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Abstract. Graph-based Semi-Supervised Learning (GSSL) has limita-
tions in widespread applicability due to its computationally prohibitive
large-scale inference, sensitivity to data incompleteness, and incapabil-
ity on handling time-evolving characteristics in an open set. To address
these issues, we propose a novel GSSL based on a batch of informative
beacons with sparsity appropriately harnessed, rather than constructing
the pairwise affinity graph between the entire original samples. Specifi-
cally, (1) beacons are placed automatically by unifying the consistence
of both data features and labels, which subsequentially act as indica-
tors during the inference; (2) leveraging the information carried by bea-
cons, the sample labels are interpreted as the weighted combination of a
subset of characteristics-specified beacons; (3) if unfamiliar samples are
encountered in an open set, we seek to expand the beacon set incremen-
tally and update their parameters by incorporating additional human
interventions if necessary. Experimental results on real datasets validate
that our algorithm is effective and efficient to implement scalable infer-
ence, robust to sample corruptions, and capable to boost the performance
incrementally in an open set by updating the beacon-related parameters.

Keywords: Semi-supervised learning · Beacon · Sparse representation ·
Online learning

1 Introduction

In the era of information deluge, Semi-Supervised Learning (SSL) [1,2], which
implements inference by combining a limited amount of labeled data and abun-
dant unlabeled data in open sources, is a promising direction to cope with the
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flood of big data. Among various SSL methods, Graph-based Semi-Supervised
Learning (GSSL) [3,4] is an appealing paradigm thanks to the prevalence of
graph data and its good capability in exploiting intrinsic manifold structures.

Recent years have witnessed significant advances in GSSL, including
Mincut [5], Random Walk [6,7], Manifold Regularization [8], Gaussian Fields
and Harmonic Functions (GFHF) [9], and Learning with Local and Global Con-
sistency (LLGC) [10]. Nevertheless, the algorithms are often sensitive to data
noise and improper parameter settings [11,12], i.e., the graph structures may be
changed dramatically due to the corruption of features or shift of global hyper-
parameters. To address these issues, Cheng et al. [11] proposed an �1-graph,
which is robust to data noise and adaptive to graph structures. However, these
algorithms are actually designed for small or medium sized data; the high com-
putational complexity blocks their widespread applicability to real-life problems.

To temper the time complexity, a lot of efforts have been made during the past
years, e.g., Nystrom approximation [13], the eigenfunction approximation [14],
ensemble projection [15], etc. Among these works, anchor-based algorithms are
attractive [16,17], which construct a tractable large graph by coupling anchor-
based label prediction and adjacency matrix design. However, anchors in these
methods are obtained in two separate steps—anchors are placed in the feature
domain only based on the feature information but neglecting the useful knowl-
edge in labels; the anchor labels are then estimated by propagating the labels
of human-annotated samples whose locations in the feature domain are already
fixed. We would expect that these two steps can mutually enhance each other if
they are properly unified and learned jointly.

Above all, the aforementioned algorithms assume that queries are drawn from
a closed pool and the properties of training and testing samples are the same.
Unfortunately, this assumption may not be valid in many real-world scenarios,
where the training and testing data may be collected under different experi-
mental conditions and therefore often exhibit differences in their statistics; and
properties of samples may gradually change over time thus incomplete knowl-
edge is present at the training phase. In this case, a classifier learned from the
initial labeling tends to result in more and more misclassifications if no further
knowledge is provided or no update paradigm is applied.

1.1 Our Proposal

To address the above issues (i.e., data noise, time complexity and statistics shift),
we propose an �1-Beacon Graph based semi-supervised algorithm, which places
a batch of characteristic-specific beacons in the feature domain, and represent
the original samples with a subset of beacons. Prediction on missing labels can
be implemented with label fusion of the corresponding beacons.

To mitigate the computational bottleneck, the label prediction is imple-
mented by weighted averaging the soft labels of a subset of beacons, which is
a concept in large-scale network analysis [18]. In this paper, we use beacons to
represent the super-nodes whose characteristics are propagated from the human
specified information, and ultimately facilitate the sample inference. Specifically,
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the beacons are generated automatically by minimizing the sample-to-beacon
reconstruction error while preserving the label consistence jointly. The resultant
beacons therefore behave as indicators to guide the inference procedure, i.e.,
the information provided by human annotations is propagated to the beacons
and “lights” their indications or soft labels. Different from the orthogonal anchor
planes in [19], our method does not requires orthogonal planes to represent/code
samples.

In the testing phase with voluminous or streaming data to handle, the label
inference is implemented by setting up a relational connection between the origi-
nal samples and the most relevant beacons, which are identified by enforcing the
sparsity. The �1-regularization also offers robustness to the corrupted or incom-
plete sample features [11], which is an inevitable nightmare [20] for the large-scale
data analysis. The main reason is because the sample-to-beacon relationship can
be estimated appropriately by making use of the abundant information embed-
ded in the uncorrupted feature entries under the sparsity constraint.

When unfamiliar samples are encountered in the open-set inference, e.g., the
reconstruction error is above a user-specified threshold, we seek to expand the
beacon set and update their characteristic parameters dynamically by incorpo-
rating additional human interventions. Consequently, the performance is boosted
incrementally with a small amount of computation for the unseen data with
time-evolving statistics.

Compared with the anchor-based algorithms in [16,17], the proposed algo-
rithm has the major novelties below

– To address the beacon construction, we propose to learn the beacons by uti-
lizing both the label information and feature information jointly, which gener-
alizes the K-means clustering anchors in [16,17] and provides a more flexible
representation for data lying in a complex manifold.

– To explore the sample-to-beacon relationship, we derive the neighboring bea-
cons of a sample and the corresponding relationship weights automatically by
solving an �1-norm regularized problem, which yields an adaptive and flexi-
ble representation especially for data in a complex high-dimensional manifold.
In contrast, the samples are represented with s neighboring anchors in [16],
which may incur significant performance degeneration if the global parameter
“s” is set improperly. With sparsity properly harnessed, our method also offers
adaptations of local neighborhood structures and robustness for the corrupted
sample features.

– To address the issues in the open-set inference, we propose to expand the bea-
con set and update their characteristics incrementally, which offers advantages
to handle the mismatch between training and testing data.

In summary, the proposed algorithm is much more robust to data noise, pro-
vides a more adaptive and stable graph construction to local neighborhood struc-
tures, needs fewer beacons to realize the comparable performance, and boosts
the performance incrementally when unfamiliar samples appear.
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2 Construction of �1-Beacon Graph

Semi-supervised learning typically involves a dataset that consists of Nl labeled
data L � {(xl,yl)}Nl

l=1 and Nu unlabeled data U � {xu}Nu
u=1, where Nu � Nl and

N = Nl + Nu. Label propagation algorithms [9,10] entangle all these samples,
and build a huge graph to model the pairwise similarity between samples in the
entire dataset, which require to calculate the inverse of a large Laplacian matrix
with the cubic time complexity O(N3). Therefore, it becomes an unbearable
computational burden for processing gigantic even medium-sized datasets.

In this case, it is desirable to develop more efficient algorithms by taking
advantage of both the labeled and a portion of the unlabeled data to build a
training dataset X train, and train a classification model to handle unseen data
outside the training data set. Much fewer training samples are used for these
models and thus more efficient for the label prediction.

In this paper, we propose to generate a batch of “beacons”, which behave as
indicators to guide the inference. Original samples are represented by a linear
combination of the beacons, resulting in a sample-to-beacon relationship matrix.
The predicted labels of samples are inferred as the weighted combination of a
subset of beacons as,

Y = FZ, with Z ∈ R
M×N , M � N, (1)

where Y is the prediction label matrix with each column being the label of a
specific sample; B = [b1, · · · ,bM ] is a beacon set and F = [f(b1), · · · , f(bM )]
is the label matrix with each column corresponding to the label of a beacon; and
Z = [z1, · · · , zN ] is the weight matrix in which each column indicates the sample-
to-beacon relationship for a specific sample. To solve the problem in Eq. (1), we
need to

– Determine the informative beacons B along with their labelling characteristics
F effectively; and

– Calculate the sample-to-beacon relationship matrix Z efficiently despite the
incompleteness and corruption existing in data.

2.1 Design of Informative Beacons

In [16,17], the authors proposed to generate K anchors using the clustered cen-
ters by K-means, and estimate the corresponding relationship matrix by repre-
senting samples as linear combinations of s nearest neighboring anchors. How-
ever, it is difficult to determine the optimal parameters of K and s in advance.
For instance, the distribution of samples and their neighboring anchors may
vary at different areas in the feature domain, which results in distinctive neigh-
borhood structures for each sample. In this case, the graph generated via local
anchor embedding [16] may introduce unreasonable neighborhood structures due
to the improper parameters. In many cases, these unfavorable structures incur
a significant performance degeneration since the labels may be propagated via
those edges across samples belonging to different classes.
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To address these issues, we seek a beacon set that yields a flexible and adap-
tive representation by utilizing the �1-norm regularization. Additionally, the
beacon generation and their corresponding characteristic estimations are uni-
fied within a framework with both the features and label information harnessed,
thereby encouraging their mutual enhancements.

With a unified representation, we denote the beacon-related parameters as
Ψ = [B;F] with each column corresponding to a specific beacon embedding
its related characteristic information. Therefore, B = SbΨ with Sb = [Id,0] ∈
R

d×(d+c), and F = SfΨ with Sf = [0, Ic] ∈ R
c×(d+c). d and c are the sample

dimension and corresponding numbers of classes, respectively; and Id and Ic are
the identity matrices with proper sizes.

By taking both the feature and label information into account, the beacon
generation can be derived by minimizing the risk functions for both labeled and
unlabeled data and also preserving the global graph smoothness as

(Ψ∗,Z∗) = arg min
Ψ,Z

RL(Ψ,Z) + RU (Ψ,Z) + λRY(Ψ,Z),

s.t. ∀i ∈ [1, N ], ‖zi‖1 ≤ T, zi ≥ 0, yi = SfΨzi. (2)

Specifically, the risk function on the labeled set is defined as

RL(Ψ,Z) =
Nl∑

i=1

∥∥∥∥

[
xi

yi

]
− Ψzi

∥∥∥∥
2

2

, (3)

which jointly penalizes the reconstruction error in the feature domain and pre-
serves the consistence in the label domain; the risk function on the unlabeled set
is defined as

RU (Ψ,Z) =
Nu∑

i=1

‖xi − SbΨzi‖22 , (4)

which is the residual error on all unlabeled samples; and the graph smoothness
regularization is defined as

RY(Ψ,Z) =
N∑

i,j

‖yi − yj‖22wij , (5)

where yi and yj are encouraged to be similar if xi and xj are close in the intrinsic
geometry of the feature domain.

In Eq. (2), Z = [z1, · · · , zN ] is the weight matrix with each column corre-
sponding to the sample-to-beacon relationship of a specific sample; T is the
sparsity level, which is related to the number of beacons that are chosen for the
representation; wij = zT

i zj is the pairwise affinity between xi and xj , which is
measured in terms of correlation (inner product).

When deriving the problem in Eq. (2), the beacons are placed in the feature
domain and lightened up simultaneously by providing its label characteristics.
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By incorporating the feature and label information together, the generated bea-
cons are therefore consistent with both labels and features. Additionally, the
results are also benefited from the graph smoothness, which favors the label
consistence when samples share similar features.

By introducing the �1-norm regularization on the sample-to-beacon relation-
ship zi, the most relevant beacons are selected automatically to represent the
samples. Therefore, it provides a more adaptive representation for data lying
in a complex manifold by reducing the spurious connections between the dis-
similar sample-to-beacon connections. The nonnegative property on zi further
guarantees a positive semi-definite Laplacian matrix when inferring the sample-
to-sample affinity via the sample-to-beacon mapping, which is of importance to
ensure a global optimum of Graph-based Semi-Supervised Learning [1].

2.2 Optimization Algorithm

The problem in Eq. (2) is convex with respect to each of the two variables Ψ and
Z when the other one is fixed. It can be solved by alternately minimizing one
variable while keeping the other one fixed.

We construct an affinity matrix W = [wij ] = ZTZ which characterizes the
pairwise similarity between samples in the training set, resulting in a similarity
graph G with the affinity matrix W. In this case, the corresponding Laplacian
matrix is L = D − W with D being the diagonal degree matrix as D(j, j) =
N∑

i=1

W(i, j). Therefore, the graph smoothness term in Eq. (5) can be rewritten
as

RY(Ψ,Z) =
N∑

i=1

yT
i Lyi =

N∑

i=1

zT
i F

TLFzi (6)

= tr(YLYT ) = tr(FZLZTFT ). (7)

Using Eqs. (6) and (7), the problem in Eq. (2) can be solved by alternately
solving the following two problems as

P1: Solving Z by fixing Ψ :

Z∗ = arg min
Z=[zi]

{
Nl∑

i=1

‖ [xi;yi] − Ψzi‖22 +
Nu∑

i=1

‖xi − Bzi‖22 + λ

N∑

i=1

zT
i F

TLFzi

}
,

s.t. ∀i, ‖zi‖1 ≤ T, zi ≥ 0, (8)

where B and F are the sub-matrices of Ψ corresponding to the feature and label
domains, respectively; and

P2: Solving Ψ by fixing Z:

Ψ∗ = arg min
Ψ

{
‖ [Xl;Yl] − ΨZl‖22 + ‖Xu − BZu‖22 + λtr(FZLZTFT )

}

s.t. B = SbΨ, F = SfΨ, (9)
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where Xl = [x1, · · · ,xNl
] and Xu = [x1, · · · ,xNu

] are corresponding to the
labeled and unlabeled samples, respectively; Yl = [y1, · · · ,yNl

] is the indicator
matrix by stacking sample labels in column; Zl and Zu are corresponding to the
sub-matrix of Z related to the labeled and unlabeled subsets, respectively.

In order to solve P1, we propose to calculate zi iteratively using the efficient
interior-point method [21], which jointly preserves consistence of both the feature
and label information. Afterwards, the Laplacian matrix L in Eq. (9) is updated
with the corresponding sample-to-beacon relationship matrix Z. Moreover, the
objective function in P2 can be rewritten as

(B∗,F∗) = argmin
B,F

g(B,F) = argmin
B,F

‖X − BZ‖22 + ‖Yl − FZl‖22 + λtr(FZLZTFT ). (10)

Applying the cyclic property of trace and differentiating Eq. (10) with respect
to B and F, the partial derivatives of Eq. (10) is

∂g

∂B
= −2(X − BZ)ZT ,

∂g

∂F
= −2(Yl − FZl)ZT

l + 2λFZLZT . (11)

Setting the derivatives in Eq. (11) to zeros yields the optimal solution as

B∗ = XZT (ZZT )−1, F∗ = YlZT
l (ZlZT

l + λZLZT )−1. (12)

Hereby, the optimum of Ψ in P2 is obtained as Ψ∗ = [B∗;F∗]. We alternately
optimize the P1 in Eq. (8) and P2 in Eq. (9) until convergence. It is noted that,
in Eq. (12), the inversion is computed on a rather small matrix sized M × M
efficiently, rather than a huge matrix sized N × N in the previous GSSLs [9,10].

3 Inductive Inference

After obtaining the M beacons B along with their characteristics F, the scalable
inference in the testing data is implemented by label fusion of those beacons that
are linked to the test data. For any testing sample x̃i, we propose to determine its
neighborhood structure along with the strength of sample-to-beacon association
by solving the following optimization problem with the sparsity constraint as

z̃∗ = arg min
z̃i

‖x̃i − Bz̃i‖22, s.t. ‖z̃i‖1 ≤ T, z̃i ≥ 0, (13)

where z̃i denotes the relationship between sample i and beacons. After solving z̃i

iteratively using the efficient interior-point method [21], the identity of sample i
is obtained via label fusion by plugging F and z̃i into Eq. (1) as

ỹ∗
i = Fz̃∗

i . (14)

The hard label vector can be obtained simply by converting the maximum value
in each y∗

i into 1 and the others into 0.
With sparsity appropriately harnessed in Eq. (13), the most relevant beacons

are chosen to describe the samples, which improves the performance in terms
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of efficiency, accuracy and robustness to noise. By introducing the beacons to
the feature domain, it is not necessary to estimate the pairwise sample affinity
in the sheer volume of testing data [11,12], which reduces the time cost signif-
icantly. Additionally, the beacon-based inference can be conducted via distrib-
uted computing by sharing beacon information across different servers, which is
of practical value in large-scale data analysis.

4 Incremental Update of Beacons in Open-Set

To address the characteristics-evolving issue in the open-set inference, it is worth
to consider how to further update the model to boost the performance with a
small amount of incremental computation with new data. Specifically, when
the model encounters a set of “unfamiliar” samples with new, novel or unknown
characteristics that cannot be reconstructed using the existing beacons well (e.g.,
the reconstruction error is above a threshold as r(xi) = ‖xi − Bzi‖22 > th),
we propose to expand the beacon set by incrementally adding k new beacons
Bk = [bk] as B̄ � [B,Bk].

Since the beacon set B is obtained by solving the problem in Eq. (2), the
intuitive way to conduct the beacon update would be to learn the beacons from
scratch using the set of identified unfamiliar data X̄ along with the training
samples, i.e., substituting X train with X train ∪ X̄ in Eq. (2). Nevertheless, it is
inefficient to re-build the model from scratch and it would be nice if the model
could be updated incrementally.

In this case, we propose to improve the on-hand beacon set B incrementally
by feeding the unfamiliar samples to handle the time-evolving characteristics.
Specifically, we initialize the newly-created k beacons as Bk = [εId×k] with ε
being a positive number that is close to zero; afterwards, the Bk is updated
gradually with the stochastic gradient descent (SGD) algorithm [22] until con-
vergence. We derive the incremental updating algorithm below.

Similarly to Eq. (15), the partial derivatives with respect to the beacon para-
meter B̄ and its corresponding characteristic parameter F̄ in the unfamiliar
sample set are

∂g

∂B̄
= −2(X̄ − B̄Z̄)Z̄T ,

∂g

∂F̄
= −2(Yl − F̄Zl)ZT

l + λF̄Z̄L̄Z̄T , (15)

where X̄ = [x̄i] represents the samples that are detected to be unfamiliar to
the initial beacon set; and Z̄ = [z̄i] is the sample-to-beacon relationship matrix
with each column corresponding to a specific sample; Zl is the sub-matrix of Z̄
related to the labeled subset, which is updated when more human annotations
are provided by users on the unfamiliar samples.

In order to update the parameters iteratively, we denote X̄t as the novel
samples drawn at iteration t, and the beacon set can be updated using the
Stochastic Gradient Descent (SGD) as
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B̄t = B̄t−1 − δ
∂g

∂B̄t−1
= B̄t−1 + 2δ(X̄tZ̄T

t − B̄t−1Z̄tZ̄T
t ),

F̄t = F̄t−1 − δ
∂g

∂F̄t−1
= F̄t−1 + δ

(
2(Yl − F̄t−1Zl)ZT

l − λF̄t−1Z̄tLtZ̄T
t

)
, (16)

where B̄t is the update of the beacon set B̄t−1 at the tth iteration; Z̄t is the
sample-to-beacon relationship for the labeled samples in the tth iteration; and δ
is the learning rate. When the algorithm converges, the optimal beacon-related
parameter Ψ̄ is obtained as Ψ̄ = [B̄; F̄]. In this paper, we use the original beacon-
related parameters B and F in Eq. (12) as a warm start.

5 Experiments

In this section, we evaluate the proposed �1-Beacon Graph based Semi-
Supervised Learning algorithm against alternative algorithms in terms of accu-
racy, time complexity, robustness to data corruption and data incompleteness,
and the performance in the open-set inference.

5.1 Datasets

To verify the effectiveness of our algorithm on graph construction and scalable
inference, we implement image classification and image segmentation with three
real-world benchmark datasets in our experiments. To evaluate our method, we
conduct image classification on MNIST1 and CIFAR2, and image segmenta-
tion on CELL3.

5.2 Sample Results

Figure 1 shows some examples of image classification. In each experiment, we use
intensity of images as visual features, and annotate a small portion of samples
in each dataset (1 % for MNIST and 5 % for CIFAR) as seeds for subsequential
estimation of beacon characteristics and inference on categories of unlabeled
samples. The images with green and red boundaries in Fig. 1 denote the true and
false recognitions, respectively. As is observed, most of the images are classified
into confident categories except for samples with odd morphological features.
False classifications for CIFAR occur when the dominant object does not occupy
significant areas in the image.

1 MNIST consists of 70,000 handwritten digits sized 28 × 28 with 60,000 training
ones, http://yann.lecun.com/exdb/mnist/.

2 CIFAR consists of 60,000 32 × 32 color images in 10 classes, with 6000 images per
class, http://www.cs.toronto.edu/∼kriz/cifar.html.

3 CELL contains different types of muscle stem cells of a progeroid mouse in time-
lapse microscopy sequences, in which each frame contains 50∼800 cells, http://www.
celltracking.ri.cmu.edu/downloads.html.

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.celltracking.ri.cmu.edu/downloads.html
http://www.celltracking.ri.cmu.edu/downloads.html
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Fig. 1. Sample results of image classification, in which the image with green and red
boundaries indicates the true and false recognition, respectively. (Color figure online)

Figure 2 shows some sample results for cell segmentation. For each sequence,
each image is first partitioned into superpixels [23]. Cell segmentation is realized
by classifying the superpixels into specific classes based on a small portion of
annotated superpixels (around 1.5 % in our experiments). As is demonstrated in
the results, superpixels corresponding to different cells with different visual char-
acteristics are classified into specific categories, resulting in a cell segmentation
with high qualities.

5.3 Comparison Methods

In order to evaluate the proposed algorithm, we compare our �1-Beacon graph
based algorithm against alternative learning algorithms with respect to beacon-
based and sample-based methods.

– Beacon-based algorithms. We generate beacons B using the centers of K-
means clustering, and then calculate the sample-to-beacon relationship matrix
by the Local Anchor Embedding (LAE) (K-means LAE) [16], and Nadaraya-
Watson Kernel regression (K-means Kernel) [17], respectively.

– Sample-based algorithms. Besides the beacon-based algorithms, we also
implement the classification based on the sample-based algorithms. Specifi-
cally, we construct the KNN graph [1] and the ε-graph [2], based on which
the classification is implemented with the label propagation algorithm [9].
Additionally, the label propagation is also conducted on the �1-graph in [11].

Fig. 2. Sample results of image segmentation. (a) Input phase contrast microscopy
images; (b) Zoom-in sub-images; (c) Sample selection and annotation over the super-
pixels; (d) Soft classification results based on label propagation with human annota-
tions. (e) Cell segmentation by finding the labels with the maximum likelihood, and
grouping the neighboring superpixels with the same labels.
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To reduce the bias in evaluation, the results are averaged over 10 trials on
the testing dataset based on different subsets of seed labels.

5.4 Quantitative Evaluation

Classification Accuracy. In this section, we evaluate the performance against
alternative methods after setting the percentage of beacons over samples as 5 %
for MNIST, 30 % for CIFAR and 2.5 % for CELL. The optimal essential para-
meters for each algorithm (e.g., T ∗ for �1-Beacon, k∗

n for K-means LAE, ε∗ for
ε-graph) are obtained via grid-search. The performance in terms of classification
accuracy is reported in Table 1, which demonstrates that all the approaches are
comparable in each dataset with the optimal parameters. In some cases, the ε-
Graph and KNN graph methods outperform other methods mainly because they
perform transductive inference and predict the labels by taking all the unlabeled
samples into account; however, they lack the capability to handle the samples
outside the training datasets, and result in an unbearable burden for large-scale
applications.

Table 1. Quantitative comparison in terms of accuracy (%)

Our �1-Beacon K-means LAE K-means Kernel �1-Graph KNN Graph ε-Graph

MNIST 94.87 91.86 92.12 92.78 93.99 95.06

CIFAR 72.53 65.72 65.34 70.21 70.61 73.04

CELL 95.13 92.33 92.87 94.33 95.46 94.90

Robustness to Improper Parameter. In this section, we demonstrate that
the proposed algorithm is more robust to the sub-optimal parameters. In each
experiment, we sample a batch of sub-optimal parameters by deviating from
the optimal ones (T ∗ for �1-Beacon, k∗

n for K-means LAE, ε∗ for ε-graph) with
up-to 50 % offset, i.e., the sub-optimal parameters φ− = (ε−, k−, T−) with four
alternative options as φ− = (0.5, 0.75, 1.25, 1.5)φ∗, and repeat the experiments
with the sub-optimal parameters. The results of mean and standard deviation
based on the sub-optimal parameters are reported in Table 2. Compared to the
optimal results in Table 1, performance degeneration for the �1-Beacon graph
is not obvious and the deviation is small when the critical parameters are not
set optimally. The main reason is because our algorithm still searches for the
most informative beacons in the training dataset regarding to the suboptimal
parameter setting and links individual samples to their most relevant beacons by
a sample-to-beacon relationship matrix. However, the performance degenerates
significantly with a larger deviation for alternative methods since noisy informa-
tion is involved and graph structures are changed due to improper parameters.
The property of parameter robustness offers advantages to practical applica-
tions, since the parameter sensitiveness is an essential issue for graph-based
semi-supervised learning algorithms.
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Table 2. Comparison of accuracy with sub-optimal parameters (%)

Our �1-Beacon K-means LAE K-means Kernel �1-Graph KNN Graph ε-Graph

MNIST 93.62± 1.17 89.17± 2.23 88.16± 3.77 89.83± 1.38 84.45± 6.75 85.46± 8.09

CIFAR 70.86± 2.01 61.65± 2.89 60.11± 5.66 67.03± 2.93 65.26± 8.66 63.23± 9.75

CELL 92.99± 2.14 87.01± 4.02 84.96± 4.98 89.76± 2.73 85.07± 7.75 84.22± 9.33

Fig. 3. Performance comparison on corrupted data. (Color figure online)

Robustness to Corrupted Samples. To test the robustness of algorithms
regarding to sample corruption, we randomly corrupt a portion of entries of
the feature vector in the testing samples (i.e., replace their values with random
values drawn from a uniform distribution).

As shown in Fig. 3, the performance of our algorithm degrades around 5 %,
when 25 % entries of feature vectors are corrupted (red curves). A reasonable
explanation is that noise corrupts only a fraction of the feature vector and is
therefore sparse in the standard beacons. In this case, the information provided
by the uncorrupted entries still offers a good opportunity to estimate the rela-
tionship between the samples and beacons. Due to the same reason, �1-graph [11]
is also robust to the noisy features (blue curves with star markers). As a com-
parison, if �2 minimization is used to represent corrupted samples, most of the
sample-to-beacon relationship matrix may be corrupted [11,17], which will lead
to a significant performance degeneration (green curves). Moreover, the perfor-
mance for the transductive inference based on GFHF [1,2] (blue curves with cir-
cle and cross markers) undergoes a significant performance degeneration since
the noisy samples introduce too much misleading information and the graph
structure is changed greatly if no error suppression paradigm is involved.

Time Complexity. We summarize the time complexity of all methods in
Table 3. The label propagation based on KNN and ε-graph is of high compu-
tational cost due to the matrix inversion operation with complexity O(N3),
where N is the sample number. Our proposed �1-Beacon is comparable to the
K-means anchor-based methods with time complexity O(M2N) [16], since the
�1 optimization can be implemented efficiently with an empirically complex-
ity O(M2N1.3) [21], where M is the number of beacons (M � N). How-
ever, three sample-based methods are infeasible for larger dataset, e.g., MNIST,
since the time cost is rather expensive. For example, in �1-graph, if pairwise �1
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Table 3. Comparison of time complexity (second)

�1-Beacon K-means LAE K-means Kernel �1-Graph KNN Graph ε-Graph

MNIST 1103.27 607.32 652.55 4367.90 3616.35 3435.23

CIFAR 2480.35 1932.67 1733.62 8237 9970.52 10322.83

CELL 54.10 48.35 41.36 138.22 1324.71 1237.64
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Fig. 4. Accuracy vs. Number of
updated beacons

Table 4. Comparison of accuracy

MNIST CIFAR CELL

�1-Beacon Update 93.14 72.03 95.04

�1-Beacon 82.50 39.06 76.13

K-means LAE [16] 80.17 36.45 72.06

K-means Kernel [17] 78.31 37.13 73.93

�1-Graph [11] 84.01 39.61 75.03

KNN [1] 84.99 39.13 77.31

ε-Graph [2] 83.30 38.29 78.60

optimization between all samples is implemented, resulting in O(N3.3) complex-
ity by particularly setting M = N for �1-Beacon Graph.

Classification in Open Set. In order to validate the performance of the pro-
posed algorithm in open set, we use only 10 % of the samples in total for the
initial beacon training. Therefore, it is expected that there exist some “unfamil-
iar” samples with high probability due to the incomplete coverage of the feature
space, which shares similar properties with the open-set inference. The results
are shown in Fig. 4. As is expected and observed, the accuracies are improved
as the beacon set expanding and updating, since more informative beacons are
involved to handle the samples whose statistics are not present during the initial
training phrase.

The comparison in terms of the converged optimal accuracy is reported in
Table 4, which demonstrates that the performance benefits substantially from
the updating of beacon set. The main reason is that the initial beacons learnt
from the initial samples cannot cover the entire feature space, and may lead to
improper sample-beacon couplings during the inference. It is also noted that the
proposed algorithm allows to load only a small portion of data, and implement
the inference incrementally by updating the characteristics of beacons dynami-
cally as data arrive continuously. Therefore, it is useful when analyzing an enor-
mous volume of data in a limited memory.

Performance Versus Beacon Number. Finally, we study the performance
versus the number of beacons (M) which is the most critical parameter for the
beacon-based algorithms. Figure 5 reveals that the performance is significantly
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Fig. 5. The classification accuracy versus (beacon number/sample number). (Color
figure online)

improved as the beacon number increases. However, much fewer beacons are
needed to realize a comparable performance for our algorithm (red curves) com-
pared to the K-means centers (blue curves) and random beacons (green curves).
The main reason is that the beacons obtained via our algorithm generalizes the
K-means centers to adapt to the complex manifold structures, and the weight
matrix optimized via �1 regularization (curves with star markers) also reduces
unreasonable neighborhood structures by avoiding the artificial parameters, e.g.,
number of neighboring beacons of each sample “kn” for LAE (curves with circle
markers) [16] and kernel regression (curves with cross markers) [17].

5.5 Discussions

Comprehensive experiments demonstrate that our proposed algorithm is attrac-
tive in practical applications. When parameters are set properly, the accuracy
is comparable to state-of-the-art [17]. Furthermore, our algorithm offers robust-
ness to sub-optimal parameter and corrupted data, which are essential issues in
graph-based semi-supervised learning. Compared with the sample-based algo-
rithms, our proposed algorithm is orders of magnitudes more efficient by omit-
ting the inverse of huge matrices. Besides, we also provide a paradigm to handle
statistics shift for time-evolving data by updating the beacon set incrementally.

6 Conclusions

We propose an �1-Beacon Graph algorithm for graph-based semi-supervised
learning, in which the scalable inference is implemented by coupling the design
of an informative beacon set and estimation of the sample-to-beacon relation-
ship. Compared with the transductive algorithms [1,2], the proposed algorithm is
orders of magnitude more efficient in computation and offers a solution to handle
unfamiliar data; moreover, it needs fewer beacons to realize comparable results,
since it generalizes the clustered centers by K-means [16,17] and provides more
flexible representations. With sparsity and graph smoothness properly harnessed,
the algorithm is more robust to corrupted samples. Once unfamiliar samples are
encountered, the algorithm is capable of handling novel and unseen data with
time-evolving statistics by expanding the beacon set and updating the beacon-
related parameters incrementally.
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