
Stochastic Training of Graph Convolutional Networks with Variance Reduction

Jianfei Chen 1 Jun Zhu 1 Le Song 2 3

Abstract
Graph convolutional networks (GCNs) are power-
ful deep neural networks for graph-structured data.
However, GCN computes the representation of a
node recursively from its neighbors, making the
receptive field size grow exponentially with the
number of layers. Previous attempts on reducing
the receptive field size by subsampling neighbors
do not have convergence guarantee, and their re-
ceptive field size per node is still in the order of
hundreds. In this paper, we develop control vari-
ate based algorithms with new theoretical guar-
antee to converge to a local optimum of GCN
regardless of the neighbor sampling size. Empiri-
cal results show that our algorithms enjoy similar
convergence rate and model quality with the exact
algorithm using only two neighbors per node. The
running time of our algorithms on a large Reddit
dataset is only one seventh of previous neighbor
sampling algorithms.

1. Introduction
Graph convolution networks (GCNs) (Kipf & Welling,
2017) generalize convolutional neural networks (CNNs) (Le-
Cun et al., 1995) to graph structured data. The “graph
convolution” operation applies same linear transformation
to all the neighbors of a node, followed by mean pooling
and nonlinearity. By stacking multiple graph convolution
layers, GCNs can learn node representations by utilizing
information from distant neighbors. GCNs and their vari-
ants (Hamilton et al., 2017a; Veličković et al., 2018) have
been applied to semi-supervised node classification (Kipf &
Welling, 2017), inductive node embedding (Hamilton et al.,
2017a), link prediction (Kipf & Welling, 2016; Berg et al.,
2017) and knowledge graphs (Schlichtkrull et al., 2017),
outperforming multi-layer perceptron (MLP) models that

1Dept. of Comp. Sci. & Tech., BNRist Center, State Key Lab
for Intell. Tech. & Sys., THBI Lab, Tsinghua University, Beijing,
100084, China 2Georgia Institute of Technology 3Ant Financial.
Correspondence to: Jun Zhu <dcszj@mail.tsinghua.edu.cn>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

do not use the graph structure, and graph embedding ap-
proaches (Perozzi et al., 2014; Tang et al., 2015; Grover &
Leskovec, 2016) that do not use node features.

However, the graph convolution operation makes GCNs
difficult to be trained efficiently. The representation of a
node at layer L is computed recursively by the represen-
tations of all its neighbors at layer L − 1. Therefore, the
receptive field of a single node grows exponentially with
respect to the number of layers, as illustrated in Fig. 1(a), so
exactly computing the stochastic gradient is expensive even
for a single node. Due to the large receptive field size, Kipf
& Welling (2017) propose to train GCN by a batch algo-
rithm, which computes the representations of all the nodes
altogether. However, batch algorithms cannot handle large-
scale datasets because of their slow convergence and the
requirement to fit the entire dataset in GPU memory.

Hamilton et al. (2017a) make an initial attempt to develop
stochastic training algorithms for GCNs via a scheme of
neighbor sampling (NS). Instead of considering all the neigh-
bors, they randomly subsample D(l) neighbors at the l-th
layer. Therefore, they reduce the receptive field size to∏
lD

(l), as shown in Fig. 1(b). They find that for two-layer
GCNs, keeping D(1) = 10 and D(2) = 25 neighbors can
achieve comparable performance with the original model.
However, there is no theoretical guarantee on the conver-
gence of the stochastic training algorithm with NS. More-
over, the time complexity of NS is still D(1)D(2) = 250
times larger than training an MLP, which is unsatisfactory.

In this paper, we develop novel control variate-based
stochastic approximation algorithms for GCN by utilizing
the historical activations of nodes as a control variate. Our
algorithms have new theoretical results on (1) variance re-
duction from the magnitude of the activation to the magni-
tude of the difference between current-and-historical activa-
tions; (2) exact (zero-variance) predictions at testing time;
(3) convergence to a local optimum of GCN during train-
ing regardless of the neighbor sampling size D(l), with an
asymptotically unbiased stochastic gradient. The theoretical
properties allow us to significantly reduce the time com-
plexity of stochastic training by sampling only D(l) = 2
neighbors per node, yet still retain the quality of the model.

We empirically test our algorithms on six graph datasets, and
the results match with the theory. Comparing with NS, our

Stochastic Training of Graph Convolutional Networks with Variance Reduction

Input

Layer 1

Layer 2

(a) Exact

Input

Layer 1

Layer 2

(b) Neighbour sampling

Input

Layer 1

Layer 2

(c) Control variate

Latest activation

Historical activation

Input

GraphConv

Dropout

Dropout

GraphConv

(1)H

(2)H

GraphConv

GraphConv

(1)

(2)

(d) CVD network

Figure 1. Two-layer graph convolutional networks, and the receptive field of a single vertex.

Dataset V E Degree Degree 2
Citeseer 3,327 12,431 4 15

Cora 2,708 13,264 5 37
PubMed 19,717 108,365 6 60
NELL 65,755 318,135 5 1,597

PPI 14,755 458,973 31 970
Reddit 232,965 23,446,803 101 10,858

Table 1. Number of vertexes, edges, and average number of 1-hop
and 2-hop neighbors per node for each dataset. Undirected edges
are counted twice and self-loops are counted once.

algorithms significantly reduce the bias and variance of the
gradient. Comparing with the exact algorithm which con-
siders all the neighbors, our algorithms with only D(l) = 2
neighbors still get the same accuracy at testing time, and
achieve similar predictive performance during training in
a comparable number of epochs, with a much lower time
complexity, while these results are not achievable by NS.
On the largest Reddit dataset, the training time of our al-
gorithm is 7 times shorter than that of the best-performing
competitor among exact, neighbor sampling and importance
sampling (Chen et al., 2018) algorithms.

2. Backgrounds
We briefly review graph convolutional networks (GCNs),
stochastic training, neighbor sampling, and importance sam-
pling in this section.

2.1. Graph Convolutional Networks

We present our algorithm with a GCN for semi-supervised
node classification (Kipf & Welling, 2017). However, the
algorithm is neither limited to the task nor the model.
Our algorithm is applicable to other models including
GraphSAGE-mean (Hamilton et al., 2017a) and graph at-
tention networks (GAT) (Veličković et al., 2018), and other
tasks (Kipf & Welling, 2016; Berg et al., 2017; Schlichtkrull
et al., 2017; Hamilton et al., 2017b), as long as the model
aggregates neighbor activations by averaging.

In the node classification task, we have an undirected graph
G = (V, E) with V = |V| vertices and E = |E| edges,

where each vertex v consists of a feature vector xv and a
label yv. We observe the labels for some vertices VL. The
goal is to predict the labels for the rest vertices VU := V\VL.
The edges are represented as a symmetric V × V adjacency
matrix A, where Auv is the weight of the edge between u
and v, and the propagation matrix P is a normalized version
of A: Ã = A+ I , D̃uu =

∑
v Ãuv, and P = D̃−

1
2 ÃD̃−

1
2 .

A graph convolution layer is defined as
Z(l+1) = PH(l)W (l), H(l+1) = σ(Zl+1), (1)

where H(l) is the activation matrix in the l-th layer, whose
each row is the activation of a graph node. H(0) = X is the
input feature matrix, W (l) is a trainable weight matrix, and
σ(·) is an activation function. Denote |·| as the cardinality
of a set. The training loss is defined as

L =
1

|VL|
∑
v∈VL

f(yv, z
(L)
v), (2)

where f(·, ·) is a loss function. A graph convolution layer
propagates information to nodes from their neighbors by
computing the neighbor averaging PH(l). Let n(u) be
the set of neighbors of node u, and n(u) be its cardi-
nality. The neighbor averaging of node u, (PH(l))u =∑V
v=1 Puvh

(l)
v =

∑
v∈n(u) Puvh

(l)
v , is a weighted sum of

neighbors’ activations. Then, a fully-connected layer is ap-
plied on all the nodes, with a shared weight matrix W (l)

across all the nodes.

We denote the receptive field of a node u as all the acti-
vations h(l)v on layer l needed for computing z(L)u . If the
layer l is not explicitly mentioned, it is the input layer 0.
Intuitively, the receptive field of node u is just all its L-hop
neighbors, i.e., nodes that are reachable from u within L
hops, as illustrated in Fig. 1(a). When P = I , GCN reduces
to a multi-layer perceptron (MLP) model which does not
use the graph structure. For MLP, the receptive field of a
node u is just the node itself.

2.2. Stochastic Training

It is generally expensive to compute the batch gradient
∇L = 1

|VL|
∑
v∈VL ∇f(yv, z

(L)
v), which involves iterat-

Stochastic Training of Graph Convolutional Networks with Variance Reduction

ing over the entire labeled set of nodes. A possible solution
is to approximate the batch gradient by a stochastic gradient

1

|VB|
∑
v∈VB

∇f(yv, z
(L)
v), (3)

where VB ⊂ VL is a minibatch of labeled nodes. However,
this gradient is still expensive to compute, due to the large
receptive field size. For instance, as shown in Table 1,
the number of 2-hop neighbors on the NELL dataset is
averagely 1,597, which means in a 2-layer GCN, computing
the gradient even for a single node needs 1, 597/65, 755 ≈
2.4% nodes of the entire graph.

In subsequent sections, two other stochasticity will be intro-
duced besides the random selection of the minibatch: the
random sampling of neighbors (Sec. 2.3) and the random
dropout of features (Sec. 5).

2.3. Neighbor Sampling

To reduce the receptive field size, Hamilton et al. (2017a)
propose a neighbor sampling (NS) algorithm. NS randomly
chooses D(l) neighbors for each node at layer l and devel-
ops an estimator NS(l)

u of (PH(l))u based on Monte-Carlo
approximation:

(PH(l))u ≈ NS(l)
u :=

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh
(l)
v ,

where n̂(l)(u) ⊂ n(u) is a subset of D(l) random neigh-
bors. Therefore, NS reduces the receptive field size from all
the L-hop neighbors to the number of sampled neighbors,∏L
l=1D

(l). We refer NS(l)
u as the NS estimator of (PH(l))u,

and (PH(l))u itself as the exact estimator.

Neighbor sampling can also be written in a matrix form as
Z(l+1) = P̂ (l)H(l)W (l), H(l+1) = σ(Z(l+1)), (4)

where the propagation matrix P is replaced by a sparser
unbiased estimator P̂ (l), i.e., EP̂ (l) = P , where P̂ (l)

uv =
n(u)
D(l) Puv if v ∈ n̂(l)(u), and P̂ (l)

uv = 0 otherwise. Hamilton
et al. (2017a) propose to perform an approximate forward
propagation as Eq. (4), and do stochastic gradient descent
(SGD) with the auto-differentiation gradient. The approxi-
mated gradient has two sources of randomness: the random
selection of minibatch VB ⊂ VL, and the random selection
of neighbors.

Though P̂ (l) is an unbiased estimator of P ,
σ(P̂ (l)H(l)W (l)) is not an unbiased estimator of
σ(PH(l)W (l)), due to the non-linearity of σ(·). In the
sequel, both the prediction Z(L) and gradient ∇f(yv, z

(L)
v)

obtained by NS are biased, and the convergence of SGD
is not guaranteed, unless the sample size D(l) goes to
infinity. Because of the biased gradient, the sample
size D(l) needs to be large for NS, to keep comparable
predictive performance with the exact algorithm. Hamilton

et al. (2017a) choose D(1) = 10 and D(2) = 25, and the
receptive field size D(1) ×D(2) = 250 is much larger than
one, so the training is still expensive.

2.4. Importance Sampling

FastGCN (Chen et al., 2018) is another sampling-based
algorithm similar as NS. Instead of sampling neighbors
for each node, FastGCN directly subsample the receptive
field for each layer altogether. Formally, it approximates
(PH(l))u with S samples v1, . . . , vS ∈ V as

(PH(l))u = V

V∑
v=1

1

V
Puvh

(l)
v ≈

V

S

∑
vs∼q(v)

Puvh
(l)
vs /q(vs),

where they define the importance distribution q(v) ∝∑V
u=1 P

2
uv . According to the definition of P in Sec. 2.1, we

have q(v) ∝ 1
n(v)

∑
(u,v)∈E

1
n(u) . We refer to this estimator

as importance sampling (IS). Chen et al. (2018) show that
IS performs better than using a uniform sample distribu-
tion q(v) ∝ 1. NS can be viewed as an IS estimator with
the importance distribution q(v) ∝

∑
(u,v)∈E

1
n(u) , because

each node u has probability 1
n(u) to choose the neighbor

v. Though IS may have a smaller variance than NS, it still
only guarantees the convergence as the sample size S goes
to infinity. Empirically, we find IS to work even worse than
NS because sometimes it can select many neighbors for
one node, and no neighbor for another, in which case the
activation of the latter node is just meaningless zero.

3. Control Variate Based Algorithm
We present a novel control variate based algorithm that uti-
lizes historical activations to reduce the estimator variance.

3.1. Control Variate Based Estimator

While computing the neighbor average
∑
v∈n(u) Puvh

(l)
v ,

we cannot afford to evaluate all the h(l)v terms because they
need to be computed recursively, i.e., we again need the
activations h(l−1)w of all of v’s neighbors w.

Our idea is to maintain the history h̄(l)v for each h(l)v as an
affordable approximation. Each time when h(l)v is computed,
we update h̄(l)v with h(l)v . We expect h̄(l)v and h(l)v to be simi-
lar if the model weights do not change too fast during the
training. Formally, let ∆h

(l)
v = h

(l)
v − h̄(l)v , we approximate

(PH(l))u =
∑

v∈n(u)

Puv∆h
(l)
v +

∑
v∈n(u)

Puvh̄
(l)
v ≈ CV(l)

u

:=
n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆h
(l)
v +

∑
v∈n(u)

Puvh̄
(l)
v , (5)

where we represent h(l)v as the sum of ∆h
(l)
v and h̄(l)v , and

Stochastic Training of Graph Convolutional Networks with Variance Reduction

we only apply Monte-Carlo approximation on the ∆h
(l)
v

term. Averaging over all the h̄(l)v terms is still affordable
because they do not need to be computed recursively. Since
we expect h(l)v and h̄(l)v to be close, ∆hv will be small and
CV(l)

u should have a smaller variance than NS(l)
u . Particu-

larly, if the model weight is kept fixed, h̄(l)v should eventually
equal with h(l)v , so that CV(l)

u = 0 +
∑
v∈n(u) Puvh̄

(l)
v =∑

v∈n(u) Puvh
(l)
v = (PH(l))u, i.e., the estimator has zero

variance. This estimator is referred as CV. We will com-
pare the variance of NS and CV estimators in Sec. 3.2 and
show that the variance of CV will be eventually zero dur-
ing the training in Sec. 4. The term CV(l)

u − NS(l)
u =∑

v∈n(u) Puvh̄
(l)
u − n(u)

D(l)

∑
v∈n̂(l)(u) Puvh̄

(l)
u is a control

variate (Ripley, 2009, Chapter 5) added to the neighbor
sampling estimator NS(l)

u , to reduce its variance.

In matrix form, let H̄(l) be the matrix formed by stacking
h̄
(l)
v , then CV can be written as

Z(l+1) =
(
P̂ (l)(H(l) − H̄(l)) + PH̄(l)

)
W (l). (6)

3.2. Variance Analysis

We analyze the variance of the estimators assuming all the
features are 1-dimensional. The analysis can be extended to
multiple dimensions by treating each dimension separately.
We further assume that n̂(l)(u) is created by sampling D(l)

neighbors without replacement from n(u). The following
proposition is proven in Appendix A:

Proposition 1. If n̂(l)(u) contains D(l) samples from n(u)

without replacement, then Varn̂(l)(u)

[
n(u)
D(l)

∑
v∈n̂(l)(u) xv

]
=

C(l)
u

2D(l)

∑
v1∈n(u)

∑
v2∈n(u) (xv1 − xv2)2, where C(l)

u =

1− (D(l) − 1)/(n(u)− 1).

By Proposition 1, we have Varn̂(l)(u)

[
NS

(l)
u

]
=

C(l)
u

2D(l)∑
v1∈n(u)

∑
v2∈n(u) (Puv1h

(l)
v1 − Puv2h

(l)
v2)2, in contrast,

the variance of the CV estimator is Varn̂(l)(u)

[
CV

(l)
u

]
=

C(l)
u

2D(l)

∑
v1∈n(u)

∑
v2∈n(u)(Puv1∆h

(l)
v1 − Puv2∆h

(l)
v2)2,

which replaces h(l)v by ∆h
(l)
v . Since ∆h

(l)
v is usually much

smaller than h(l)v , the CV estimator enjoys much smaller
variance than the NS estimator. Furthermore, as we will
show in Sec. 4.2, ∆h

(l)
v converges to zero during training,

so we achieve not only variance reduction but variance
elimination, as the variance vanishes eventually.

3.3. Implementation Details

Training with the CV estimator is similar as with the NS es-
timator (Hamilton et al., 2017a). Particularly, each iteration
of the algorithm involves the following steps:

Stochastic GCN with Variance Reduction
1. Randomly select a minibatch VB ⊂ VL of nodes;
2. Build a computation graph that only contains the acti-

vations h(l)v and h̄(l)v needed for the current minibatch;
3. Get the predictions by forward propagation as Eq. (6);
4. Get the gradients by backward propagation, and up-

date the parameters by SGD;
5. Update the historical activations.

Step 3 and 4 are handled automatically by frameworks such
as TensorFlow (Abadi et al., 2016). The computational
graph at Step 2 is defined by the receptive field r(l) and
the propagation matrices P̂ (l) at each layer. The recep-
tive field r(l) specifies the activations h(l)v of which nodes
should be computed for the current minibatch, according to
Eq. (6). We can construct r(l) and P̂ (l) from top to bottom,
by randomly adding D(l) neighbors for each node in r(l+1),
starting with r(L) = VB. We assume h(l)v is always needed
to compute h(l+1)

v , i.e., v is always selected as a neighbor of
itself. The receptive fields are illustrated in Fig. 1(c), where
red nodes are in receptive fields, whose activations h(l)v are
needed, and the histories h̄(l)v of blue nodes are also needed.
Finally, in Step 5, we update h̄(l)v with h(l)v for each v ∈ r(l).
We have the pseudocode for the training in Appendix D.

3.4. Time and Space Complexity

GCN has two main types of computation, namely, the sparse-
dense matrix multiplication (SPMM) such as PH(l), and the
dense-dense matrix multiplication (GEMM) such as UW (l).
We assume that the input node feature is K-dimensional
and the first hidden layer is A-dimensional.

For batch GCN, the time complexity is O(EK) for SPMM
and O(V KA) for GEMM. For our stochastic training al-
gorithm with control variates, the dominant SPMM com-
putation is the average of neighbor history PH̄(0) for the
nodes in r(1), whose size is O(|VB |

∏L
l=2D

(l)), and each
node costs O(DK), where D is the average node degree.
Therefore, the time complexity of SPMM is approximately
O(EK

∏L
l=2D

(l)) per epoch. The dominant GEMM com-
putation is the first fully-connected layer on all the nodes
in r(1), whose time complexity is O(V KA

∏L
l=2D

(l)) per
epoch. Both time complexities are

∏L
l=2D

(l) times higher
than batch GCN, where

∏L
l=2D

(l) = 2 if we sample 2
neighbors per node and there are 2 GCN layers.

Our algorithm requires an additional O(V LA) space to
store historical activations. However, as implemented in our
code, the history can be stored in main memory along with
the data, which should be larger.

Stochastic Training of Graph Convolutional Networks with Variance Reduction

4. Theoretical Results
Besides smaller variance, CV also has stronger theoretical
guarantees than NS. In this section, we present two theo-
rems. The first states that if the model parameters are fixed,
e.g., during testing, CV produces exact predictions after L
epochs; and the second establishes the convergence towards
a local optimum regardless of the neighbor sampling size.

In this section, we assume that the algorithm is run by
epochs, where each epoch contains I iterations, and in
each iteration we want to compute the stochastic gradi-
ent w.r.t. nodes in Vi. We ensure that the activations of
all nodes are computed at least one in each epoch, so that
the staleness of the history is bounded. We use the sub-
script i for iteration number and CV to distinguish CV
from the exact algorithm, i.e., Z(l)

i and H
(l)
i , Wi, and

gi(Wi) := 1
|Vi|
∑
v∈Vi ∇f(yv, z

(L)
i,v) are the activations,

model weights, and stochastic gradients obtained by the
exact algorithm; and Z(l)

CV,i, H
(l)
CV,i, and gCV,i(Wi) are their

CV counterparts. ∇L(Wi) = 1
|VL|

∑
v∈VL ∇f(yv, z

(L)
v)

is the deterministic batch gradient computed by the exact
algorithm. The subscript i may be omitted for the exact algo-
rithm ifWi is a constant sequence. We let [L] = {0, . . . , L}
and [L]+ = {1, . . . , L}.

4.1. Exact Testing

The following theorem reveals the connection between the
exact predictions and the approximate predictions by CV.
The proof can be found in Appendix B.

Theorem 1. For a constant sequence of Wi = W and any
i > LI (i.e., after L epochs), the activations computed
by CV are exact, i.e., Z(l)

CV,i = Z(l) for each l ∈ [L] and

H
(l)
CV,i = H(l) for each l ∈ [L− 1].

Theorem 1 shows that at testing time, we can run forward
propagation with CV for L epoches and get exact predic-
tion. This outperforms NS, which cannot recover the exact
prediction unless the neighbor sample size goes to infinity.
Comparing with directly making exact predictions by an
exact batch algorithm, CV is more scalable because it does
not need to load the entire graph into memory.

4.2. Convergence Guarantee

The following theorem shows that SGD training with the
approximated gradients gCV,i(Wi) still converges to a local
optimum, regardless of the neighbor sampling size D(l).

Theorem 2. Assume that (1) the activation σ(·) is ρ-
Lipschitz, (2) the gradient of the cost function ∇zf(y, z)
is ρ-Lipschitz and bounded, (3) ‖gCV,V(W)‖∞, ‖g(W)‖∞,
and ‖∇L(W)‖∞ are all bounded byG > 0 for all P̂ ,V and
W . (4) The lossL(W) is ρ-smooth, i.e., |L(W2)−L(W1)−

〈∇L(W1),W2−W1〉| ≤ ρ
2 ‖W2 −W1‖2F ∀W1,W2, where

〈A,B〉 = tr(A>B) is the inner product of matrix A and
matrix B. (5) The loss L(W) ≥ L∗ is bounded below.
Then, there exists K > 0, s.t., ∀N > LI , if we run SGD for
R ≤ N iterations, where R is chosen uniformly from [N]+,
we have

ER ‖∇L(WR)‖2F ≤ 2
L(W1)− L∗ +K + ρK√

N
,

for the updates Wi+1 = Wi−γgCV,i(Wi) and the step size
γ = min{ 1ρ ,

1√
N
}.

Particularly, limN→∞ ER ‖∇L(WR)‖2 = 0. Therefore,
our algorithm converges to a local optimum W where the
batch gradient ∇L(W) = 0. The full proof is in Ap-
pendix C. For short, we show that gCV,i(Wi) is unbiased as
i→∞, and then show that SGD with such asymptotically
unbiased gradients converges to a local optimum.

Theorem 2 generalizes to graph attention networks
(GAT) (Veličković et al., 2018). We leave the variance
reduced stochastic estimators for GAT, and discussions on
the convergence of GAT and other models in Appendix C.5.

5. Handling Dropout of Features
In this section, we consider introducing a third source of
randomness, the random dropout of features (Srivastava
et al., 2014), which is adopted in various GCN models as
a regularization (Kipf & Welling, 2017; Veličković et al.,
2018). With dropout, the GCN layer becomesZ(l+1) = M◦
(PH(l))W (l), where Mij ∼ Bern(p) are i.i.d. Bernoulli
random variables, and ◦ is the element-wise product. Let
EM be the expectation over dropout masks.

With dropout, all the activations h(l)v are random vari-
ables whose randomness comes from dropout, even in
the exact algorithm Eq. (1). We want to design a
cheap estimator for the random variable (PH(l))u =∑
v∈n(u) Puvh

(l)
v , based on a stochastic neighborhood

n̂(l)(u). An ideal estimator should have the same dis-
tribution with (PH(l))u. However, such an estimator
is difficult to design. Instead, we develop an estimator
CVD(l)

u that eventually has the same mean and variance
with (PH(l))u, i.e., En̂(l)(u)EMCVD(l)

u = EM (PH(l))u

and Varn̂(l)(u)VarMCVD(l)
u = VarM (PH(l))u.

5.1. Control Variate for Dropout

With dropout, ∆h
(l)
v = h

(l)
v − h̄(l)v is not necessarily small

even if h̄(l)v and h(l)v have the same distribution. We develop
another stochastic approximation algorithm, control variate
for dropout (CVD), that works well with dropout.

Stochastic Training of Graph Convolutional Networks with Variance Reduction

Estimator VNS VD

Exact 0 S
(l)
u

NS C(l)
u

2D(l)

∑
v1,v2∈n(u)(Puv1µ

(l)
v1 − Puv2µ

(l)
v2)2 n(u)

D(l) S
(l)
u

CV C(l)
u

2D(l)

∑
v1,v2∈n(u)(Puv1∆µ

(l)
v1 − Puv2∆µ

(l)
v2)2

(
3 + n(u)

D(l)

)
S
(l)
u

CVD C(l)
u

2D(l)

∑
v1,v2∈n(u)(Puv1∆µ

(l)
v1 − Puv2∆µ

(l)
v2)2 S

(l)
u

Table 2. Variance from neighbor sampling (VNS) and variance from dropout (ND) of different estimators.

Our method is based on the weight scaling procedure (Sri-
vastava et al., 2014) to approximately compute the mean
µ
(l)
v := EM

[
h
(l)
v

]
. That is, along with the dropout model,

we can run a copy of the model without dropout to obtain the
mean µ(l)

v , as illustrated in Fig. 1(d). We obtain a stochastic
approximation by separating the mean and variance

(PH(l))u =
∑

v∈n(u)

Puv (̊h
(l)
v + ∆µ(l)

v + µ̄(l)
v) ≈ CVD(l)

u

:=
√
R
∑
v∈n̂

Puvh̊
(l)
v +R

∑
v∈n̂

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v ,

where we define n = n̂(l)(u), R = n(u)/D(l) for short,
h̊
(l)
v = h

(l)
v − µ

(l)
v , µ̄(l)

v is the historical mean activation,
obtained by storing µ(l)

v instead of h(l)v , and ∆µ
(l)
v = µ

(l)
v −

µ̄
(l)
v . We separate h(l)v as three terms, the latter two terms

on µ(l)
v do not have the randomness from dropout, and µ(l)

v

are treated as if h(l)v for the CV estimator. The first term
has zero mean w.r.t. dropout, i.e., EM h̊(l)v = 0. We have
En̂(l)(u)EMCVD(l)

u = 0 +
∑
v∈n(u) Puv(∆µ

(l)
v + µ̄

(l)
v) =

EM (PH(l))u, i.e., the estimator is unbiased, and we shall
see that the estimator eventually has the correct variance if
h
(l)
v ’s are uncorrelated in Sec. 5.2.

5.2. Variance Analysis

We analyze the variance under the assumption that the
node activations are uncorrelated, i.e., CovM

[
h
(l)
v1 , h

(l)
v2

]
=

0,∀v1 6= v2. We report the correlation between nodes em-
pirically in Appendix G. To facilitate the analysis of the vari-
ance, we introduce two propositions proven in Appendix A .
The first helps the derivation of the dropout variance; and
the second implies that we can treat the variance introduced
by neighbor sampling and by dropout separately.

Proposition 2. If n̂(l)(u) contains D(l) samples from the
set n(u) without replacement, x1, . . . , xV are random
variables, ∀v,E [xv] = 0 and ∀v1 6= v2,Cov [xv1 , xv2] =

0, then VarX,n̂(l)(u)

[
n(u)
D(l)

∑
v∈n̂(l)(u) xv

]
=

n(u)
D(l)

∑
v∈n(u) Var [xv] .

Proposition 3. X and Y are two random variables, and

f(X,Y) and g(Y) are two functions. If EXf(X,Y) =
0, then VarX,Y [f(X,Y) + g(Y)] = VarX,Y f(X,Y) +
VarY g(Y).

By Proposition 3, Varn̂VarMCVD(l)
u can be writ-

ten as the sum of Varn̂VarM
[√

R
∑
v∈n̂ Puvh̊

(l)
v

]
and

Varn̂
[
R
∑
v∈n̂ Puv∆µ

(l)
v +

∑
v∈n(u) Puvµ̄

(l)
v

]
. We refer

the first term as the variance from dropout (VD) and the
second term as the variance from neighbor sampling (VNS).
Ideally, VD should equal to the variance of (PH(l))u and
VNS should be zero. VNS can be derived by replicating the
analysis in Sec. 3.2, and replacing h with µ. Let s(l)v =

VarMh
(l)
v = VarM h̊

(l)
v , and S

(l)
u = VarM (PH(l))u =∑

v∈n(u) P
2
uvs

(l)
v , By Proposition 2, VD of CVD(l)

u is∑
v∈n(u) P

2
uvVar

[̊
h
(l)
v

]
= S

(l)
u , wich equals with the VD

of the exact estimator as desired.

We summarize the estimators and their variances in Table 2,
where the derivations are in Appendix A. As in Sec. 3.2,
VNS of CV and CVD depends on ∆µv , which converges to
zero as the training progresses, while VNS of NS depends
on the non-zero µv. On the other hand, CVD is the only
estimator except the exact one that gives correct VD.

5.3. Preprocessing Strategy

There are two possible models adopting dropout, Z(l+1) =
P (M ◦ H(l))W (l) or Z(l+1) = M ◦ (PH(l))W (l). The
difference is whether the dropout layer is before or after
neighbor averaging. Kipf & Welling (2017) adopt the for-
mer one, and we adopt the latter one, while the two models
perform similarly in practice, as we shall see in Sec. 6.1.
The advantage of the latter model is that we can preprocess
U (0) = PH(0) = PX and takes U (0) as the new input. In
this way, the actual number of graph convolution layers is
reduced by one — the first layer is merely a fully-connected
layer instead of a graph convolution one. Since most GCNs
only have two graph convolution layers (Kipf & Welling,
2017; Hamilton et al., 2017a), this gives a significant reduc-
tion of the receptive field size and speeds up the computation.
We refer this optimization as the preprocessing strategy.

Stochastic Training of Graph Convolutional Networks with Variance Reduction

Dataset M0 M1 M1+PP
Citeseer 70.8± .1 70.9± .2 70.9± .2

Cora 81.7± .5 82.0± .8 81.9± .7
PubMed 79.0± .4 78.7± .3 78.9± .5
NELL - 64.9± 1.7 64.2± 4.6

PPI 97.9± .04 97.8± .05 97.6± .09
Reddit 96.2± .04 96.3± .07 96.3± .04

Table 3. Testing accuracy of different algorithms and models after
fixed number of epochs. Our implementation does not support M0
on NELL so the result is not reported.

0 50 100 150 2000.4

0.6

0.8

1.0
citeseer

0 50 100 150 2000.2

0.4

0.6

0.8

1.0
cora

0 50 100 150 200
0.2

0.4

0.6

0.8
pubmed

0 100 200 300 400

0.5

1.0

1.5
nell

0 10 20 30 40 500.000

0.025

0.050

0.075

0.100
reddit

0 20 40 60 80 1000.00

0.02

0.04

ppi

M1+PP NS NS+PP IS+PP CV+PP

Figure 2. Comparison of training loss with respect to number of
epochs without dropout. The CV+PP curve overlaps with the Exact
curve in the first four datasets. The training loss of NS and IS+PP
are not shown on some datasets because they are too high.

6. Experiments
We examine the variance and convergence of our algo-
rithms empirically on six datasets, including Citeseer, Cora,
PubMed and NELL from Kipf & Welling (2017) and Red-
dit, PPI from Hamilton et al. (2017a), with the same train /
validation / test splits, as summarized in Table 1. To mea-
sure the predictive performance, we report Micro-F1 for
the multi-label PPI dataset, and accuracy for all the other
multi-class datasets. The model is GCN for the former 4
datasets and GraphSAGE-mean (Hamilton et al., 2017a) for
the latter 2 datasets, see Appendix E for the details on the
architectures. We repeat the convergence experiments 10
times on Citeseer, Cora, PubMed and NELL, and 5 times
on Reddit and PPI. The experiments are done on a Titan X
(Maxwell) GPU.

6.1. Impact of Preprocessing

We first examine the impact of switching the order of
dropout and computing neighbor averaging in Sec. 5.3. Let
M0 be the Z(l+1) = P (M ◦H(l))W (l) model by (Kipf &
Welling, 2017), and M1 be our Z(l+1) = M ◦ (PH(l))W (l)

0 50 100 150 2000.69

0.70

0.71

0.72
citeseer

0 50 100 150 2000.77

0.78

0.79

0.80
cora

0 50 100 150 200

0.78

0.80

pubmed

0 100 200 300 4000.600

0.625

0.650

0.675
nell

0 10 20 30 40 500.950

0.955

0.960

0.965

reddit

0 20 40 60 80 1000.90

0.92

0.94

0.96

ppi

M1+PP NS NS+PP IS+PP CV+PP CVD+PP

Figure 3. Comparison of validation accuracy with respect to num-
ber of epochs. NS converges to 0.94 on the Reddit dataset and 0.6
on the PPI dataset.
model, we compare three settings: M0 and M1 are exact
algorithms without any neighbor sampling, and M1+PP
samples a large number of D(l) = 20 neighbors and prepro-
cesses PH(0) so that the first neighbor averaging is exact.
In Table 3 we can see that all the three settings performs
similarly, i.e., switching the order does not affect the predic-
tive performance. Therefore, we use the fastest M1+PP as
the exact baseline in following convergence experiments.

6.2. Convergence Results

Having the M1+PP algorithm as an exact baseline, the next
goal is reducing the time complexity per epoch to make it
comparable with the time complexity of MLP, by setting
D(l) = 2. We cannot set D(l) = 1 because GraphSAGE
explicitly need the activation of a node itself besides the
average of its neighbors. Four approximate algorithms are
included for comparison: (1) NS, which adopts the NS es-
timator with no preprocessing. (2) NS+PP, which is same
with NS but uses preprocessing. (3) CV+PP, which adopts
the CV estimator and preprocessing. (4) CVD+PP, which
uses the CVD estimator. All the four algorithms have sim-
ilar low time complexity per epoch with D(l) = 2, while
M1+PP takes D(l) = 20. We study how much convergence
speed per epoch and model quality do these approximate
algorithms sacrifice comparing with the M1+PP baseline.

We set the dropout rate as zero and plot the training loss
with respect to number of epochs as Fig. 2. We can see that
CV+PP can always reach the same training loss with M1+PP,
while NS, NS+PP and IS+PP have higher training losses
because of their biased gradients. CVD+PP is not included
because it is the same with CV+PP when the dropout rate
is zero. The results matches the conclusion of Theorem 2,
which states that training with the CV estimator converges

Stochastic Training of Graph Convolutional Networks with Variance Reduction

Alg. Valid. acc. Epochs Time (s)

M1+PP 96.0 4.8± .7 252± 37
NS 94.4± .01 100 445± 14

NS+PP 96.0 39.8± 11 161± 47
IS+PP 95.8± .1 50 251± 6

CV+PP 96.0 7.6± 1.6 39± 8
CVD+PP 96.0 6.8± 1.3 37± 7

Table 4. Time complexity comparison of different algorithms on
the Reddit dataset.

cora pubmed nell citeseer ppi reddit
Dataset

0.0

0.5

1.0

Te
st

in
g

ac
cu

ra
cy

Algorithm
NS
NS+PP
CV
Exact

Figure 4. Comparison of the accuracy of different testing algo-
rithms. The y-axis is Micro-F1 for PPI and accuracy otherwise.

to a local optimum of Exact, regardless of D(l).

Next, we turn dropout on and compare the validating accu-
racy obtained by the model trained with different algorithms
at each epoch. Regardless of the training algorithm, the
exact algorithm is used for computing predictions on the
validating set. The result is shown in Fig. 3. We find that
when dropout is present, CVD+PP is the only algorithm
that can reach comparable validation accuracy with the ex-
act algorithm on all datasets. Furthermore, its convergence
speed with respect to the number of epochs is comparable
with M1+PP, implying almost no loss of the convergence
speed despite itsD(l) is 10 times smaller. This is already the
best we can expect - comparable time complexity with MLP,
yet similar model quality with GCN. CVD+PP performs
much better than M1+PP on the PubMed dataset, we sus-
pect it finds a better local optimum. Meanwhile, the simpler
CV+PP also reaches a comparable accuracy with M1+PP
for all datasets except PPI. IS+PP works worse than NS+PP
on the Reddit and PPI datasets, perhaps because sometimes
nodes can have no neighbor selected, as we mentioned in
Sec. 2.4. Our accuracy result for IS+PP can match the re-
sult reported by Chen et al. (2018), while their NS baseline,
GraphSAGE (Hamilton et al., 2017a), does not implement
the preprocessing technique in Sec. 5.3.

6.3. Further Analysis on Time Complexity, Testing
Accuracy and Variance

Table 4 reports the average number of epochs and time
to reach a given 96% validation accuracy on the largest
Reddit dataset. Sparse and dense computations are defined
in Sec. 3.4. We found that CVD+PP is about 7 times faster
than M1+PP due to the significantly reduced receptive field
size. Meanwhile, NS and IS+PP does not converge to the
given accuracy.

cora pubmed nell citeseer ppi reddit
Dataset

0.0

2.5

5.0

7.5

Gr
ad

ie
nt

 B
ia

s

Bias (w.o. dropout)

cora pubmed nell citeseer ppi reddit
Dataset

0

20

40

Gr
ad

ie
nt

 S
td

. D
ev

.

Std. dev. (w.o. dropout)

cora pubmed nell citeseer ppi reddit
Dataset

0

1

2

3

Gr
ad

ie
nt

 B
ia

s

Bias (w. dropout)

cora pubmed nell citeseer ppi reddit
Dataset

0

10

20
Gr

ad
ie

nt
 S

td
. D

ev
.

Std. dev. (w. dropout)

Figure 5. Bias and standard deviation of the gradient for different
algorithms during training.

We compare the quality of the predictions made by different
algorithms, using the same model trained with M1+PP in
Fig. 4. As Theorem 1 states, CV reaches the same test-
ing accuracy as the exact algorithm, while NS and NS+PP
perform much worse.

Finally, we compare the average bias and variance of the
gradients per dimension for first layer weights relative to
the magnitude of the weights in Fig. 5. For models without
dropout, the gradient of CV+PP is almost unbiased. For
models with dropout, the bias and variance of CV+PP and
CVD+PP are usually smaller than NS and NS+PP.

7. Conclusions
The large receptive field size of GCN hinders its fast stochas-
tic training. In this paper, we present control variate based
algorithms to reduce the receptive field size. Our algorithms
can achieve comparable convergence speed with the ex-
act algorithm even the neighbor sampling size D(l) = 2,
so that the per-epoch cost of training GCN is compara-
ble with training MLPs. We also present strong theoreti-
cal guarantees, including exact prediction and the conver-
gence to a local optimum. Our code is released at https:
//github.com/thu-ml/stochastic_gcn.

https://github.com/thu-ml/stochastic_gcn
https://github.com/thu-ml/stochastic_gcn

Stochastic Training of Graph Convolutional Networks with Variance Reduction

Acknowledgements
We thank Shuyu Cheng for his help in proofreading. This
work was supported by NSFC Projects (Nos. 61620106010,
61621136008, 61332007), Beijing NSF Project (No.
L172037), Tiangong Institute for Intelligent Computing,
NVIDIA NVAIL Program, Siemens and Intel. L.S. was
also supported in part by NSF IIS-1218749, NIH BIGDATA
1R01GM108341, NSF CAREER IIS-1350983, NSF IIS-
1639792 EAGER, NSF CNS-1704701, ONR N00014-15-1-
2340, Intel ISTC, NVIDIA and Amazon AWS.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In OSDI, volume 16, pp. 265–283, 2016.

Berg, R. v. d., Kipf, T. N., and Welling, M. Graph
convolutional matrix completion. arXiv preprint
arXiv:1706.02263, 2017.

Chen, J., Ma, T., and Xiao, C. Fastgcn: Fast learning with
graph convolutional networks via importance sampling.
In ICLR, 2018.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 855–864. ACM, 2016.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, pp. 1025–1035, 2017a.

Hamilton, W. L., Ying, R., and Leskovec, J. Representation
learning on graphs: Methods and applications. arXiv
preprint arXiv:1709.05584, 2017b.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

LeCun, Y., Bengio, Y., et al. Convolutional networks for
images, speech, and time series. The handbook of brain
theory and neural networks, 3361(10):1995, 1995.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 701–710. ACM,
2014.

Ripley, B. D. Stochastic simulation, volume 316. John
Wiley & Sons, 2009.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. v. d.,
Titov, I., and Welling, M. Modeling relational data
with graph convolutional networks. arXiv preprint
arXiv:1703.06103, 2017.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. Journal of machine
learning research, 15(1):1929–1958, 2014.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei,
Q. Line: Large-scale information network embedding.
In Proceedings of the 24th International Conference on
World Wide Web, pp. 1067–1077. International World
Wide Web Conferences Steering Committee, 2015.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Stochastic Training of Graph Convolutional

Networks with Variance Reduction:

Supplementary Material

A Derivation of the variance

The following proposition is widely used in this section.

Proposition A. Let X1, . . . , XN are random variables, then

Var

[
N∑
i=1

Xi

]
=

N∑
i=1

N∑
j=1

Cov [Xi, Xj] .

Proof.

Var

[
N∑
i=1

Xi

]
= E

 N∑
i=1

N∑
j=1

XiXj

−(E N∑
i=1

Xi

)2

= E

 N∑
i=1

N∑
j=1

(
XiXj −

1

N
E

N∑
i=1

Xi

)
=

N∑
i=1

N∑
j=1

Cov [Xi, Xj] .

We begin with the proof for the three propositions in the main text.

Proposition 1. If n̂(l)(u) contains D(l) samples from n(u) without replace-

ment, then Varn̂(l)(u)

[
n(u)
D(l)

∑
v∈n̂(l)(u) xv

]
=

C(l)
u

2D(l)

∑
v1∈n(u)

∑
v2∈n(u) (xv1 −

xv2)2, where C
(l)
u = 1− (D(l) − 1)/(n(u)− 1).

Proof. We denote theD(l) samples in the set as v1, . . . , vD(l) .Let x̄ = 1
n(u)

∑
v∈n(u) xv,

1

then

Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

xv


=Varv1,...,vD(l)

n(u)

D(l)

D(l)∑
i=1

xvi


=

(
n(u)

D(l)

)2 D(l)∑
i=1

D(l)∑
j=1

Covv1,...,vD(l)

[
xvi , xvj

]

=

(
n(u)

D(l)

)2

D(l)∑
i=1

Varvi
[
x2vi
]

+
∑
i 6=j

Covvi,vj
[
xvi , xvj

]
=

(
n(u)

D(l)

)2
D(l)

n(u)

∑
v∈n(u)

(xv − x̄)2 +
D(l)(D(l) − 1)

n(u)(n(u)− 1)

 ∑
i,j∈n(u)

(xi − x̄)(xj − x̄)−
∑
i∈n(u)

(xi − x̄)2


=
n(u)

D(l)

(
1− D(l) − 1

n(u)− 1

) ∑
v∈n(u)

x2v − n(u)x̄2


=

1

2D(l)

(
1− D(l) − 1

n(u)− 1

)2n(u)
∑

v∈n(u)

x2v −
∑

v1,v2∈n(u)

2xv1xv2


=
C

(l)
u

2D(l)

∑
v1,v2∈n(u)

(xv1 − xv2)2.

Proposition 2. If n̂(l)(u) contains D(l) samples from the set n(u) without re-
placement, x1, . . . , xV are random variables, ∀v,E [xv] = 0 and ∀v1 6= v2,Cov [xv1 , xv2] =

0, then VarX,n̂(l)(u)

[
n(u)
D(l)

∑
v∈n̂(l)(u) xv

]
= n(u)

D(l)

∑
v∈n(u) Var [xv] .

2

Proof.

VarX,n̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

xv


=

(
n(u)

D(l)

)2

EX


D(l)∑
i=1

En̂(l)(u)x
2
vi +

∑
i 6=j

En̂(l)(u)xvixvj


=

(
n(u)

D(l)

)2

EX

D(l)

n(u)

∑
i∈n(u)

x2i +
D(l)(D(l) − 1)

n(u)(n(u)− 1)

∑
i,j∈n(u),i6=j

xixj


=
n(u)

D(l)

∑
i∈n(u)

Var [xi] .

Proposition 3. X and Y are two random variables, and f(X,Y) and g(Y) are
two functions. If EXf(X,Y) = 0, then VarX,Y [f(X,Y) + g(Y)] = VarX,Y f(X,Y)+
VarY g(Y).

Proof.

VarX,Y [f(X,Y) + g(Y)] = VarX,Y f(X,Y) + VarY g(Y) + 2CovX,Y [f(X,Y), g(Y)],

where

CovX,Y [f(X,Y), g(Y)] = EY EX [(f(X,Y)− EX,Y f(X,Y))(g(Y)− EY g(Y))]

= EY [(EXf(X,Y)− 0)(g(Y)− EY g(Y))]

= EY [0(g(Y)− EY g(Y))] = 0.

Then, we derive the variance of the estimators with dropout is present.

A.1 Variance of the exact estimator

VarM

 ∑
v∈n(u)

Puvh
(l)
v

 = VarM

 ∑
v∈n(u)

Puvh̊
(l)
v

 =
∑

v∈n(u)

P 2
uvVarM

[̊
h(l)v

]
= S(l)

u .

3

A.2 Variance of the NS estimator

Varn̂(l)(u),M

[
NS(l)

u

]
=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh
(l)
v


=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv (̊h
(l)
v + µ(l)

v)


=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v

+ Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvµ
(l)
v

 ,
where the last equality is by Proposition 3. By Proposition 2, VD is

Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v


=VarMVarn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v


=
n(u)

D(l)
S(l)
u ,

where S
(l)
u =

∑
v∈n(u) VarM

[
Puvh

(l)
v

]
is defined in Sec. 5.2. By Proposition 1,

VNS is

Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvµ
(l)
v

 =
C

(l)
u

2D(l)

∑
v1,v2∈n(u)

(Puv1µ
(l)
v1 − Puv2µ

(l)
v2)2.

A.3 Variance of the CVD estimator

Varn̂(l)(u),M

[
CVD(l)

u

]
=Varn̂(l)(u),M

√n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v +

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v


=Varn̂(l)(u),M

√n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v

+ Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v

 ,

4

where the last equality is by Proposition 3. By Proposition 2, VD is

Varn̂(l)(u),M

√n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v


=
D(l)

n(u)
VarMVarn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v


=S(l)

u .

By Proposition 1, VNS is

Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v


=Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v


=
C

(l)
u

2D(l)

∑
v1,v2∈n(u)

(Puv1∆µ(l)
v1 − Puv2∆µ(l)

v2)2.

A.4 Variance of the CV estimator

Varn̂(l)(u),M

[
CV(l)

u

]
=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆h
(l)
v +

∑
v∈n(u)

Puvh̄
(l)
v


=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆h̊
(l)
v +

∑
v∈n(u)

Puv
¯̊
h(l)v +

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v


=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆h̊
(l)
v +

∑
v∈n(u)

Puv
¯̊
h(l)v


+ Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v

 ,
where ∆h̊

(l)
v = (h

(l)
v −µ(l)

v)−(h̄
(l)
v − µ̄(l)

v), and the last equality is by Proposition 3.
The VNS term is the same with CVD’s VNS term.

To analyze the VD, we further assume
¯̊
h
(l)
v and h̊

(l)
v are i.i.d., so EM∆h̊

(l)
v = 0,

5

EM (∆h̊
(l)
v)2 = 2EM (̊h

(l)
v)2, and EM h̊(l)v ∆h̊

(l)
v = EM (̊h

(l)
v)2.

Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆h̊
(l)
v +

∑
v∈n(u)

Puv
¯̊
h(l)v


=En̂(l)(u),M

{(n(u)

D(l)

)2 ∑
i,j∈n̂(l)(u)

PuiPuj∆h̊
(l)
i ∆h̊

(l)
j +

∑
i,j∈n(u)

PuiPuj
¯̊
h
(l)
i

¯̊
h
(l)
j

+ 2
n(u)

D(l)

∑
i∈n̂(l)(u),j∈n(u)

PuiPuj∆h̊
(l)
i

¯̊
h
(l)
j

}

=

(
n(u)

D(l)

)2 ∑
i∈n̂(l)(u)

En̂(l)(u),M (Pui∆h̊
(l)
i)2 +

∑
i∈n(u)

P 2
uiEM

¯̊
h
(l)
i + 2

∑
ij∈n(u)

PuiPuj∆h̊
(l)
i

¯̊
h
(l)
j

=
n(u)

D(l)

∑
i∈n(u)

Pui2EM (̊h
(l)
i)2 +

∑
i∈n(u)

P 2
uiEM

¯̊
h
(l)
i + 2

∑
i∈n(u)

P 2
uiEM

¯̊
h
(l)
i

=

(
3 +

n(u)

D(l)

)
S(l)
u .

B Proof of Theorem 1

Theorem 1. For a constant sequence of Wi = W and any i > LI (i.e., after L

epochs), the activations computed by CV are exact, i.e., Z
(l)
CV,i = Z(l) for each

l ∈ [L] and H
(l)
CV,i = H(l) for each l ∈ [L− 1].

Proof. We prove by induction. After the first epoch the activation h
(0)
i,v is at

least computed once for each node v. So H̄
(0)
CV,i = H

(0)
CV,i = H(0) = X for all

i > I. Assume that we have H̄
(l)
CV,i = H

(l)
CV,i = H(l) for all i > (l + 1)I. Then for

all i > (l + 1)I

Z
(l+1)
CV,i =

(
P̂

(l)
i (H

(l)
CV,i − H̄

(l)
CV,i) + PH̄

(l)
CV,i

)
W (l) = PH̄

(l)
CV,iW

(l) = PH(l)W (l) = Z(l+1).

(1)

H
(l+1)
CV,i = σ(Z

(l+1)
CV,i) = H(l+1)

After one more epoch, all the activations h
(l+1)
CV,i,v are computed at least once for

each v, so H̄
(l+1)
CV,i = H

(l+1)
CV,i = H(l+1) for all i > (l + 2)I. By induction, we know

that after LI steps, we have H̄
(L−1)
CV,i = H

(L−1)
CV,i = H(L−1). By Eq. 1 we also have

Z̄
(L)
CV,i = Z(L).

6

C Proof of Theorem 2

We proof Theorem 2 in 3 steps:

1. Lemma 1: For a sequence of weights W (1), . . . ,W (N) which are close to
each other, CV’s approximate activations are close to the exact activations.

2. Lemma 2: For a sequence of weights W (1), . . . ,W (N) which are close to
each other, CV’s gradients are close to be unbiased.

3. Theorem 2: An SGD algorithm generates the weights that changes slow
enough for the gradient bias goes to zero, so the algorithm converges.

The following proposition is needed in our proof

Proposition B. Let ‖A‖∞ = maxij |Aij |, then

• ‖AB‖∞ ≤ col(A) ‖A‖∞ ‖B‖∞, where col(A) is the number of columns of
the matrix A.

• ‖A ◦B‖∞ ≤ ‖A‖∞ ‖B‖∞, where ◦ is the element wise product.

• ‖A+B‖∞ ≤ ‖A‖∞ + ‖B‖∞.

Proof.

‖AB‖∞ = max
ij

∣∣∣∣∣∑
k

AikBik

∣∣∣∣∣ ≤ max
ij

∣∣∣∣∣∑
k

‖A‖∞ ‖B‖∞

∣∣∣∣∣ = col(A) ‖A‖∞ ‖B‖∞ .

‖A ◦B‖∞ = max
ij
|AijBij | ≤ max

ij
‖A‖∞ ‖B‖∞ = ‖A‖∞ ‖B‖∞ .

‖A+B‖∞ = max
ij
|Aij +Bij | ≤ max

ij
{|Aij |+ |Bij |} ≤ max

ij
|Aij |+ max

ij
|Bij | = ‖A‖∞ + ‖B‖∞ .

We define C := max{col(P), col(H(0)), . . . , col(H(L))} to be the maximum
number of columns we can possibly encounter in the proof.

C.1 Single layer GCN

The following proposition states that if the inputs and the weights of an one-layer
GCN with CV estimator does not change too much, then its output does not
change too much, and is close to the output of an exact one-layer GCN.

Proposition C. If the activation σ(·) is ρ-Lipschitz, for any series of T inputs,
weights, and stochastic propagation matrices (Xi, XCV,i,Wi, P̂i)

T
i=1, s.t.,

1. all the matrices are bound by B, i.e., ‖XCV,i‖∞ ≤ B, ‖Xi‖∞ ≤ B,

‖Wi‖∞ ≤ B and
∥∥∥P̂i∥∥∥

∞
≤ B,

7

2. the differences are bound by ε, i.e., ‖XCV,i −XCV,j‖∞ < ε, ‖XCV,i −Xi‖∞ <
ε and ‖Wi −Wj‖∞ < ε,

let P = EP̂i. If at time i we feed (XCV,i,Wi, P̂i) to an one-layer GCN with CV
estimator to evaluate the prediction for nodes in the minibatch Vi, 1

ZCV,i =
(
P̂i(XCV,i − X̄CV,i) + PX̄CV,i

)
Wi, HCV,i = σ(ZCV,i).

where X̄CV,i is the maintained history at time i, and (Xi,Wi, P) to an one-layer
GCN with exact estimator

Zi = PXiWi, Hi = σ(Zi),

then there exists K that depends on C, B and ρ, s.t. for all I < i, j ≤ T , where
I is the number of iterations per epoch:

1. The outputs does not change too fast: ‖ZCV,i − ZCV,j‖∞ < Kε and
‖HCV,i −HCV,j‖∞ < Kε,

2. The outputs are close to the exact output: ‖ZCV,i − Zi‖∞ < Kε and
‖HCV,i −Hi‖∞ < Kε.

Proof. Because for all i > I (i.e., after one epoch), the elements of X̄CV,i are all
taken from previous iterations, i.e., XCV,1, . . . , XCV,i−1, we know that∥∥X̄CV,i −XCV,i

∥∥
∞ ≤ max

j≤i
‖XCV,j −XCV,i‖∞ ≤ ε (∀i > I). (2)

By triangular inequality, we also know∥∥X̄CV,i − X̄CV,j

∥∥
∞ < 3ε (∀i, j > I). (3)∥∥X̄CV,i −Xi

∥∥
∞ < 2ε (∀i > I). (4)

Since ‖XCV,1‖∞ , . . . , ‖XCV,T ‖∞ are bounded by B,
∥∥X̄CV,i

∥∥
∞ is also bounded

1Conceptually we feed the data for all the nodes in V, but since we only require the
predictions for the nodes in Vi, the algorithm will only fetch the input of a subset of nodes
⊂ V, and update history for those nodes.

8

by B for i > I. Then,

‖ZCV,i − ZCV,j‖∞
=
∥∥∥(P̂i(XCV,i − X̄CV,i) + PX̄CV,i

)
Wi −

(
P̂j(XCV,j − X̄CV,j) + PX̄CV,j

)
Wj

∥∥∥
∞

≤
∥∥∥P̂i(XCV,i − X̄CV,i)Wi − P̂j(XCV,j − X̄CV,j)Wj

∥∥∥
∞

+ ρ
∥∥PX̄CV,iWi − PX̄CV,jWj

∥∥
∞

≤C2[
∥∥∥P̂i − P̂j∥∥∥

∞

∥∥XCV,i − X̄CV,i

∥∥
∞ ‖Wi‖∞

+
∥∥∥P̂j∥∥∥

∞

∥∥XCV,i − X̄CV,i −XCV,j + X̄CV,j

∥∥
∞ ‖Wi‖∞

+
∥∥∥P̂j∥∥∥

∞

∥∥XCV,j − X̄CV,j

∥∥
∞ ‖Wi −Wj‖∞

+ ‖P‖∞
∥∥X̄CV,i − X̄CV,j

∥∥
∞ ‖Wi‖∞

+ ‖P‖∞
∥∥X̄CV,j

∥∥
∞ ‖Wi −Wj‖∞]

≤C2ε[
∥∥∥P̂i − P̂j∥∥∥

∞
‖Wi‖∞ + 2

∥∥∥P̂j∥∥∥
∞
‖Wi‖∞ +

∥∥∥P̂j∥∥∥
∞
‖Wi −Wj‖∞

+3
∥∥∥P̂j∥∥∥

∞
‖Wi‖∞ +

∥∥∥P̂j∥∥∥
∞

∥∥X̄CV,j

∥∥
∞]

≤εC2
[
2B2 + 2B2 + 2B2 + 3B2 +B2

]
=K1ε,

where K1 = 10C2B2, and

‖ZCV,i − Zi‖∞ ≤
∥∥∥(P̂i(XCV,i − X̄CV,i) + P (X̄CV,i −Xi)

)∥∥∥
∞
‖Wi‖∞

≤ C(
∥∥∥P̂i∥∥∥

∞
ε+ 2 ‖P‖∞ ε) ‖Wi‖∞

≤ 3CB2ε

= K2ε,

where K2 = 3CB2. By Lipschitz continuity

‖HCV,i −HCV,j‖∞ ≤ ρK1ε,

‖HCV,i −Hi‖∞ ≤ ρK2ε.

We just let K = max{ρK1, ρK2,K1,K2}.

C.2 Lemma 1: Activation of Multi-layer GCN

The following lemma bounds the approximation error of activations in a multi-
layer GCN with CV. Intuitively, there is a sequence of slow-changing model
parameters (Wi), where Wi is the model at the i-th iteration. At each iteration i
we use GCN with CV and GCN with Exact estimator to compute the activations
for the minibatch Vi, and update the corresponding history. Then after L epochs,
the error of the predictions by the CV estimator is bounded by the rate of change
of (Wi), regardless of the stochastic propagation matrix P̂i.

9

Lemma 1. Assume all the activations are ρ-Lipschitz, given a fixed dataset
X and a sequence of T model weights and stochastic propagation matrices
(Wi, P̂i)

T
i=1, s.t.,

1. ‖Wi‖∞ ≤ B and
∥∥∥P̂i∥∥∥

∞
≤ B,

2. ‖Wi −Wj‖∞ < ε,∀i, j,

let P = EP̂i. If at time i we feed (X,Wi, P̂i) to a GCN with CV estimator to
evaluate the prediction for nodes in the minibatch Vi,

Z
(l+1)
CV,i =

(
P̂

(l)
i (H

(l)
CV,i − H̄

(l)
CV,i) + PH̄

(l)
CV,i

)
W

(l)
i , H

(l+1)
CV,i = σ(Z

(l+1)
CV,i).

where H̄
(l)
CV,i is the maintained history at time i, and (X,Wi, P) to a GCN with

exact estimator

Z
(l+1)
i = PH

(l)
i W

(l)
i , H

(l+1)
i = σ(Z

(l+1)
i),

then there exists K that depends on C, B and ρ s.t.,

•
∥∥∥H(L)

i −H(L)
CV,i

∥∥∥
∞
< Kε, ∀i > LI, l = 1, . . . , L− 1,

•
∥∥∥Z(L)

i − Z(L)
CV,i

∥∥∥
∞
< Kε, ∀i > LI, l = 1, . . . , L.

Proof. By Proposition C.1, we know there exists K(1), s.t.,
∥∥∥H(1)

i −H
(1)
CV,i

∥∥∥ <
K(1)ε and

∥∥∥H(1)
CV,i −H

(1)
CV,j

∥∥∥ < K(1)ε, ∀i > I.

Repeat this for L−1 times, we know there existK(1), . . . ,K(L), s.t.,
∥∥∥H(L)

i −H(L)
CV,i

∥∥∥ <
Kε,

∥∥∥H(L)
CV,i −H

(K)
CV,j

∥∥∥ < Kε,
∥∥∥Z(L)

i − Z(L)
CV,i

∥∥∥ < Kε and
∥∥∥Z(L)

CV,i − Z
(K)
CV,j

∥∥∥ < Kε,

∀i > LI, where K =
∏L
l=1K

(l).

C.3 Lemma 2: Gradient of Multi-layer GCN

We reiterate some notations defined in Sec. 4 of the main text. Vi is the minibatch
of nodes at iteration i that we would like to evaluate the predictions and gradients

on. gCV,v(Wi) := ∇f(yv, z
(L)
CV,i,v) is the stochastic gradient propagated through

the node v by the CV estimator, and gCV,i(Wi) := 1
|Vi|
∑
v∈Vi ∇f(yv, z

(L)
CV,i,v)

is the minibatch gradient by CV. gv(Wi) := ∇f(yv, z
(L)
v) is stochastic gradi-

ent propagated through the node v by the Exact estimator, and gi(Wi) :=
1
|Vi|
∑
v∈Vi ∇f(yv, z

(L)
v) is the minibatch gradient by the Exact estimator. Fi-

nally, ∇L(Wi) = 1
|VL|

∑
v∈VL ∇f(yv, z

(L)
i,v) is the exact full-batch gradient.

The following lemma bounds the bias of the gradients by the CV estimator.
Intuitively, there is a sequence of slow-changing model parameters (Wi), where

10

Wi is the model at the i-th iteration. At each iteration i we use GCN with CV
and GCN with Exact estimator to compute the activations for the minibatch Vi,
and update the corresponding history. After L epochs, we compute the gradient
by backpropagating through CV’s predictions on the minibatch of nodes Vi.
The gradient gCV,i(Wi) is a random variable of both the stochastic propagation

matrix P̂i and the minibatch Vi. But the expectation of the gradient w.r.t. P̂i
and Vi, EP̂i,VigCV,i(Wi), is close to the full-batch gradient by the Exact estimator

∇L(Wi), i.e., the gradient is close to be unbiased.
To study the gradient, we need the backpropagation rules of the networks. Let

fv = f(yv, z
(L)
v) and fCV,i,v = f(yz, z

(L)
CV,i,v), we first derive the backpropagation

rule for the exact algorithm. Differentiating both sides of Eq. (1), we have:

∇H(l)fv = P>∇Z(l+1)fvW
(l)> l = 1, . . . , L− 1

∇Z(l)fv = σ′(Z(l)) ◦ ∇H(l)fv l = 1, . . . , L− 1

∇W (l)fv = (PH(l))>∇Z(l+1)fv l = 0, . . . , L− 1. (5)

Similarly, differentiating both sides of Eq. (5), we have

∇
H

(l)
CV

fCV,v = P̂ (l)∇
Z

(l+1)
CV

fCV,vW
(l)> l = 1, . . . , L− 1

∇
Z

(l)
CV

fCV,v = σ′(Z
(l)
CV) ◦ ∇

H
(l)
CV

fCV,v l = 1, . . . , L− 1

∇W (l)fCV,v = (P̂ (l)H
(l)
CV)>∇

Z
(l+1)
CV

fCV,v l = 0, . . . , L− 1. (6)

Lemma 2. Assume σ(·) and ∇zf(y, z) are ρ-Lipschitz, ‖∇zf(y, z)‖∞ ≤ B.
Given a fixed dataset X and a sequence of T weights and stochastic propagation
matrices (Wi, P̂i)

T
i=1, s.t.,

1. ‖Wi‖∞ ≤ B,
∥∥∥P̂i∥∥∥

∞
≤ B, and ‖σ′(ZCV,i)‖∞ ≤ B,

2. ‖Wi −Wj‖∞ < ε,∀i, j,

let P = EP̂i. If at time i we feed (X,Wi, P̂i) to a GCN with CV estimator to
evaluate the prediction for nodes in the minibatch Vi,

Z
(l+1)
CV,i =

(
P̂

(l)
i (H

(l)
CV,i − H̄

(l)
CV,i) + PH̄

(l)
CV,i

)
W

(l)
i , H

(l+1)
CV,i = σ(Z

(l+1)
CV,i).

where H̄
(l)
CV,i is the maintained history at time i, and (X,Wi, P) to a GCN with

exact estimator

Z
(l+1)
i = PH

(l)
i W

(l)
i , H

(l+1)
i = σ(Z

(l+1)
i),

then there exists K that depends on C, B and ρ s.t.,∥∥∥EP̂i,Vi(Wi)−∇L(Wi)
∥∥∥
∞
≤ Kε,∀i > LI.

11

Proof. By Lipschitz continuity of ∇zf(y, z) and Lemma 1, there exists K̇, for

all P̂i = (P̂
(0)
i , . . . , P̂

(L−1)
i) ∥∥∥∇z(L)

CV,v

fCV,v −∇z(L)
v
fv

∥∥∥
∞

≤ρ
∥∥∥z(L)CV,v − z

(L)
v

∥∥∥
∞

≤ρK̇ε,∥∥∥σ′(Z(l)
CV)− σ′(Z(l))

∥∥∥
∞
≤ρK̇ε (7)

We prove by induction that there exists Kl, s.t., ∀l ∈ [L],,∥∥∥EP̂ (≥l)∇z(l)CV,vfCV,v −∇z
(l)
v fv

∥∥∥
∞
≤ Klε, ∀P̂ (0), . . . , P̂ (l−1), (8)

where P̂ (≥l) = (P̂ (l), . . . , P̂ (L−1)). By Eq. (7) the statement holds for l = L,
where KL = ρK̇. If the statement holds for l + 1, i.e.,∥∥∥EP̂ (≥l+1)∇z(l+1)

CV,v fCV,v −∇z
(l+1)
v fv

∥∥∥
∞
≤ Klε, ∀P̂ (0), . . . , P̂ (l),

then by Eq. (5, 6),∥∥∥EP̂ (≥l)∇z(l)CV,vfCV,v −∇z
(l)
v fv

∥∥∥
∞

=
∥∥∥EP̂ (≥l)σ

′(Z
(l)
CV) ◦ P̂ (l)∇

Z
(l+1)
CV

fCV,v − σ′(Z(l)) ◦ P>∇Z(l+1)fv

∥∥∥
∞

=
∥∥∥EP̂ (≥l)

{[
σ′(Z

(l)
CV) ◦ P̂ (l)∇

Z
(l+1)
CV

fCV,v

]
− σ′(Z(l)) ◦ P>∇Z(l+1)fv

}∥∥∥
∞

≤
∥∥∥EP̂ (≥l)

{[(
σ′(Z

(l)
CV)− σ′(Z(l))

)
◦ P̂ (l)∇

Z
(l+1)
CV

fCV,v

]}∥∥∥
∞

+ EP̂ (l)

∥∥∥EP̂ (≥l+1)

[
σ′(Z(l)) ◦ P̂ (l)

(
∇
Z

(l+1)
CV

fCV,v −∇Z(l+1)fv

)]∥∥∥
∞

+
∥∥∥EP̂ (≥l)

{[
σ′(Z(l)) ◦

(
P̂ (l) − P>

)
∇Z(l+1)fv

]}∥∥∥
∞

≤EP̂ (≥l)

[∥∥∥σ′(Z(l)
CV)− σ′(Z(l))

∥∥∥
∞

∥∥∥P̂ (l)∇
Z

(l+1)
CV

fCV,v

∥∥∥
∞

]
+ EP̂ (l)

∥∥∥σ′(Z(l))
∥∥∥
∞

EP̂ (≥l+1)

∥∥∥P̂ (l)
∥∥∥
∞

EP̂ (≥l+1)

∥∥∥∇Z(l+1)
CV

fCV,v −∇Z(l+1)fv

∥∥∥
∞

+ 0

≤ρK̇εB2C2 +B2C2Kl+1ε

=Klε,

where Kl = B2C2(ρK̇ +Kl+1). By induction, Eq. (8) holds. Similarly, we can
show that there exists K, s.t.,∥∥EP̂∇W (l)fCV,v −∇W (l)fv

∥∥
∞ < Kε, ∀l ∈ [L− 1].

12

Therefore, ∥∥∥EVi,P̂i
gCV,i(Wi)−∇L(Wi)

∥∥∥
∞

=
∥∥∥Ev∈V,P̂i

gCV,v(Wi)− Ev∈Vgv(Wi)
∥∥∥
∞

≤EVi
∥∥∥EP̂i

gCV,v(Wi)− gv(Wi)
∥∥∥
∞

≤EVi max
l

∥∥EP̂∇W (l)fCV,v −∇W (l)fv
∥∥
∞

≤Kε.

C.4 Proof of Theorem 2

Theorem 2. Assume that (1) the activation σ(·) is ρ-Lipschitz, (2) the gradient
of the cost function ∇zf(y, z) is ρ-Lipschitz and bounded, (3) ‖gCV,V(W)‖∞,

‖g(W)‖∞, and ‖∇L(W)‖∞ are all bounded by G > 0 for all P̂ ,V and W . (4)
The loss L(W) is ρ-smooth, i.e., |L(W2) − L(W1) − 〈∇L(W1),W2 − W1〉| ≤
ρ
2 ‖W2 −W1‖2F ∀W1,W2, where 〈A,B〉 = tr(A>B) is the inner product of matrix
A and matrix B. (5) The loss L(W) ≥ L∗ is bounded below. Then, there exists
K > 0, s.t., ∀N > LI, if we run SGD for R ≤ N iterations, where R is chosen
uniformly from [N]+, we have

ER ‖∇L(WR)‖2F ≤ 2
L(W1)− L∗ +K + ρK√

N
,

for the updates Wi+1 = Wi − γgCV,i(Wi) and the step size γ = min{ 1ρ ,
1√
N
}.

Proof. This proof is a modification of [2], but using biased stochastic gradients
instead. We assume the algorithm is already warmed-up for LI steps with
the initial weights W0, so that Lemma 2 holds for step i > 0. Denote δi =
gCV,i(Wi)−∇L(Wi). By smoothness we have

L(Wi+1) ≤ L(Wi) + 〈∇L(Wi),Wi+1 −Wi〉+
ρ

2
γ2 ‖gCV,i(Wi)‖2F

= L(Wi)− γ〈∇L(Wi), gCV,i(Wi)〉+
ρ

2
γ2 ‖gCV,i(Wi)‖2F

= L(Wi)− γ〈∇L(Wi), δi〉 − γ ‖∇L(Wi)‖2 +
ρ

2
γ2
[
‖δi‖2 + ‖∇L(Wi)‖2F + 2〈δi,∇L(Wi)〉

]
= L(Wi)− (γ − ργ2)〈∇L(Wi), δi〉 − (γ − ργ2

2
) ‖∇L(Wi)‖2F +

ρ

2
γ2 ‖δi‖2F .

(9)

13

For each i, consider the sequence of LI + 1 weights Wi−LI , . . . ,Wi.

max
i−LI≤j,k≤i

‖Wj −Wk‖∞ ≤
i−1∑

j=i−LI
‖Wj −Wj+1‖∞

=

i−1∑
j=i−LI

γ ‖gCV (Wj)‖∞ ≤
i−1∑

j=i−LI
γG = LIGγ.

By Lemma 2, there exists K̇ > 0, s.t.∥∥∥EP̂ ,VBδi∥∥∥∞ =
∥∥∥EP̂ ,VBgCV (Wi)−∇L(Wi)

∥∥∥
∞
≤ K̇LIGγ, ∀i > 0.

Assume that W is D-dimensional,

EP̂ ,VB 〈∇L(Wi), δi〉 ≤ D ‖∇L(Wi)‖∞
∥∥∥EP̂ ,VBδi∥∥∥∞ ≤ K̇LIDG2γ ≤ Kγ,

EP̂ ,VB ‖δi‖
2
F ≤ D ‖gCV,i(Wi)‖∞ +D ‖∇L(Wi)‖∞ ≤ 2DG2 ≤ K,

where K = max{K̇LIDG2, 2DG2}. Taking EP̂ ,VB to both sides of Eq. 9 we
have

L(Wi+1) ≤ L(Wi) + (γ − ργ2)Kγ − (γ − ργ2

2
) ‖∇L(Wi)‖2F + ρKγ2/2.

Summing up the above inequalities and re-arranging the terms, we obtain,

(γ − ργ2

2
)
∑
i

‖∇L(Wi)‖2F

≤L(W1)− L∗ +KN(γ − ργ2)γ +
ρK

2
Nγ2.

Dividing both sides by N(γ − ργ2

2), and take γ = min{ 1ρ ,
1√
N
}

ER∼PR
‖∇L(WR)‖2F

≤2
L(W1)− L∗ +KN(γ − ργ2)γ + ρK

2 Nγ
2

Nγ(2− ργ)

≤2
L(W1)− L∗ +KN(γ − ργ2)γ + ρK

2 Nγ
2

Nγ

≤2
L(W1)− L∗

Nγ
+Kγ(1− ργ) + ρKγ

≤2
L(W1)− L∗√

N
+Kγ + ρK/

√
N

≤2
L(W1)− L∗ +K + ρK√

N
.

Particularly, when N → ∞, we have ER∼PR
‖∇L(WR)‖2F = 0, which implies

that the gradient is asymptotically unbiased.

14

C.5 Generalizing to Graph Attention Networks

Our Theorem 2 can generalize to graph attention networks (GAT) [6]. GAT
updates can be written as

Z(l+1) = P (H(l),W (l))H(l)W (l), H(l+1) = σ(Zl+1),

the difference between GAT and GCN (Eq. 1) is that the propagation matrix P
is now a function of activations and network weights instead of a constant. We
define the variance reduced stochastic update as

Z(l+1) =
(
P̂ (l)(H̄(l),W (l))(H(l) − H̄(l)) + P (H̄(l),W (l))H̄(l)

)
W (l),

where we approximate H(l) with H̄(l) when computing the propagation ma-
trix. We can still bound the gradient by extending Lemma 2, and prove the
convergence.

For GraphSAGE-pool and GraphSAGE-LSTM, our algorithm does not di-
rectly apply. Take GraphSAGE-pool as an example, it defines

z
(l+1)
ud = max

v∈n(u)

(
h(l)v W

(l)
:,d

)
,

whose gradient is

∂z
(l+1)
ud

∂h
(l)
vd′

=

{
w

(l)
d′d if v maximizes h

(l)
v W

(l)
:,d ,

0 otherwise.

It is unclear how to obtain an unbiased stochastic approximation of this gradient.
We leave this as an open problem to study.

D Pseudocode

As mentioned in Sec. 3.3, an iteration of our algorithm consists the following
operations:

1. Randomly select a minibatch VB ∈ VL of nodes;

2. Build a computation graph that only contains the activations h
(l)
v and h̄

(l)
v

needed for the current minibatch;

3. Get the predictions by forward propagation as Eq. (6) in the main text;

4. Get the gradients by backward propagation, and update the parameters
by SGD;

5. Update the historical activations.

For step 2, we construct the receptive fields r(l) and stochastic propagation
matrices P̂ (l) as Alg. 1.

15

Algorithm 1 Constructing the receptive fields and random propagation matrices.

r(L) ← VB
for layer l← L− 1 to 0 do

r(l) ← ∅
P̂ (l) ← 0
for each node u ∈ r(l+1) do

r(l) ← r(l) ∪ {u}
P̂

(l)
uu ← P̂

(l)
uu + Puun(u)/D(l)

for D(l) − 1 random neighbors v ∈ n(u) do
r(l) ← r(l) ∪ {v}
P̂

(l)
uv ← P̂

(l)
uv + Puvn(u)/D(l)

end for
end for

end for

D.1 Training with the CV estimator

Alg. 2 depicts the training algorithm using the CV estimator. We perform
forward propagation according to Eq. (6), compute the stochastic gradient,
and then update the historical activations H̄(l) for all the nodes in r(l). Let
W = (W (0), . . . ,W (L−1)) be all the trainable parameters, the gradient ∇WL is
computed automatically by frameworks such as TensorFlow.

D.2 Training with the CVD estimator

Training with the CVD estimator is similar with the CV estimator, except it
runs two versions of the network, with and without dropout, to compute the

samples H and their mean µ of the activation. The matrix P̄
(l)
uv = P̂

(l)
uv /
√
n(v) ,

where n(v) is the degree of node v.

E Experiment setup

In this sections we describe the details of our model architectures. We use the
Adam optimizer [4] with learning rate 0.01.

• Citeseer, Cora, PubMed and NELL: We use the same architecture as [5]:
two graph convolution layers with one linear layer per graph convolution
layer. We use 32 hidden units, 50% dropout rate and 5× 10−4 L2 weight
decay for Citeseer, Cora and PubMed and 64 hidden units, 10% dropout
rate and 10−5 L2 weight decay for NELL.

• PPI and Reddit: We use the mean pooling architecture GraphSAGE-
mean proposed by [3]. We use two linear layers per graph convolution
layer. We set weight decay as zero, dropout rate as 20%, and adopt layer

16

Algorithm 2 Training with the CV algorithm

for each minibatch VB ⊂ V do
Compute the receptive fields r(l) and stochastic propagation matrices P̂ (l)

as Alg. 1.
(Forward propgation)
for each layer l← 0 to L− 1 do

Z(l+1) ←
(
P̂ (l)(H(l) − H̄(l) + PH̄(l)

)
W (l)

H(l+1) ← σ(Z(l+1))
end for
Compute the loss L = 1

|VB |
∑
v∈VB f(yv, Z

(L)
v)

(Backward propagation)
W ←W − γi∇WL
(Update historical activations)
for each layer l← 0 to L− 1 do

for each node v ∈ r(l) do
h̄
(l)
v ← h

(l)
v

end for
end for

end for

normalization [1] after each linear layer. We use 512 hidden units for PPI
and 128 hidden units for Reddit. We find that our architecture can reach
97.8% testing micro-F1 on the PPI dataset, which is significantly higher
than 59.8% reported by [3]. We find the improvement is from wider hidden
layer, dropout and layer normalization.

F Experiment for 3-layer GCNs

We test 3-layer GCNs on the Reddit dataset. The settings are the same with
2-layer GCNs in Sec. 6.2. To ensure M1+PP can run in a reasonable amount of
time, we subsample the graph so that the maximum degree is 10. The convergence
result is shown as Fig. 1, where the conclusion is similar with the two-layer
models: CVD+PP is the best-performing approximate algorithm, followed by
CV+PP, and then NS+PP and NS. The time consumption to reach 0.94 testing
accuracy is shown in Table 1.

G Correlation between node activations

In our analysis of the variance for the CVD estimator in Sec. 5.2, we assume that

the activations for different nodes are uncorrelated, i.e., CovM

[
h
(l)
u , h

(l)
v

]
= 0,

for all u 6= v, where M is the dropout mask. We show the rationale behind
this assumption in this section. For 2-layer GCNs, the activations are indeed

17

Algorithm 3 Training with the CVD algorithm

for each minibatch VB ⊂ V do
Compute the receptive fields r(l) and stochastic propagation matrices P̂ (l)

as Alg. 1.
(Forward propgation)
for each layer l← 0 to L− 1 do

U ←
(
P̄ (l)(H(l) − µ(l)) + P̂ (l)(µ(l) − µ̄(l)) + PH̄(l)

)
H(l+1) ← σ(Dropoutp(U)W (l))

µ(l+1) ← σ(UW (l))
end for
Compute the loss L = 1

|VB |
∑
v∈VB f(yv, H

(L)
v)

(Backward propagation)
W ←W − γi∇WL
(Update historical activations)
for each layer l← 0 to L− 1 do

for each node v ∈ r(l) do
h̄
(l)
v ← h

(l)
v

end for
end for

end for

Table 1: Time to reach 0.95 testing accuracy.

Alg.
Valid.

Epochs
Time Sparse Dense

acc. (s) GFLOP TFLOP
Exact 0.940 3.0 199 306 11.7

NS 0.940 24.0 148 33.6 9.79
NS+PP 0.940 12.0 68 2.53 4.89
CV+PP 0.940 5.0 32 8.06 2.04

CVD+PP 0.940 5.0 36 16.1 4.08

independent, and the correlation is still weak for deeper GCNs due to the sparsity
of our sampled graph.

G.1 Results for 2-layer GCNs

For a 2-layer GCN with the first layer pre-processed, the activations of nodes
are independent. Suppose we want to compute the prediction for a node on
the second layer. Without loss of generality, assume that we want to com-

pute z
(2)
1 , and the neighbors of node 1 are 1, . . . , D. The activation h

(1)
v =

σ
(

(Mv ◦ u(0)v)W (0)
)

, where u
(0)
v = (PH(0))v is a random variable with respect

to Mv, Mv ∼ Bernoulli(p) is the dropout mask. We show that h
(1)
v and h

(1)
v′ are

independent, for v 6= v′ by the following lemma.

18

0 10 20 30 40 500.90

0.92

0.94

0.96
reddit3

M1+PP NS NS+PP IS+PP CV+PP CVD+PP

Figure 1: Comparison of validation accuracy with respect to number of epochs
for 3-layer GCNs.

2 4 6 8
Topics

0.000
0.025
0.050
0.075

citeseer

Feature correlation
Neighbor correlation

2 4 6 8
Topics

0.00

0.02

0.04

0.06
cora

Feature correlation
Neighbor correlation

2 4 6 8
Topics

0.02

0.04

pubmed

Feature correlation
Neighbor correlation

2 4 6 8
Topics

0.05

0.10

ppi
Feature correlation
Neighbor correlation

Figure 2: Average feature and neighbor correlations in a 10-layer GCN.

Lemma 3. If a and b are independent random variables, then their transforma-
tions f1(a) and f2(b) are independent.

Because for any event A and B, P (f1(a) ∈ f1(A), f2(b) ∈ f2(B)) = P (a ∈
A, b ∈ B) = P (a ∈ A)P (b ∈ B) = P (f1(a) ∈ f1(A))P (f2(B) ∈ f2(B)), where
f1(A) = {f1(a)|a ∈ A} and f2(B) = {f2(b)|b ∈ B}.

Let h
(1)
v = f1(Mv) := σ

(
(Mv ◦ u(0)v)W (0)

)
and h

(1)
v′ = f1(Mv′) := σ

(
(Mv′ ◦ u(0)v′)W (0)

)
,

because Mv and Mv′ are independent Bernoulli random variables, h
(1)
v and h

(1)
v′

are independent.
The result can be further generalized to deeper models. If the receptive fields

of two nodes does not overlap, they should be independent.

19

G.2 Empirical results for deeper GCNs

Because we only sample two neighbors per node, the sampled subgraph is very
close to a graph with all its nodes isolated, which reduces to the MLP case
that [7] discuss.

We empirically study the correlation between feature dimensions and neigh-
bors. The definition of the correlation between feature dimensions is the same
with [7]. For each node v on layer l, we compute the correlation between each

feature dimension of h
(l)
v

Cov
(l,v)
ij := C[h

(l)
vi , h

(l)
vj]

Corr
(l,v)
ij :=

Cov
(l,v)
ij√

Cov
(l,v)
ii

√
Cov

(l,v)
jj

,

where i and j are the indices for different hidden dimensions, and C[X,Y] =
E[(X − EX)(Y − EY)] is the covariance between two random variables X and

Y . We approximate Cov
(l,v)
ij with 1,000 samples of the activations h

(l)
vi and h

(l)
vj ,

by running the forward propagation 1,000 times with different dropout masks.

We define the average feature correlation on layer l to be Cov
(l,v)
ij averaged by

the nodes v and dimension pairs i 6= j.
To compute the correlation between neighbors, we treat each feature dimen-

sion separately. For each layer l + 1, node v, and dimension d, we compute the

correlation matrix of all the activations {h(l)id |i ∈ n̄(l)(v)} that are needed by

h
(l+1)
vd , where n̄(l)(v) = {i|P̂ (l)

vi 6= 0} is the set of subsampled neighbors for node
v:

Cov
(l,v,d)
ij := C[h

(l)
id , h

(l)
jd]

Corr
(l,v,d)
ij :=

Cov
(l,v,d)
ij√

Cov
(l,v,d)
ii

√
Cov

(l,v,d)
jj

,

where the indices i, j ∈ n̄(l)(v). Then, we compute the average correlation of all
pairs of neighbors i 6= j.

AvgCorr(l,v,d) :=
1∣∣n̄(l)(v)

∣∣ (∣∣n̄(l)(v)
∣∣− 1)

∑
i 6=j

Corr
(l,v,d)
ij ,

and define the average neighbor correlation on layer l as AvgCorr(l,v,d) averaged
over all the nodes v and dimensions d.

We report the average feature correlation and the average neighbor correlation
per layer, on the Citeseer, Cora, PubMed and PPI datasets. These quantities
are too expensive to compute for NELL and Reddit. On each dataset, we train a
GCN with 10 graph convoluation layers until early stopping criteria is met, and
compute the average feature correlation and the average neighbor correlation for

20

Dataset Citeseer Cora PubMed NELL Reddit PPI
w.o. dropout 70.2± .6 78.3± .4 77.7± .2 64.5± .7 95.6± .07 90.6± .6
w. dropout 69.9± .6 78.7± .3 78.3± .8 65.0± .1 96.5± .05 97.3± .03

Table 2: Validating accuracy / micro-F1 for models with or without dropout.

layer 1 to 9. We are not interested in the correlation on layer 10 because there
are no more graph convolutional layers after it. The result is shown as Fig. 2.
As analyzed in Sec. G.1, the average neighbor correlation is close to zero on the
first layer, but it is not exactly zero due to the finite sample size for computing
the empirical covariance. There is no strong tendency of increased correlation
as the number of layers increases, after the third layer. The average neighbor
correlation and the average feature correlation remain on the same order of
magnitude, so bringing correlated neighbors does not make the activations much
more correlated than the MLP case [7]. Finally, both correlations are much
smaller than one.

H Effect of Dropout

We compare the models with or without dropout as Table 2.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[2] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods
for nonconvex stochastic programming. SIAM Journal on Optimization,
23(4):2341–2368, 2013.

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in Neural Information Processing
Systems, pages 1025–1035, 2017.

[4] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In ICLR, 2014.

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In ICLR, 2017.

[6] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.

[7] Sida Wang and Christopher Manning. Fast dropout training. In Proceedings
of the 30th International Conference on Machine Learning (ICML-13), pages
118–126, 2013.

21

