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Abstract

The paper proposes an inductive deep semi-supervised learning method, called
Smooth Neighbors on Teacher Graphs (SNTG). At each iteration during training,
a graph is dynamically constructed based on predictions of the teacher model,
i.e., the implicit self-ensemble of models. Then the graph serves as a similarity
measure with respect to which the representations of “similar” neighboring points
are learned to be smooth on the low dimensional manifold. We achieve state-
of-the-art results on semi-supervised learning benchmarks. The error rates are
9.89%, 3.99% for CIFAR-10 with 4000 labels, SVHN with 500 labels, respectively.
In particular, the improvements are significant when the labels are scarce. For
non-augmented MNIST with only 20 labels, the error rate is reduced from previous
4.81% to 1.36%. Our method also shows robustness to incorrect labels.

1 Introduction
Recently due to the great advances of deep learning, remarkable results have been achieved on semi-
supervised learning (SSL) [8, 13, 9]. Among these works, perturbation-based methods [12, 9, 15, 11]
have demonstrated great promise, which enforce smooth predictions of unlabeled data under different
perturbations. Consider a training set D consists of N examples, out of which L have labels. Let
L = {(xi, yi)}Li=1 be the labeled set and U = {xi}Ni=L+1 be the unlabeled set where the input
xi ∈ X and the label yi ∈ {1, 2, ...,K}. We aim to learn f : X → [0, 1]K parameterized by θ ∈ Θ
by solving:

min
θ

L∑
i=1

`(f(xi; θ), yi) + λR(θ,L,U), (1)

where ` is the supervised loss (e.g., cross-entropy loss) and f(x; θ) denotes the predictive distribution
p (y|x; θ). The regularization term R is used to leverage unlabeled data and λ ≥ 0 is the coefficient.
All perturbation-based methods fit in Eq. (1) by defining R as a consistency loss:

RC(θ,L,U) =

N∑
i=1

Eξ′,ξ d
(
f̃(xi; θ

′, ξ′), f(xi; θ, ξ)
)
, (2)

where f̃ is a “teacher” with parameters θ′ and random perturbations ξ′, similarly, f is a “student”
with θ and ξ, and d(·, ·) denotes the divergence between two distributions (e.g., l2 distance or KL
divergence) [15]. The perturbations include the input noise and the network dropout. f̃ is defined as
an implicit ensemble of previous student models and is expected to give better predictions than the
student. f̃(x) can be seen as the training targets for the unlabeled inputs and the student model is
supposed to predict consistently with f̃(x). Below are several ways to define the teacher model f̃ :

Π model [9]. f̃ shares the same parameters with f , i.e., θ′ = θ in Eq. (2). It evaluates the network
twice under different realizations of i.i.d. perturbations ξ′ and ξ and minimizes their l2 distance.

Temporal ensembling (TempEns) [9]. To reduce the variance of the targets, TempEns maintains
an exponentially moving average (EMA) of previous predictions over epochs as f̃ . The ensemble



Table 1: Error rates (%) on benchmark datasets without augmentation, averaged over 10 runs.
Models MNIST (L=100) SVHN (L=1000) CIFAR10 (L=4000)

Ladder network [12] 0.89±0.50 – 20.40±0.47
Improved GAN [13] 0.93±0.065 8.11±1.3 18.63±2.32
ALI [5] – 7.42±0.65 17.99±1.62
Triple GAN [10] 0.91±0.58 5.77±0.17 16.99±0.36
GoodSemiBadGAN [4] 0.795±0.098 4.25±0.03 14.41±0.03

Π model [9] 0.89±0.15* 5.43±0.25 16.55±0.29
Π+SNTG (ours) 0.66±0.07 4.22±0.16 13.62±0.17

VAT [11] 1.36 5.77 14.82
VAT+Ent – 4.28 13.15
VAT+Ent+SNTG (ours) – 4.02±0.20 12.49±0.36

output is defined as F̃ (t)(xi) = αF̃ (t−1)(xi) + (1 − α)f (t)(xi; θ, ξ), where f (t) : X → [0, 1]K is
the student model at training epoch t and α is the pre-defined momentum. The target given by f̃ for
xi at epoch t is the debias correction of F̃ (t), i.e., f̃ (t)(xi) = F̃ (t)(xi)/(1− αt). Since the targets
are based on EMA, the network only needs to be evaluated once, leading to a speed-up for Π model.

Mean teacher (MT) [15]. Instead of averaging previous predictions every epoch, MT updates
the targets more frequently to form a better teacher, i.e., it averages parameters θ every iteration:
θ′ ← αθ′ + (1− α)θ. It also evaluates the network twice by the teacher and the student respectively.

VAT [11]. Instead of l2 distance, VAT defines RC as KL divergence between the model prediction
and that of the input under adversarial perturbation ξ′adv: RC =

∑N
i=1 KL(f̃(xi; θ)‖f(xi; θ, ξ

′
adv)).

It is assumed that a model trained under the worst-case (adversarial) perturbations will generalize
well [11]. VAT resembles Π model but distinguishes itself in the distance metric and the type of
perturbations. f̃ can be seen as the teacher while f with ξ′adv is treated as the student.

These approaches aim to fuse the inputs into coherent clusters by smoothing the mapping function
locally. However, they only regularize the output to be smooth near each single data point, while
ignoring the connections between data points, therefore not fully utilizing the information in unlabeled
data structure, such as clusters or manifolds. An extreme situation may happen where the function
is smooth in the vicinity of each unlabeled point but not smooth in the vacancy among them. This
artifact could be avoided if the unlabeled data structure is taken into consideration. The connections
between similar data points will help the fusing of clusters become tighter and more effective.

We present Smooth Neighbors on Teacher Graphs (SNTG), which considers the neighboring structure
to induce smoothness on the data manifold in some local clusters. By defining a teacher graph based
on the targets generated by the teacher, our model encourages features to be invariant when some
perturbations are added to the neighboring points on the graph. We propose a doubly stochastic
sampling algorithm to reduce the computational cost with large mini-batch sizes. Our method can
be easily incorporated into existing deep SSL methods including both generative and discriminative
approaches because SNTG does not increase the number of network parameters. We demonstrate
significant performance improvements over state-of-the-art results while the extra time cost is
negligible. SNTG is still effective with few labels or noisy labels.

2 Our Approach

In this section, we formalize SNTG by answering two key questions: (1) How to define the graph and
neighbors? (2) How to induce the smoothness of neighboring points using the graph?

Building the graph with the teacher model. Most existing graph-based SSL methods [1, 16]
depend on a distance metric in the input space X , which is typically low-level (e.g., pixel values
of images). For natural images, pixel distance cannot reflect semantic similarity well. Instead, we
use the distance in the label space Y , and treat the data points from the same class as neighbors.
However, an issue is that the true labels of unlabeled data are unknown. We address it by learning a
teacher graph using the targets generated by the teacher model. Self-ensembling is a good choice for
constructing the graph because the ensemble predictions are expected to be more accurate than the
outputs of current classifier. Formally, for xi ∈ D, a target prediction f̃(xi) is given by the teacher
defined in the previous section. Denote the hard target prediction as ỹi = argmaxk[f̃(xi)]k where
[·]k is the k-th component of the vector, indicating the probability that xi is of class k. We build the
graph as follows: Wij = 1[ỹi = ỹj ], where 1 is the indicator function. Wij measures the similarity
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(a) Π model (b) SNTG (c) Π model (d) SNTG

Figure 1: (a,b) are the embeddings of CIFAR-10 test data projected to 2-D using PCA. (c,d) are the
2-D embeddings of MNIST test data using t-SNE. Each color denotes a class.

between xi and xj and those pairs with nonzero entries are treated as “neighbors”. Here we restrict
Wij ∈ {0, 1} to construct a 0-1 sparse graph.

Guiding the low dimensional mapping. Generally, a deep classifier (i.e., the student) f can be
decomposed as f = g ◦ h, where h : X → Rp is the mapping from the input space to the penultimate
layer and g : Rp → [0, 1]K is usually parameterized by a fully-connected layer with softmax. Due
to the hierarchical nature of deep networks, h(x) can be seen as a low-dimensional feature of the
input. And the feature space is expected to be linearly separable, as shown in the common practice
that a following linear classifier g suffices. In terms of approximating the semantic similarity of
two instances, the Euclidean distance of h(xi) and h(xj) is more suitable than that of f(x) which
represents class probabilities. Hence we use the graph to guide h(x), making them distinguishable
among classes. Given a N ×N similarity matrix W of the sparse graph, we define our SNTG loss as

RS(θ,L,U) =
∑

xi,xj∈D
`G(h(xi; θ), h(xj ; θ),Wij) (3)

Here we utilize the contrastive Siamese networks [3], which can learn an invariant mapping and
perform well in metric learning and face verification [7, 14]. Specifically, the loss is defined as:

`G=

{
‖h(xi)− h(xj)‖2 if Wij=1

max (0,m−‖h(xi)− h(xj)‖)2 if Wij=0
(4)

where m > 0 is a pre-defined margin. The margin loss is to constrain neighboring points to have
consistent embeddings. Consequently, the neighbors are encouraged to have consistent predictions
while the non-neighbors (i.e., the points of different classes) are pushed apart from each other with a
minimum distance m.

One interpretation of why the proposed method works well is that SNTG explores more information in
the teacher and improves the target quality. The teacher graph leads to better abstract representations
in a smooth and coherent feature space and then aids the student f to give more accurate predictions.
In turn, an improved student contributes to a better teacher model which can provide more accurate
targets. Another perspective is that SNTG implements the manifold assumption for classification
which underlies the loss `G, i.e.„ the points of same class are encouraged to concentrate together on
sub-manifolds. The perturbation-based methods only keep the decision boundaries far away from
each unlabeled data point while our method encourages the unlabeled data points to form tighter
clusters, leading the decision boundaries to locate between the clusters.

3 Experiments
Table 2: Errors(%) on MNIST without aug-
mentation.

Models 20 labels 50 labels

FM-GAN [13] 16.77±4.52 2.21±1.36
Triple-GAN [10] 4.81±4.95 1.56±0.72
Π model [9] 6.32±6.90* 1.02±0.37*

Π+SNTG (Ours) 1.36±0.78 0.94±0.42

We provide results on widely adopted benchmarks. Fol-
lowing [13], we randomly sample 100, 1000 and 4000
labels for MNIST, SVHN and CIFAR-10, respectively.
We further test with fewer labels for non-augmented
MNIST as well as SVHN and CIFAR-10 with standard
data augmentation. The results are averaged over 10
runs with different seeds for data splits. We use the
same network architecture and hyper-parameters to our
baselines. Main results are presented in Tables 1, 2.Our method surpasses previous state-of-the-arts
by a large margin. More results and details on experimental setup are in Appendix A.

Note that for VAT, its best results are achieved with an additional entropy minimization (Ent)
regularization [6], leading to a much stronger baseline. We evaluate our method under its best setting
VAT+Ent, and observe a further improvement with SNTG, e.g., from 13.15% to 12.49% and from
10.55% to 9.89% on CIFAR-10 without or with augmentation, respectively. In fact, we observe that
Ent can also improve the performance of other baselines if it was added along with SNTG. But to
focus on the efficacy of SNTG, we did not illustrate the results here.
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Fewer labels. Notably, as shown in Tables 2, 4 and 3, when labels are scarce, e.g., MNIST with 20
labels (only 2 each class), SVHN with 250 labels and CIFAR-10 with 1000 labels, the improvements
are even more significant. Since the labeled data only accounts for a small part, adding a strong
regularizer SNTG in this case helps the model learn faster by exploring the unlabeled data structure.

Noisy Labels. SNTG can not only benefit from unlabeled data, but also learn from noisy supervision.
We did experiments on supervised SVHN to show the tolerance to incorrect labels. True labels on
the training set are replaced by random labels following [9]. Fig. ?? shows that TempEns+SNTG
retains over 93% accuracy even when 90% of the labels are noisy while TempEns alone only obtains
73% [9]. Thus, our SNTG regularization improves the robustness and generalization performance.

Visualization of embeddings We finally visualize the embeddings of our algorithm and Π model
on test data under the same settings (CIFAR-10 with 4000 labels and MNIST with 100 labels, both
without augmentation). Fig. 1 shows the representations h(x) ∈ R128 projected to 2 dimension using
PCA or tSNE. The learned representations of our model are more concentrated within clusters and
are potentially easier to separate for different classes. The visualization is also consistent with our
assumption and analysis.

4 Conclusions and Future Work
We developed a simple but effective SNTG for SSL that builds graphs using the teacher model and
enforces smoothness of neighbor points on it. Empirically, it outperforms all baselines and achieves
new state-of-the-art results. As a byproduct, we also learn an invariant mapping on a low dimensional
manifold. SNTG can handle extreme cases with fewer labels and noisy labels.

References
[1] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for

learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7(Nov):2399–2434,
2006.

[2] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer, 2010.

[3] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verification
using a “siamese" time delay neural network. In NIPS, 1994.

[4] Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and Ruslan Salakhutdinov. Good semi-supervised
learning that requires a bad gan. In NIPS, 2017.

[5] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, and
Aaron Courville. Adversarially learned inference. In ICLR, 2017.

[6] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In NIPS, 2005.

[7] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping.
In CVPR, 2006.

[8] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In NIPS, 2014.

[9] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In ICLR, 2017.

[10] Chongxuan Li, Kun Xu, Jun Zhu, and Bo Zhang. Triple generative adversarial nets. In NIPS, 2017.

[11] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. arXiv preprint arXiv:1704.03976,
2017.

[12] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised
learning with ladder networks. In NIPS, 2015.

[13] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. In NIPS, 2016.

[14] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to
human-level performance in face verification. In CVPR, 2014.

[15] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. In NIPS, 2017.

[16] Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-supervised embedding. In
ICML, 2008.

4



This paper is a short version. See https://arxiv.org/pdf/1711.00258.pdf for more details.

A Experimental Setup

MNIST. It contains 60,000 gray-scale training images and 10,000 test images from handwritten
digits 0 to 9. The input images are normalized to zero mean and unit variance.

SVHN. Each example in SVHN is a 32× 32 color house-number images and we only use the official
73,257 training images and 26,032 test images following previous work. The augmentation of SVHN
is limited to random translation between [−2, 2] pixels.

CIFAR-10. The CIFAR-10 dataset consists of 32× 32 natural RGB images from 10 classes such as
airplanes, cats, cars and horses. We have 50,000 training examples and 10,000 test examples. The
input images are normalized using ZCA following previous work [9]. We use the standard way of
augmenting the CIFAR-10 dataset including horizontal flips and random translations.

Training details. In Π model and TempEns based experiments, the network architectures (shown in
Table 5) and the hyper-parameters are the same as our baselines. Following [9], we apply mean-only
batch normalization with momentum 0.999 to all layers and use leaky ReLU with α = 0.1. The
network is trained for 300 epochs using Adam Optimizer with mini-batches of size n = 100 and
maximum learning rate 0.003 (exceptions are that temporal ensembling for SVHN uses 0.001 and
MNIST uses 0.0001). We use the default Adam momentum parameters β1 = 0.9 and β2 = 0.999.
We also ramp up the learning rate and the regularization term during the first 80 epochs with weight
w(t) = exp

[
−5(1− t

80 )2
]

and ramp down the learning rate during the last 50 epochs. The ramp
down function is exp

[
−12.5(1− 300−t

50 )2
]
. The regularization coefficient of consistency loss RC is

λ1 = 100 for Π model and λ1 = 30 for temporal ensembling (exception is that SVHN with L = 250
uses λ1 = 50).

For comparison with Mean Teacher and VAT, we keep the same architecture and hyper-parameters
settings with the corresponding baselines [15, 11]. Their network architectures are the same as shown
in Table 5 but differ in some hyper-parameters such as weight normalization, training epochs and
mini-batch sizes, which are detailed in their papers. We just add our SNTG loss along with their
regularization RC and keep other settings unchanged.

SNTG loss only needs three extra hyper-parameters: the regularization parameter λ2, the margin
m and the number of sub-sampled pairs s. We fix m and s, only tune λ2. In all our experiments,
the margin m in Eq. (4) is set to m = 1 when ‖h(xi)− h(xj)‖2 is averaged by feature dimension p.
We sample half the number of mini-batch size pairs of (xi, xj) for computing `G, e.g., s = 50 for
mini-batch size n = 100. The regularization coefficient λ2 for SNTG loss RS is set to kλ1 where k
is chosen from {0.2, 0.4, 0.5, 0.6, 1.0} using the validation set and we use default ratio k = 0.4 for
most settings. SNTG does not increase the number of model parameters and the run time is almost
the same to baselines.

Code reproducing our results will be available at https://github.com/xinmei9322/SNTG soon.

B Doubly stochastic sampling approximation

Our overall objective is the sum of two components. The first one is cross-entropy loss on the labeled
set L, and the second is the regularization term, which encourages the smoothness for each single
point (i.e., RC) as well as for the neighboring points (i.e., RS). Alg. 1 presents the pseudo-code.

As our model belongs to deep networks, we train it using SGD [2] with mini-batches. We construct
the sub-graph in a random mini-batch B of size n to estimate RS in Eq. (3). We need to compute
Wij for all the data pairs (xi, xj) ∈ B, which is of size n2 in total. Although this step is fast, the
computation of ‖h(xi)− h(xj)‖ related to Wij is O(p) and then the overall computational cost is
O(n2p), which is slow for large n. We instead use doubly stochastic sampled data pairs to construct
Wij for Eq. (4), which is still an unbiased estimation of RS . Specifically, in each iteration, we sample
a mini-batch B and then sub-sample s ≤ n2 data pairs S from B.
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Algorithm 1 Mini-batch training of SNTG for SSL
1: Input: xi, yi, w(t) = unsupervised weight ramp-up function
fθ(x) = neural network with trainable parameters θ

2: for t in [1, numepochs] do
3: for each minibatch B do
4: fi ← fθ(xi∈B) evaluate network outputs
5: f̃i ← f̃(xi∈B) given by the teacher model
6: for (xi, xj) in a minibatch pairs S from B do
7: Compute Wij according to Section 2
8: end for
9: loss← − 1

|B|
∑
i∈(B∩L) log[fi]yi

+w(t)
[
λ1

1
|B|
∑
i∈B d(f̃i, fi) + λ2

1
|S|
∑
i,j∈S `G(h(xi), h(xj),Wij)

]
10: update θ using optimizers
11: end for
12: end for
13: return θ

Table 3: Error rates (%) on CIFAR-10 with standard augmentation, averaged over 10 runs.
Model 1000 labels 2000 labels 4000 labels All labels

Supervised-only 34.85±1.65 6.05±0.15

Π model [9] 31.65±1.20* 17.57±0.44* 12.36±0.31 5.56±0.10
Π+SNTG (ours) 21.23±1.27 14.65±0.31 11.00±0.13 5.19±0.14
TempEns [9] 23.31±1.01* 15.64±0.39* 12.16±0.24 5.60±0.10
TempEns+SNTG (ours) 18.41±0.52 13.64±0.32 10.93±0.14 5.20±0.14

VAT [11] – – 11.36 5.81
VAT+Ent [11] – – 10.55 –
VAT+Ent+SNTG (ours) – – 9.89±0.34 –

Table 4: Error rates (%) on SVHN with translation augmentation, averaged over 10 runs.
Model 250 labels 500 labels 1000 labels All labels

Supervised-only 42.65±2.68 22.08±0.73 14.46±0.71 2.81±0.07

Π model [9] 9.93±1.15* 6.65±0.53 4.82±0.17 2.54±0.04
Π+SNTG (ours) 5.07±0.25 4.52±0.30 3.82±0.25 2.42±0.05
TempEns [9] 12.62±2.91* 5.12±0.13 4.42±0.16 2.74±0.06
TempEns+SNTG (ours) 5.36±0.57 4.46±0.26 3.98±0.21 2.44±0.03

Mean Teacher [15] 4.35±0.50 4.18±0.27 3.95±0.19 2.50±0.05
Mean Teacher+SNTG (ours) 4.29±0.23 3.99±0.24 3.86±0.27 2.42±0.06

VAT [11] – – 5.42 –
VAT+Ent [11] – – 3.86 –
VAT+Ent+SNTG (ours) – – 3.83±0.22 –
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Figure 2: Test accuracy on supervised SVHN with noisy labels. Different colors denote the percent-
ages of corrupted labels. With standard supervised training (left), the model suffers a lot and overfits
to the incorrect information in labels. TempEns (middle) shows the resistance to the corruption but
still has a drop in accuracy when the portion of randomized labels increases to 90%. Adding SNTG
shows almost perfect robustness even when 90% labels are corrupted.

Table 5: The network architecture we used in all experiments.
Input: 32× 32× 3 image (28× 28× 1 for MNIST)
Gaussian noise σ = 0.15
3× 3 conv. 128 lReLU (α = 0.1) same padding
3× 3 conv. 128 lReLU (α = 0.1) same padding
3× 3 conv. 128 lReLU (α = 0.1) same padding
2× 2 max-pool, dropout 0.5
3× 3 conv. 256 lReLU (α = 0.1) same padding
3× 3 conv. 256 lReLU (α = 0.1) same padding
3× 3 conv. 256 lReLU (α = 0.1) same padding
2× 2 max-pool, dropout 0.5
3× 3 conv. 512 lReLU (α = 0.1) valid padding
1× 1 conv. 256 lReLU (α = 0.1)
1× 1 conv. 128 lReLU (α = 0.1)
Global average pool 6× 6 (5× 5 for MNIST)→ 1×1
Fully connected 128→ 10 softmax
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