the model distribution can be constructively defined basedooal conditionals on each view.
Specifically, we first define marginal distributions of theéadan each view and the latent variables.
For each view, we consider the first-order Markov network tfByrandom field theory, we have

= exp { Z 6’ O(xiy Tit1) A(G)}, and p(z) = exp { ZT];'l/)(Z]', Zj41) — B(n)},

J
where¢ and are feature functions4 and B are log partition functions. For latent variablEs
each component;, has an exponential family distribution and therefore thegimal distribution

is:
h) = [T pth) = [T exp { M (he) = Cr(M) },
k k
wherep(hy) is the feature vector df, C is another log-partition function.

Next, the joint model distribution is defined by combining tibove components in the log-domain
and introducing additional terms that couple the randonab#esX, Z andH. Specifically, we have

p(x,2,h) oc exp {Z 9?¢(Ii7mi+1)+zU;¢(3j72j+1)+z M p(hn)

+Z¢ viin) W (o) RO ) @
Then, we can directly write the condmonal dlstnbutlorrse:ach view with shifted parameters,
p(x|h) exp{z 07 ¢(i, wis1)— } whered; =0, + 5, W (hs);

plzlb)=exp {32, 7] (2, 2141) - B(n)},wherem n+%2, Ufp(hu); and
p(h|x,z)=]],exp {5\290(]11@)_016(5%)}7 whered, =\x+32, Wio(zi, zi1)+3, USvr(z, 241).-
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We can see that conditioned on the latent variables, p@thh) and p(z|h) are defined in the

exponential form with a pairwise potential function, whishvery similar to conditional random
fields [18]. Reversely, we can start with defining the locatditional distributions as above and
directly write the compatible joint distribution, whicha$ the log-linear form as in (1). We will use
O to denote all the parametgi n, A, W, U).

Since the latent variables are not directly connected, dinepdexity of inferring the posterior distri-
bution ofH is the same as in EFH when all the input data are observed]esteel in the factorized
form of p(h|x, z). Therefore, multi-view latent space MNs do not increasetraplexity on testing

if our task depends solely on the latent representation @ectation oH), such as information
retrieval [26], classification, clustering etc. Howevére ttomplexity of parameter estimation and
inferring the posterior distribution of each view (e ¥.) will be increased, depending on the struc-
ture on the view. For the simple case of linear-chain, therrice can be efficiently done with a
forward-backward message passing scheme [18]. For a demedal structure, which may contain
many loops, approximate inference such as variational ogstf22] is needed to perform the task.
We will provide more details when presenting the learnirapem.

Up to now, we have sticken on unsupervised multi-view latgraice MNs, which are of wide use
in discovering latent subspace representations sharedultisview data. In this paper, however,
we are more interested in the supervised setting where egeht sample is associated with a
supervised response variable, such as image categoriesordhegly, our goal is to discover a
predictive subspace by exploring the supervised information. The rsigesl multi-view latent
space MNs are defined similarly as above, but with an additisiew of response variables.
Now, the conditional independence iX, Z andY are independent i is given. As we have
stated, this assumption is much weaker than the typicalitondl independence assumption that
X andZ are independent giveYi. Based on the constructive definition, we only need to specif
the conditional distribution o givenH. In principle,Y can be continuous or discrete. Here, we
consider the discrete case, where {1,--- , T}, and define

exp{VTf(h,y)}
> exp{VTf(h,y)}’
wheref(h, y) is the feature vector whose elements frgm- 1) K + 1 to y K are those oh and alll
others ard). Accordingly,V is a stacking parameter vectorfsub-vector&/,,, of which each one

corresponds to a class lahel Then, the joint distributiop(x, z, h, y) has the same form as in Eq.
(1), but with an additional term &7 " f(h, ) = V] h in the exponential.

p(y/h) =

@)

We note that a supervised version of DWH, which will be deddg TWH (i.e., triple wing Harmo-
nium), was proposed in [29], and the parameter estimatiandeae by maximizing the joint data
likelihood. However, the resultant TWH model does not yiemgproved performance compared to
the naive method that combines an unsupervised DWH for désoty latent representations and
an SVM for classification. This observation further motestis to develop a more discriminative
learning approach to exploring the supervised inform&toniscovering predictive latent subspace
representations. As we shall see, integrating the larggimarinciple into one objective function
for joint latent subspace model and prediction model leayean yield much better results, in terms
of prediction performance and predictiveness of discal&atent subspace representations.

3 Parameter Estimation: a Large Margin Approach

To learn the supervised multi-view latent space MNs, a aataethod is the maximum likelihood
estimation (MLE), which has been widely used to train diedd24, 30] and undirected latent vari-
able models [26, 20, 28, 29]. However, likelihood-base@pweater estimation pays additional efforts
in defining a normalized probabilistic model as in Eq. (2)wdfich the normalization factor can
make the inference hard, especially in directed models [@éfeover, the standard MLE could re-
sult in non-conclusive results, as reported in [29] andfiegtiin our experiments. These have been
motivating us to develop a more discriminative learningrapph. An arguably more discriminative
way to learn a classification model is to directly estimatedbcision boundary, which is the essen-
tial idea underlying the very successful large-margingifeess (e.g., SVMs). Here, we integrate the
large-margin idea into the learning of supervised muléwiatent space MNs for multi-view data
analysis, analogous to the development of MedLDA [31], wlécdirected and has single-view. For
brevity, we consider the general multi-class classificgtas defined above.
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3.1 Problem Definition

As in the log-linear model in Eq. (2), we assume that the d@igoant functionF'(y, h; V) is linear,
thatis,F(y,h; V) = V' f(h,y), wheref andV are defined the same as above. For prediction, we
take the expectation over the latent varialHl@nd define the prediction rule as

y* = arg max Ep(njx,z) [F(H,y; V)] = arg max V'Ephjx.2) [f(H, y)], 3)

where the expectation can be efficiently computed with thf&zed form ofp(h|x, z) whenx and
z are fully observed. If missing values existiror z, an inference procedure is needed to compute
the expectation of the missed components, as detailed helBy. (5).

Then, learning is to find an optim&* that minimizes a loss function. Here, we minimize the hinge
loss, as used in SVMs. Given training dd®a= {(xq,z4,v4)}2.,, the hinge loss of the predictive

rule (3) is 1
Rh,inge (V) = B Z man[Aéd(y) - VT]Ep(hlx,z) [Af(i(y)ﬂv
d

where Al,(y) is a loss function that measures how different the predicjidss compared to the
true Iabelyd, andEp(mx,z) [Afd(y)] = Ep(h\x,z) [f(Hd7 yd)] - Ep(h\x,z) [f(Hd, y)] It can be pl’OVGd
that the hinge loss is an upper bound of the empirical Rss,, := % > a Al(y;). Applying the
principle ofregularized risk minimizatiorwe define the learning problem as solving

. 1
min L(©)+ §C'1|\V||§ + CoRhinge(V), (4)

whereL(0©) := — >, log p(x4, zq) is the negative data likelihood aiigf andC; are non-negative
constants, which can be selected via cross-validatiore M@ttR ;. 4. is also a function 0®.

Since problem (4) jointly maximizes the data likelihood anahimizes a training loss, it can be
expected that by solving this problem we can find a predidétent space representatipth|x, z)

and a prediction model paramefér which on the one hand tend to predict as accurate as possible
on training data, while on the other hand tend to explain tita dell.

3.2 Optimization

Variational approximation with Contrastive Divergence: Since the data likelihood.(©) is
generally intractable to compute, our method is based oneffieient contrastive divergence
technique [16, 25, 26, 28]. Specifically, we derive a vaoiadil approximationC?(qq, ¢1) of the
negative log-likelihood.(©) , that is:

L%(q0,q1) := R(qo(x,2,h),p(x,2,h)) — R(q1(x,2,h), p(x,2,h)),

whereR(q, p) is the relative entropy, angh is a variational distribution witkk andz clamped to
their observed values whilg is a distribution with all variables free. Fg(go or ¢1) in general, we
make thestructuredmean field assumption [27] thg(x, z, h) = ¢(x)q(z)q(h).

Solving the approximate problem Applying the variational approximatiofi in problem (4), we
get an approximate objective functidi{®, V, o, ¢1). Then, we can develop an alternating mini-
mization method, which iteratively minimize§©, V, qo, ¢1) overgo and(0, V). The distribution
q1 is reconstructed once the optimglis achieved, see [25] for detalils.

The problem of solving, andq; is theposterior inferenceroblem. Specifically, for a variational
distributiong (can begy or ¢1) in general, we keefd, V) fixed and update each marginal as

q(X) = p(X‘Eq(H) [H})v Q(z) = p(z|]Eq(H) [H])a and Q(h) = Hp(hk‘Eq(X) [XL]Eq(Z) [Z]) (5)
k

For qo, (x,2) are clamped at their observed values, and gp(h) is updated, which can be very
efficiently done because of its factorized form. The distfiiin ¢, is achieved by performing the
above updates starting frogg. Several iterations can yield a gogd Again, we can see that both
q(x) andq(z) are CRFs, with the expectation #f as the condition. Therefore, for linear-chain
models, we can use a message passing scheme [18] to infemidagjinal distributions, as needed
for parameter estimation and view-level prediction (eilmage annotation), as we shall see. For
generally structured models, approximate inference figcias [22] can be applied.

After we have inferredjy and ¢;, parameter estimation can be done by alternating between
(1) estimatingV with © fixed: this problem is learning a multi-class SVM [11], whichn be

The parametric form assumptionsgfas made in previous work [28, 29], are not needed.



efficiently done with existing solvers; and (2) estimati@gvith V fixed: this can be solved with
sub-gradient descent, where the sub-gradient is compated a
VOi=—Eq, [Qﬁ(ﬂfu mz+1)] +Eq [(ZS(IH Ii+1)]7
Vn;=—Eqy [¥(25, 2j+1)] + Eqy [(25, 2j+1)],
VMw=—Eqq[p(he)] + Ean [o(he)), .
VWi =—Eq[6(i, it 1)p(hr) "1+ Eqy [(i, zie1)p(hi) T]=Co g5 3y (Vg — Viggr) ;&,!?“7
VU =By [ (25, 2341) (k) T+ Eay (023, 251)0 (k) T] = oy Ea (Vi = Vi) 55
wherey, = arg max,[Aly(y) + V E,, [f(Hg,y)] is theloss-augmented predictipand the expec-
tationEy, [¢(x;, z:41)] is actually the count frequency 6fz;, z;11), likewise forEy, [¢(z;, zj11)].

Note that in our integrated max-margin formulation, the-guddients ofW and U contain an
additional term (i.e., the third term) compared to the staddWH [28] with contrastive divergence
approximation. This additional term introduces a regakion effect to the latent subspace model.
If the prediction labely, differs from the true labej,, this term will be non-zero and it biases the
model towards discovering a better representation foriptied.

4 Application to Image Classification, Annotation and Retrieval

We have developed the large-margin framework with a gemewit-view latent space MN to model
structured data. In order to carefully examine the basimlag principle and compare with existing
work, in this paper, we concentrate on a simplified but vech Gase that the data on each view
are not structured, which has been extensively studied i 2B, 28, 29] for image classification,
annotation and retrieval. We denote the specialized mogdlllH (max-margin Harmonium).
In theory, extensions to model structured multi-view dada be easily done under the general
framework, and the only needed change is on the step of infegi, which can be treated as a
black box, given the wide literature on approximate infeeef22]. We defer the systematical study
in this direction to the full extension of this work.

Specifically, we consider two-views, whexds a vector of discrete word features (e.g., image tags)
andz is a vector of real-valued features (e.g., color histogdarischz; is a Bernoulli variable
that denotes whether thith term of a dictionary appears or not in an image, and eads a real
number that denotes the normalized color histogram of agém#/e assume that each real-valued
hy, follows a univariate Gaussian distribution. Therefore deéine the conditional distributions as

1

p(z=1h)= T e aaw,m’ p(

zj|h) =N (z;]03 (84U h), 03), p(hi|x,z) =N (h|x "Wtz U, 1),
whereW;. andW . denote th&th row andkth column of W, respectively. Alike folU;. andU .

With the above definitions, we can follow exactly the samecpdure as above to do parameter
estimation. For the step of inferring andq; , the distributions ok, z andh are all fully factorized.
Therefore, the sub-gradients can be easily computed. |Datai deferred to the Appendix.

Testing: For classification and retrieval, we need to infer the pastalistribution of H and its
expectation. In this case, we halgy, |« ) [H] = v, wherev, = Xx"W,+2'U, VI<k<K.
Therefore, thelassificationrule isy* = argmax, V' f(v,y). Forretrieval, the expectatiow of
each image is used to compute a similarity (e.g., cosinayd®t images. Faannotation we use
x to represent tags, which are observed in training. In tgstive infer the posterior distribution
p(x|z), which can be approximately computed by running the update@tons (5) withz clamped
at its observed values. Then, tags with high probabilittessalected as annotation.

5 Experiments

We report empirical results on TRECVID2003 and flickr imaggadets. Our results demonstrate
that the large-margin approach can achieve significantigbperformance on discovering predic-
tive subspace representations and the tasks of imagefidassn, annotation and retrieval.

5.1 Datasets and Features

The first dataset is the TRECVID2003 video dataset [28], Whicntains 1078 manually labeled
video shots that belong to 5 categories. Each shot is rapezbas a 1894-dim vector of text features



Figure 2:t-SNE 2D embedding of the discovered latent space reprsemby (Left) MMH, (Middle) DWH
and (Right) TWH on the TRECVID video dataset (Better viewedalor).

and a 165-dim vector of HSV color histogram, which is exteddtom the associated keyframe. We
evenly split this dataset for training and testing. The secone is a subset selected from NUS-
WIDE [10], which is a big image dataset constructed from flislkeb images. This dataset contains
3411 images about 13 animals, includicat, tiger, etc. See Fig. 6 for example images for each
category. For each image, six types of low-level featur&3 §te extracted, including 634-dim real
valued features (i.e., 64-dim color histogram, 144-dinoca@orrelogram, 73-dim edge direction
histogram, 128-dim wavelet texture and 225-dim block-vés®r moments) and 500-dim bag-of-
word representation based on SIFT [19] features. We randsetéct 2054 images for training and
use the rest for testing. The online tags are also downlofmdeyaluating image annotation.

5.2 Discovering Predictive Latent Subspace Representatis
We first evaluate the predictive power of the discoveredltaabspace representations.

Fig. 2 shows the 2D embedding of the discovered 10-dim latgmtesentations by three models
(i.e., MMH, DWH and TWH) on the video data. Here, we use théNESalgorithm [21] to find
the embedding. We can see that clearly the latent subsppi@sentations discovered by the large-
margin based MMH show a strong grouping pattern for the irmdgdonging to the same category,
while images from different categories tend to be separated each other on the 2D embedding
space. In contrast, the latent subspace representateemvdred by the likelihood-based unsuper-
vised DWH and supervised TWH do not show a clear groupingpatexcept for the first category.
Images from different categories tend to mix together. €hmsservations suggest that the large-
margin based latent subspace model can discover more fivedic discriminative latent subspace
representations, which will result in better predictiomfpemance, as we shall see.

To quantitatively evaluate the predictiveness of the disced latent subspace representations, we
compute the pair-wise average KL-divergence between thelpss average distribution over latent
topics. As shown on the top of each plot in Fig. 2, the large-margsedavIMH obtains a much
larger average KL-divergence than the other likelihoodeobmethods. This again suggests that
the latent subspace representations discovered by MMH are discriminative or predictive. We
obtain the similar observations and conclusions on therflicitaset (see Fig. 3 for some example
topics), where the average KL-divergence scores of 6G:tdpiH, DWH and TWH are 3.23, 2.56
and 0.463, respectively.

Finally, we examine the predictive power of discoveredratepics. Fig. 3 shows five example
topics discovered by the large-margin MMH on the flickr imalg¢a. For each topif/y,, we show
the 5 top-ranked images that yield a high expected valuggftogether with the associated tags.
Also, to qualitatively visualize the discriminative powafreach topic among the 13 categories, we
show the average probability of each category distributethe particular topic. From the results,
we can see that many of the discovered topics are very prezifor one or several categories. For
example, topics 3 and 4 are discriminative in predictingcditegorieawkandwhales respectively.
Similarly, topics 1 and 5 are good at predictsguirrel andzebra respectively. We also have some
topics which are good at discriminating a subset of catega@gainst another subset. For example,
the topic 2 is good at discriminatingquirrel, wolf, rabbit} against{tiger, whales zebra; but it is
not very discriminative betweesquirrel andwolf.

2To compute this score, we first turn the expected valud &b be non-negative by subtracting each element
by the smallest value and then normalize it into a distrintbver theK topics. The per-class average is
computed by averaging the topic distributions of the imagi#sin the same class. For a pair of distributigns
andgq, the average KL-divergence 132(R(p, q) + R(q,p)).



wolf, alaska, animal, nature, wildlife, africa, squirrel

Z= A s

Figure 3:Example latent topics discovered by a 60-topic MMH on theflanimal dataset.

5.3 Prediction Performance on Image Classification, Retrieal, and Annotation
5.3.1 Classification

We first compare the MMH with SVM, DWH, TWH, Gaussian Mixtu@Nl-Mix), Gaussian Mix-
ture LDA (GM-LDA), and Correspondence LDA (CorrLDA) on thdRECVID data. See [4] for
the details of the last three models. We useSh@\/5" < 3 to solve the sub-step of learningin
MMH and build an SVM classifier, which uses both the text ankbichistogram features without
distinguishing them in different views. For each of the ypewised DWH, GM-Mix, GM-LDA and
CorrLDA, a downstream SVM is built with the same tool basedtendiscovered latent represen-
tations. Fig. 4 (a) shows the classification accuracy otdifit models, where CorrLDA is omitted
because of its too low performance. We can see that the magimizased multi-view MMH per-
forms consistently better than any other competitors. Imrest, the likelihood-based TWH does
not show any conclusive improvements compared to the ungispd DWH. These results show
that supervised information can help in discovering priadidatent space representations that are
more suitable for prediction if the model is appropriatedgrined, e.g., by using the large-margin
method. The superior performance of MMH compared to the Ml Semonstrates the usefulness
of modeling multi-view inputs for prediction. The reasoms the inferior performance of other
models (e.g., CorrLDA and GM-Mix) are analyzed in [28, 29].

Fig. 4 (b) shows the classification accuracy on the flickr ahidataset. For brevity, we compare
MMH only with the best performed DWH, TWH and SVM. For thesethaels, we use the 500-
dim SIFT and 634-dim real features, which are treated as tewssof inputs for MMH, DWH
and TWH. Also, we compare with the single-view MedLDA [31]hieh uses SIFT features only.
To be fair, we also evaluate a version of MMH that uses SIFTufes, and denote it by MMH
(SIFT). Again, we can see that the large-margin based migti- MMH performs much better than
any other methods, including SVM which ignores the presesfamulti-view features. For the
single-view MMH (SIFT), it performs comparably (slighthetier than) with the large-margin based
MedLDA, which is a directed BN. With the similar large-margirinciple, MMH is an important
extension of MedLDA to the undirected latent subspace nsoaladl for multi-view data analysis.

5.3.2 Retrieval

For image retrieval, each test image is treated as a queryrainihg images are ranked based on
their cosine similarity with the given query, which is contedibased on latent subspace representa-
tions. Animage is considered relevant to the query if thdgrgto the same category. We evaluate
the retrieval results by computing the average precisioR) (core and drawing precision-recall
curves. Fig. 4 (c) compares MMH with four other models wheatthpic number changes. Here,

Shttp://svmlight.joachims.org/svmmulticlass.html
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Figure 4:Classification accuracy on the (a) TRECVID 2003 and (b) flitktasets and (c) the average preci-
sion curve and the two precision-recall curves for imageenal on TRECVID data.
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Figure 6:Example images from the 13 categories on the flickr animalsgaitwith predicted annotations. Tags
in blue are correct annotations while red ones are wronggifeds. The other tags are neutral.

we show the precision-recall curves when the topic numbseeisat 15 and 20. We can see that
for the AP measure, MMH outperforms all other methods in neastes, and MMH consistently
outperforms all the other methods in the measure of precisoall curve. On the flickr dataset, we
have similar observations. The AP scores of the 60-topic MMWH, and TWH are 0.163, 0.153
and 0.158, respectively. Due to space limitation, we déferdetails to a full extension.

i [ MMH DWH TWH sLDA
5.3.3  Annotation F1@1[0.165 0.144 0.145 0.07|

. . . . F1@2|0.221 0.186 0.192 0.12]
Finally, we report the annotation results on the flickr detasith F103| 0,245 0202 0.218 0.14

a dictionary of 1000 unique tags. The average number of tags |F1a4|0.258 0.208 0.228 0.15
per image is about.5. We compare MMH with DWH and TWH ~ |£1¢90.262 0.220 0.236 0.16
with two views of inputsX for tag andZ for all the 634-dim F1@7|0.256 0.206 0.239 0.17,
real-valued fea_tures. We also compare with the sL_DA aniootat Figure 5:Top-N F1-measure.
model [24], which uses SIFT features and tags as inputs. \&/e us

the topsV F1-measure [24], denoted iyl QN . With 60 latent topics, the topf F-measure scores
are shown in Fig. 5. We can see that the large-margin based Milytificantly outperforms all the
competitors. Fig. 6 shows example images from all the 13caies, where for each category the
left image is generally of a good annotation quality and thktrone is relatively worse.

TOTF OO0 &Y

6 Conclusions and Future Work

We have presented a generic large-margin learning framefoodiscovering predictive latent sub-
space representations shared by structured multi-viesu ddte inference and learning can be effi-
ciently done with contrastive divergence methods. Finally concentrate on a specialized model
with applications to image classification, annotation agftieval. Extensive experiments on real
video and web image datasets demonstrate the advantagegehargin learning for both predic-
tion and predictive latent subspace discovery. In futurekywave plan to systematically investigate
the large-margin learning framework on structured mukiwdata analysis, e.g., on text mining [23]
and computer vision [15] applications.
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