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Abstract

Upstream supervised topic models have been widely used for complicated
scene understanding. However, existing maximum likelihood estimation (MLE)
schemes can make the prediction model learning independent of latent topic dis-
covery and result in an imbalanced prediction rule for scene classification. This
paper presents a joint max-margin and max-likelihood learning method for up-
stream scene understanding models, in which latent topic discovery and predic-
tion model estimation are closely coupled and well-balanced. The optimization
problem is efficiently solved with a variational EM procedure, which iteratively
solves an online loss-augmented SVM. We demonstrate the advantages of the
large-margin approach on both an 8-category sports dataset and the 67-class MIT
indoor scene dataset for scene categorization.

1 Introduction

Probabilistic topic models like the latent Dirichlet allocation (LDA) [5] have recently been applied
to a number of computer vision tasks such as objection annotation and scene classification due
to their ability to capture latent semantic compositions of natural images [22, 23, 9, 13]. One of
the advocated advantages of such models is that they do not require “supervision” during training,
which is arguably preferred over supervised learning that would necessitate extra cost. But with the
increasing availability of free on-line information such as image tags, user ratings, etc., various forms
of “side-information” that can potentially offer “free” supervision have led to a need for new models
and training schemes that can make effective use of such information to achieve better results, such
as more discriminative topic representations of image contents, and more accurate image classifiers.

The standard unsupervised LDA ignores the commonly available supervision information, and thus
can discover a sub-optimal topic representation for prediction tasks. Extensions to supervised topic
models which can explore side information for discovering predictive topic representations have
been proposed, such as the sLDA [4, 25] and MedLDA [27]. A common characteristic of these
models is that they are downstream, that is, the supervised response variables are generated from
topic assignment variables. Another type of supervised topic models are the so-called upstream
models, of which the response variables directly or indirectly generate latent topic variables. In
contrast to downstream supervised topic models (dSTM), which are mainly designed by machine
learning researchers, upstream supervised topic models (uSTM) are well-motivated from human
vision and psychology research [18, 10] and have been widely used for scene understanding tasks.
For example, in the recently developed scene understanding models [23, 13, 14, 8], complex scene
images are modeled as a hierarchy of semantic concepts where the most top level corresponds to a
scene, which can be represented as a set of latent objects likely to be found in a given scene. To
learn an upstream scene model, maximum likelihood estimation (MLE) is the most common choice.
However, MLE can make the prediction model estimation independent of latent topic discovery and
result in an imbalanced prediction rule for scene classification, as we explain in Section 3.
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In this paper, our goal is to address the weakness of MLE for learning upstream supervised topic
models. Our approach is based on the max-margin principle for supervised learning which has
shown great promise in many machine learning tasks, such as classification [21] and structured out-
put prediction [24]. For the dSTM, max-margin training has been developed in MedLDA [27], which
has achieved better prediction performance than MLE. In such downstream models, latent topic as-
signments are sufficient statistics for the prediction model and it is easy to define the max-margin
constraints based on existing max-margin methods (e.g., SVM). However, for upstream supervised
topic models, the discriminant function for prediction involves an intractable computation of poste-
rior distributions, which makes the max-margin training more delicate.

Specifically, we present a joint max-margin and max-likelihood estimation method for learning up-
stream scene understanding models. By using a variational approximation to the posterior distri-
bution of supervised variables (e.g., scene categories), our max-margin learning approach iterates
between posterior probabilistic inference and max-margin parameter learning. The parameter learn-
ing solves an online loss-augmented SVM, which closely couples the prediction model estimation
and latent topic discovery, and this close interplay results in a well-balanced prediction rule for scene
categorization. Finally, we demonstrate the advantages of our max-margin approach on both the 8-
category sports [13] and the 67-class MIT indoor scene [20] datasets. Empirical results show that
max-margin learning can significantly improve the scene classification accuracy.

The paper is structured as follows. Sec. 2 presents a generic scene understanding model we will
work on. Sec. 3 discusses the weakness of MLE in learning upstream models. Sec. 4 presents the
max-margin learning approach. Sec. 5 presents empirical results and Sec. 6 concludes.

2 Joint Scene and Object Model: a Generic Running Example

In this section, we present a generic joint scene categorization and object annotation model, which
will be used to demonstrate the large margin learning of upstream scene understanding models.

2.1 Image Representation

How should we represent a scene image? Friedman [10] pointed out that object recognition is
critical in the recognition of a scene. While individual objects contribute to the recognition of visual
scenes, human vision researchers Navon [18] and Biederman [2] also showed that people perform
rapid global scene analysis before conducting more detailed local object analysis when recognizing
scene images. To obtain a generic model, we represent a scene by using its global scene features
and objects within it. We first segment an image I into a set of local regions {r1, · · · , rN}. Each
region is represented by three region features R (i.e., color, location and texture) and a set of image
patches X . These region features are represented as visual codewords. To describe detailed local
information of objects, we partition each region into patches. For each patch, we extract the SIFT
[16] features, which are insensitive to view-point and illumination changes. To model the global
scene representation, we extract a set of global features G [19]. In our dataset, we represent an
image as a tuple (r,x,g), where r denotes an instance of R, and likewise for x and g.

2.2 The Joint Scene and Object Model

The model is shown in Fig. 1 (a). S is the scene random variable, taking values from a finite set
S = {s1, · · · , sMs}. For an image, the distribution over scene categories depends on its global
representation features G. Each scene is represented as a mixture over latent objects O and the
mixing weights are defined with a generalized linear model (GLM) parameterized by ψ. By using
a normal prior on ψ, the scene model can capture the mutual correlations between different objects,
similar to the correlated topic models (CTMs) [3]. Here, we assume that for different scenes, the
objects have different distributions and correlations. Let f denote the vector of real-valued feature
functions of S and G, the generating procedure of an image is as follows:

1. Sample a scene category from a conditional scene model: p(s|g, θ) = exp(θ⊤f(g,s)∑
s′ exp(θ⊤f(g,s′))

.

2. Sample the parameters ψ|s, µ,Σ ∼ N (µs,Σs).
3. For each region n

(a) sample an object from: p(on = k|ψ) = exp(ψk)∑
j exp(ψj)

.

(b) sample Mr (i.e., 3: color, location and texture) region features: rnm|on, β ∼ Multi(βmon).
(c) sample Mx image patches xnm|on, η ∼ Multi(ηon).
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Figure 1: (a) a joint scene categorization and object annotation model with global features G; (b) average
log-likelihood ratio log p(s|g, θ)/L−θ under MLE and max-margin estimations, where the first bar is for true
categories and the rest are for categories sorted based on their difference from the first one; (c) scene classifica-
tion accuracy by using (Blue) L−θ , (Green) log p(s|g, θ), and (Red) L−θ+log p(s|g, θ) for prediction. Group
1 is for MLE and group 2 is for max-margin training.

The generative model defines a joint distribution

p(s, ψ, o, r,x|g,Θ) = p(s|θ,g)p(ψ|µs,Σs)
N∏
n=1

(
p(on|ψ)

Mr∏
m=1

p(rnm|on, β)
Mx∏
m=1

p(xnm|on, η)
)
,

where we have used Θ to denote all the unknown parameters (θ, µ,Σ, β, η). From the joint distribu-
tion, we can make two types of predictions, namely scene classification and object annotation. For
scene classification, we infer the maximum a posteriori prediction

ŝ , argmax
s
p(s|g, r,x) = argmax

s
log p(s, r,x|g). (1)

For object annotation, we can use the inferred latent representation of regions based on p(o|g, r,x)
and build a classifier to categorize regions into object classes, when some training examples with
manually annotated objects are provided. Since collecting fully labeled images with annotated ob-
jects is difficult, upstream scene models are usually learned with partially labeled images for scene
categorization, where only scene categories are provided and objects are treated as latent topics
or themes [9]. In this paper, we focus on scene classification. Some empirical results on object
annotation will be reported when labeled objects are available.

We use this joint model as a running example to demonstrate the basic principe of performing max-
margin learning for the widely applied upstream scene understanding models because it is well-
motivated, very generic and covers many other existing scene understanding models. For example,
if we do not incorporate the global scene representation G, the joint model will be reduced to a
model similar as [14, 6, 23]. Moreover, the generic joint model provides a good framework for
studying the relative contributions of local object modeling and global scene representation, which
has been shown to be useful for scene classification [20] and object detection [17] tasks.

3 Weak Coupling of MLE in Learning Upstream Scene Models
To learn an upstream scene model, the most commonly used method is the maximum likelihood
estimation (MLE), such as in [23, 6, 14]. In this section, we discuss the weakness of MLE for
learning upstream scene models and motivate the max-margin approach.

Let D = {(Id, sd)}Dd=1 denote a set of partially labeled training images. The standard MLE obtains
the optimum model parameters by maximizing the log-likelihood1 ∑D

d=1 log p(sd, rd,xd|gd,Θ).
By using the factorization of p(s, ψ, o, r,x|g,Θ), MLE solves the following equivalent problem

max
θ,Θ−θ

∑
d

(
log p(sd|gd, θ) + Lsd,−θ

)
, (2)

where Lsd,−θ , log
∫
ψ

∑
o p(ψ, o, rd,xd|sd,Θ) = log p(rd,xd|sd,Θ) is the log-likelihood of im-

age features given the scene class, and Θ−θ denotes all the parameters except θ.

Since Ls,−θ does not depend on θ, the MLE estimation of the conditional scene model is to solve

max
θ

∑
d

log p(sd|gd, θ), (3)

which does not depend on the latent object model. This is inconsistent with the prediction rule (1)
which does depend on both the conditional scene model (i.e., p(s|g, θ)) and the local object model.

1The conditional likelihood estimation can avoid this problem to some extend, but it has not been studied,
to the best of our knowledge.
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This decoupling will result in an imbalanced combination between the conditional scene and object
models for prediction, as we explain below.

We first present some details of the MLE method. For θ, the problem (3) is an MLE estimation of a
GLM, and it can be efficiently solved with gradient descent methods, such as quasi-Newton methods
[15]. For Θ−θ, since the likelihood Ls,−θ is intractable to compute, we apply variational methods
to obtain an approximation. By introducing a variational distribution qs(ψ, o) to approximate the
posterior p(ψ, o|s, r,x,Θ) and using the Jensen’s inequality, we can derive a lower bound

Ls,−θ ≥ Eqs [log p(ψ, o, r,x|s,Θ)] +H(qs) , L−θ(qs,Θ), (4)

where H(q) = −Eq[q] is the entropy. Then, the intractable prediction rule (1) can be approximated
with the variational prediction rule

ŝ , argmax
s,qs

(
log p(s|g, θ) + L−θ(qs,Θ)

)
. (5)

Maximizing
∑
d L−θ(qsd ,Θ) will lead to a closed form solution of Θ−θ. See Appendix for the

inference of qs as involved in the prediction rule (5) and the estimation of Θ−θ.

Now, we examine the effects of the conditional scene model p(s|g, θ) in making a prediction via the
prediction rule (5). Fig. 1 (b-left) shows the relative importance of log p(s|g, θ) in the joint decision
rule (5) on the sports dataset [13]. We can see that in MLE the conditional scene model plays a very
weak role in making a prediction when it is combined with the object model, i.e., L−θ. Therefore,
as shown in Fig. 1 (c), although a simple logistic regression with global features (i.e., the green bar)
can achieve a good accuracy, the accuracy of the prediction rule (5) that uses the joint likelihood
bound (i.e, the red bar) is decreased due to the strong effect of the potentially bad prediction rule
based on L−θ (i.e., the blue bar), which only considers local image features.

In contrast, as shown in Fig. 1 (b-right), in the max-margin approach to be presented, the conditional
scene model plays a much more influential role in making a prediction via the rule (5). This results in
a better balanced combination between the scene and the object models. The strong coupling is due
to solving an online loss-augmented SVM, as we explain below. Note that we are not claiming any
weakness of MLE in general. All our discussions are concentrated on learning upstream supervised
topic models, as generically represented by the model in Fig. 1.

4 Max-Margin Training

Now, we present the max-margin method for learning upstream scene understanding models.

4.1 Problem Definition

For the predictive rule (1), we use F (s,g, r,x; Θ) , log p(s|g, r,x,Θ) to denote the discriminant
function, which is more complicated than the commonly chosen linear form, in the sense we will
explain shortly. In the same spirit of max-margin classifiers (e.g., SVMs), we define the hinge loss
of the prediction rule (1) on D as

Rhinge(Θ) =
1

D

∑
d

max
s

[∆ℓd(s)−∆Fd(s; Θ)],

where ∆ℓd(s) is a loss function (e.g., 0/1 loss), and ∆Fd(s; Θ) = F (sd,gd, rd,xd; Θ) −
F (s,gd, rd,xd; Θ) is the margin favored by the true category sd over any other category s.

The problem with the above definition is that exactly computing the posterior distribution
p(s|g, r,x,Θ) is intractable. As in MLE, we use a variational distribution qs to approximate it. By
using the Bayes’s rule and the variational bound in Eq. (4), we can lower bound the log-likelihood

log p(s|g, r,x,Θ) = log p(s, r,x|g,Θ)− log p(r,x|g,Θ) ≥ log p(s|g, θ) + L−θ(qs,Θ)− c, (6)

where c = log p(r,x|g,Θ). Without causing ambiguity, we will use L−θ(qs) without Θ. Since we
need to make some assumptions about qs, the equality in (6) usually does not hold. Therefore, the
tightest lower bound is an approximation of the intractable discriminant function

F (s,g, r,x; Θ) ≈ log p(s|g, θ) + max
qs

L−θ(qs)− c. (7)

Then, the margin is ∆Fd(s; Θ) = θ⊤∆fd(s) + maxqsd L−θ(qsd) − maxqs L−θ(qs), of which the
linear term is the same as that in a linear SVM [7] and the difference between two variational bounds
causes the topic discovery to bias the learning of the scene classification model, as we shall see.
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Using the variational discriminant function in Eq. (7) and applying the principle of regularized
empirical risk minimization, we define the max-margin learning of the joint scene and object model
as solving

min
Θ

Ω(Θ) + λ
∑
d

(−max
qsd

L−θ(qsd)) + CRhinge(Θ), (8)

where Ω(Θ) is a regularizer of the parameters. Here, we define Ω(Θ) , 1
2∥θ∥

2
2. For the normal mean

µs or covariance matrix Σs, a similar ℓ2-norm or Frobenius norm can be used without changing our
algorithm. The free parameters λ and C are positive and tradeoff the classification loss and the data
likelihood. When λ → ∞, the problem (8) reduces to the standard MLE of the joint scene model
with a fixed uniform prior on scene classes. Moreover, we can see the difference from the standard
MLE (2). Here, we minimize a hinge loss, which is defined on the joint prediction rule, while MLE
minimizes the log-likelihood loss log p(sd|gd, θ), which does not depend on the latent object model.
Therefore, our approach can be expected to achieve a closer dependence between the conditional
scene model and the latent object model. More insights will be provided in the next section.

4.2 Solving the Optimization Problem

The problem (8) is generally hard to solve because the model parameters and variational distribu-
tions are strongly coupled. Therefore, we develop a natural iterative procedure that estimates the
parameters Θ and performs posterior inference alternatively. The intuition is that by fixing one part
(e.g., qs) the other part (e.g., Θ) can be efficiently done. Specifically, using the definitions, we
rewrite the problem (8) as a min-max optimization problem

min
Θ,{qsd}

max
{s,qs}

(1
2
∥Θ∥22 − (λ+ C)

∑
d

L−θ(qsd) + C
∑
d

[−θ⊤∆fd(s) + ∆ℓd(s) + L−θ(qs)]
)
, (9)

where the factor 1/D in Rhinge is absorbed in the constant C. This min-max problem can be
approximately solved with an iterative procedure. First, we infer the optimal variational posterior2

q⋆s = argmaxqs L−θ(qs) for each s and each training image. Then, we solve

min
Θ,{qsd}

(1
2
∥Θ∥22 − (λ+ C)

∑
d

L−θ(qsd) + C
∑
d

max
s

[−θ⊤∆fd(s) + ∆ℓd(s) + L−θ(q
⋆
s )]

)
,

For this sub-step, again, we apply an alterative procedure to solve the minimization problem over Θ
and qsd . We first infer the optimal variational posterior q⋆sd = argmaxqsd L−θ(qsd), and then we
estimate the parameters by solving the following problem

min
Θ

(1
2
∥Θ∥22 − (λ+ C)

∑
d

L−θ(q
⋆
sd) + C

∑
d

max
s

[−θ⊤∆fd(s) + ∆ℓd(s) + L−θ(q
⋆
s )]

)
, (10)

Since inferring q⋆sd is included in the step of inferring q⋆s (∀s), the algorithm can be summarized
as a two-step EM-procedure that iteratively performs posterior inference of qs and max-margin
parameter estimation. Another way to understand this iterative procedure is from the definitions.
The first step of inferring q⋆s is to compute the discriminant function F under the current model.
Then, we update the model parameters Θ by solving a large-margin learning problem. For brevity,
we present the parameter estimation only. The posterior inference is detailed in Appendix A.1.

Parameter Estimation: This step can be done with an alternating minimization procedure. For
the Gaussian parameters (µ,Σ) and multinomial parameters (η, β), the estimation can be written
in a closed-form as in a standard MLE of CTMs [3] by using a loss-augmented prediction of s.
For brevity, we defer the details to the Appendix A.2. Now, we present the step of estimating θ,
which illustrates the essential difference between the large-margin approach and the standard MLE.
Specifically, the optimum solution of θ is obtained by solving the sub-problem3

min
θ

1

2
∥θ∥22 + C

∑
d

(
max
s

[θ⊤f(gd, s) + ∆ℓd(s) + L−θ(q
⋆
s )]− [θ⊤f(gd, sd) + L−θ(q

⋆
sd)]

)
,

which is equivalent to a constrained problem by introducing a set of non-negative slack variables ξ

min
θ,ξ

1

2
∥θ∥22 + C

D∑
d=1

ξd s.t.: θ⊤∆fd(s) + [L−θ(q
⋆
sd)− L−θ(q

⋆
s )] ≥ ∆ℓd(s)− ξd,∀d, s. (11)

2To retain an accurate large-margin criterion for estimating model parameters (especially θ), we do not
perform the maximization over s at this step.

3The constant (w.r.t. θ) term −C
∑
d L−θ(q

⋆
sd) is kept for easy explanation. It won’t change the estimation.
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The constrained optimization problem is similar to that of a linear SVM [7]. However, the difference
is that we have the additional term

∆L⋆d(s) , L−θ(q
⋆
sd)− L−θ(q

⋆
s ).

This term indicates that the estimation of the scene classification model is influenced by the topic
discovery procedure, which finds an optimum posterior distribution q⋆. If ∆L⋆d(s) < 0, s ̸= sd,
which means it is very likely that a wrong scene s explains the image content better than the true
scene sd, then the term ∆L⋆d(s) acts in a role of augmenting the linear decision boundary θ to make
a correct prediction on this image by using the prediction rule (5). If ∆L⋆d(s) > 0, which means
the true scene can explain the image content better than s, then the linear decision boundary can be
slightly relaxed. If we move the additional term to the right hand side, the problem (11) is to learn
a linear SVM, but with an online updated loss function ∆ℓd(s) − ∆L⋆d(s). We call this SVM an
online loss-augmented SVM. Solving the loss-augmented SVM will result in an amplified influence
of the scene classification model in the joint predictive rule (5) as shown in Fig. 1 (b).

5 Experiments

Now, we present empirical evaluation of our approach on the sports [13] and MIT indoor scene [20]
datasets. Our goal is to demonstrate the advantages of the max-margin method over the MLE for
learning upstream scene models with or without global features. Although the model in Fig. 1 can
also be used for object annotation, we report the performance on scene categorization only, which
is our main focus in this paper. For object annotation, which requires additional human annotated
examples of objects, some preliminary results are reported in the Appendix due to space limitation.

5.1 Datasets and Features

The sports data contain 1574 diverse scene images from 8 categories, as listed in Fig. 2 with example
images. The indoor scene dataset [20] contains 15620 scene images from 67 categories as listed in
Table 2. We use the method [1] to segment these images into small regions based on color, bright-
ness and texture homogeneity. For each region, we extract color, texture and location features, and
quantize them into 30, 50 and 120 codewords, respectively. Similarly, the SIFT features extracted
from the small patches within each region are quantized into 300 SIFT codewords. We use the gist
features [19] as one example of global features. Extension to include other global features, such as
SIFT sparse codes [26], can be directly done without changing the model or the algorithm.

5.2 Models

For the upstream scene model as in Fig. 1, we compare the max-margin learning with the MLE
method, and we denote the scene models trained with max-margin training and MLE by MM-Scene
and MLE-Scene, respectively. For both methods, we evaluate the effectiveness of global features,
and we denote the scene models without global features by MM-Scene-NG and MLE-Scene-NG,
respectively. Since our main goal in this paper is to demonstrate the advantages of max-margin
learning in upstream supervised topic models, rather than dominance of such models over all others,
we just compare with one example of downstream models–the multi-class sLDA (Multi-sLDA)
[25]. Systematical comparison with other methods, including DiscLDA [12] and MedLDA [27], is
deferred to a full version. For the downstream Multi-sLDA, the image-wise scene category variable
S is generated from latent object variables O via a softmax function. For this downstream model,
the parameter estimation can be done with MLE as detailed in [25].

Finally, to show the usefulness of the object model in scene categorization, we also compare with the
margin-based multi-class SVM [7] and likelihood-based logistic regression for scene classification
based on the global features. For the SVM, we use the software SVMmulticlass 4, which implements
a fast cutting-plane algorithm [11] to do parameter learning. We use the same software with slight
changes to learn the loss-augmented SVM in our max-margin method.

5.3 Scene Categorization on the 8-Class Sports Dataset

We partition the dataset equally into training and testing data. For all the models except SVM and
logistic regression, we run 5 times with random initialization of the topic parameters (e.g., β and η).

4http://svmlight.joachims.org/svm multiclass.html
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Figure 2: Example images from each category in the sports dataset with predicted scene classes, where the
predictions in blue are correct while red ones are wrong predictions.

10 20 30 40 50 60 70 80 90 100
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

# Topics
S

ce
ne

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

MM−Scene

MM−Scene−NG

MLE−Scene
MLE−Scene−NG

Multi−sLDA

Multi−SVM

Figure 3: Classification accuracy of different
models with respect to the number of topics.

The average overall accuracy of scene categorization
on 8 categories and its standard deviation are shown in
Fig. 3. The result of logistic regression is shown in the
left green bar in Fig. 1 (c). We also show the confusion
matrix of the max-margin scene model with 100 latent
topics in Table 1, and example images from each cat-
egory are shown in Fig. 2 with predicted labels. Over-
all, the max-margin scene model with global features
achieves significant improvements as compared to all
other approaches we have tested. Interestingly, al-
though we provide only scene categories as supervised
information during training, our best performance with
global features is close to that reported in [13], where
additional supervision of objects is used. The outstanding performance of the max-margin method
for scene classification can be understood from the following aspects.

Max-margin training: from the comparison of the max-margin approach with the standard MLE
in both cases of using global features and not using global features, we can see that the max-margin
learning can improve the performance dramatically, especially when the scene model uses global
features (about 3 percent). This is due to the well-balanced prediction rule achieved by the max-
margin method, as we have explained in Section 3.

Global features: from the comparison between the scene models with and without global features,
we can see that using the gist features can significantly (about 8 percent) improve the scene catego-
rization accuracy in both MLE and max-margin training. We also did some preliminary experiments
on the SIFT sparse codes feature [26], which are a bit more expensive to extract. By using both gist
and sparse codes features, we can achieve dramatic improvements in both max-margin and MLE
methods. Specifically, the max-margin scene model achieves an accuracy of about 0.83 in scene
classification, and the likelihood-based model obtains an accuracy of about 0.80.

Object modeling: the superior performance of the max-margin learned MM-scene model comparing
to the SVM and logistic regression (See the left green bar of Fig. 1 (c)), which use global features
only, indicates that modeling objects can facilitate scene categorization. This is because the scene
classification model is influenced by the latent object modeling through the term ∆L⋆d(s), which can
improve the decision boundary of a standard linear SVM for those images that have negative scores
of ∆L⋆d(s), as we have discussed in the online loss-augmented SVM. However, object modeling
does not improve the classification accuracy and sometimes it can even be harmful when the scene
model is learned with the standard MLE. This is because the object model (using the state-of-the-art
representation) (e.g., MM-MLE-NG) alone performs much worse than global feature models (e.g.,
logistic regression), as shown in Fig. 1 and Fig. 3, and the standard MLE learns an imbalanced
prediction rule, as we have analyzed in Section 3. Given that the state-of-the-art object model is not
good, it is very encouraging to see that we can still obtain positive improvements by using the closely
coupled and well-balanced max-margin learning. These results indicate that further improvements
can be expected by improving the local object model, e.g., by incorporating rich features.

We also compare with the theme model [9], which is for scene categorization only. The theme model
uses a different image representation, where each image is a vector of image patch codewords. The
theme model achieves about 0.65 in classification accuracy, lower than that of MM-Scene.
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Table 1: Confusion matrix for 100-topic MM-
Scene on the sports dataset.

0.717 badmin- bocce croquet polo rock- rowing sailing snow-
ton climbing boarding

badminton 0.768 0.051 0.051 0.081 0.020 0.020 0.000 0.010
bocce 0.043 0.333 0.275 0.145 0.087 0.058 0.014 0.043

croquet 0.025 0.144 0.669 0.093 0.025 0.025 0.008 0.008
polo 0.220 0.055 0.099 0.516 0.022 0.022 0.011 0.055

rockclimbing 0.000 0.010 0.021 0.000 0.845 0.031 0.010 0.082
rowing 0.008 0.008 0.008 0.008 0.024 0.912 0.016 0.016
sailing 0.011 0.021 0.000 0.021 0.011 0.053 0.884 0.000

snowboarding 0.011 0.021 0.032 0.095 0.084 0.053 0.063 0.642

Table 2: The 67 indoor categories sorted by classification
accuracy by 70-topic MM-Scene.

buffet 0.85 lobby 0.40 stairscase 0.25 hospitalroom 0.10
green house 0.84 prison cell 0.39 studiomusic 0.24 kindergarden 0.10

cloister 0.71 casino 0.36 children room 0.21 laundromat 0.10
inside bus 0.61 dining room 0.35 garage 0.20 office 0.10

movie theater 0.60 kitchen 0.35 gym 0.20 restaurant kitchen 0.09
poolinside 0.59 winecellar 0.34 hairsalon 0.20 shoeshop 0.09

church inside 0.56 library 0.31 livingroom 0.20 videostore 0.08
classroom 0.55 tv studio 0.30 operating room 0.20 airport inside 0.07

concert hall 0.55 warehouse 0.29 pantry 0.20 bar 0.06
corridor 0.55 batchroom 0.26 subway 0.20 deli 0.06
florist 0.55 bookstore 0.25 toystore 0.19 jewelleryshop 0.06

trainstation 0.54 computerroom 0.25 artstudio 0.14 laboratorywet 0.05
closet 0.51 dentaloffice 0.25 fastfood restaurant 0.13 locker room 0.05

elevator 0.49 grocerystore 0.25 auditorium 0.12 museum 0.05
nursery 0.44 inside subway 0.25 bakery 0.11 restaurant 0.05
bowling 0.41 mall 0.25 bedroom 0.11 waitingroom 0.04

gameroom 0.40 meeting room 0.25 clothingstore 0.10
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Figure 4: Classification accuracy of MM-
Scene with different loss functions ∆ℓd(s).

Finally, we examine the influence of the loss function
∆ℓd(s) on the performance of the max-margin scene
model. As we can see in problem (11), the loss function
∆ℓd(s) is another important factor that influences the
estimation of θ and its relative importance in the predic-
tion rule (5). Here, we use the 0/ℓ-loss function, that is,
∆ℓd(s) = ℓ if s ̸= sd; otherwise 0. Fig. 4 shows the
performance of the 100-topic MM-Scene model when
using different loss functions. When ℓ is set between 10
and 20, the MM-Scene method stably achieves the best
performance. The above results in Fig. 3 and Table 1
are achieved with ℓ selected from 5 to 40 with cross-validation during training.

5.4 Scene Categorization on the 67-Class MIT Indoor Scene Dataset
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Figure 5: Classification accuracy on the 67-
class MIT indoor dataset.

The MIT indoor dataset [20] contains complex scene
images from 67 categories. We use the same training
and testing dataset as in [20], in which each category
has about 80 images for training and about 20 images
for testing. We compare the joint scene model with
SVM, logistic regression (LR), and the prototype-based
methods [20]. Both the SVM and LR are based on the
global gist features only. For the joint scene model,
we set the number of latent topics at 70. The overall
performance of different methods are shown in Fig. 5
and the classification accuracy of each class is shown
in Table 2. For the prototype-based methods, we cite
the results from [20]. We can see that the joint scene
model (both MLE-Scene and MM-Scene) significantly outperforms SVM and LR that use global
features only. The likelihood-based MLE-Scene slightly outperforms the ROI-Gist(segmentation),
which uses both the global gist features and local region-of-interest (ROI) features extracted from
automatically segmented regions [20]. By using max-margin training, the joint scene model (i.e.,
MM-Scene) achieves significant improvements compared to MLE-Scene. Moreover, the margin-
based MM-Scene, which uses automatically segmented regions to extract features, outperforms the
ROI-Gist(annotation) method that uses human annotated interested regions.

6 Conclusions

In this paper, we address the weak coupling problem of the commonly used maximum likelihood
estimation in learning upstream scene understanding models by presenting a joint maximum mar-
gin and maximum likelihood learning method. The proposed approach achieves a close interplay
between the prediction model estimation and latent topic discovery, and thereby a well-balanced
prediction rule. The optimization problem is efficiently solved with a variational EM procedure,
which iteratively learns an online loss-augmented SVM. Finally, we demonstrate the advantages of
max-margin training and the effectiveness of using global features in scene understanding on both
an 8-category sports dataset and the 67-class MIT indoor scene data.
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Appendix

A.1. Variational Inference

In both the variational prediction rule (5) and the parameter estimation, for each document we need
to infer the variational distribution qs(ψ, o) for each category s. This can be efficiently done by
using the mean field method. Specifically, we assume

qs(ψ, o) = q(ψ|νs, diag(τ2s ))
∏
n

q(on|ϕn),

where q(ψ|νs, diag(τ2s )) = N (νs, diag(τ2s )), and q(on|ϕsn) is a multinomial distribution with pa-
rameter ϕsn. Then, we have the variational lower bound

L−θ(qs,Θ) = E[log p(ψ|µs,Σs)] +
∑
n

E[log p(on|ψ) + log p(rn|on, β) + log p(xn|on, η)]−H(q),

where all the terms except the second one can be efficiently computed. Similar as in CTMs [3], we
need to further approximate the second term as5

E[log p(on|ψ)] ≥
∑
k

ϕnkνsk −
∑
k exp(νsk +

1
2
τ2sk)

ζs
+ 1− log ζs

where ζs is an additional variational parameter. Now, posterior inference is to find a q that maximizes
the lower bound L−θ, whose second term is approximated with the above inequality.

The first term of L−θ is E[log p(ψ|µs,Σs)], and it can be computed similarly as in the CTM
model [3]. The last two terms of L−θ are E[log p(rn|on, β)] =

∑
m

∑
k ϕsnk log βmkrnm and

E[log p(xn|on, η)] =
∑
m

∑
k ϕsnk log ηkxnm .

For each document, optimize L−θ over ϕnk and we can get

ϕsnk ∝ exp
(
νsk +

∑
m

log βmkrnm +
∑
m

log ηkxnm

)
.

For the parameters νs and τ2s , we do not have a closed form solution. Thus we apply gradient descent
methods. Instead of optimizing over the positivity-constrained τ2s , we perform the optimization in
the log-space. Here, we use the L-BFGS method [15] to optimize over µ and log τ2 jointly, which
is much faster than the coordinate-wise Newton method [3]. The gradients of νs and τ2s are

∇νsL=−Σ−1
s (νs − µs) +

∑
n ϕn − N

ζs
exp(νs +

1
2
τ2s )

∇τ2
sk
L= 1

2τ2
sk

− Σ−1
skk
2

− N
2ζs

exp(νsk +
1
2
τ2sk).

For the variational parameter ζ, the optimum solution is ζs =
∑
k exp(νsk +

1
2τ

2
sk).

A.2. Estimating Gaussian and Multinormial Parameters

For the parameters (µ,Σ, β, η), the optimal solution is achieved by solving the sub-problem

min
µ,Σ,β,η

∑
d

max
s

[−θ⊤∆fd(s) + ∆ℓd(s) + L−θ(q
⋆
s )]− (

λ

C
+ 1)

∑
d

L−θ(q
⋆
sd).

By using the loss-augmented prediction ŝd , argmaxs θ
⊤f(gd, s) + ∆ℓd(s) + L−θ(q

⋆
s ) to replace

the maximum operator, this problem has closed-form solutions. For µ and Σ, the solutions are

µs =
(1 + λ

C
)
∑
d I(sd=s)νs −

∑
d I(ŝd=s)νs

(1 + λ
C
)Ns − N̂s

, Σs =
(1 + λ

C
)
∑
d I(sd=s)(Λ + Cs)−

∑
d I(ŝd=s)(Λ + Cs)

(1 + λ
C
)Ns − N̂s

,

where I is an indicator function; Ns =
∑
d I(sd=s) is the number of training examples that are in

category s; N̂s =
∑
d I(ŝd=s) is the number of training data that are predicted to be in category s;

Λ = diag(τ2s ); and Cs = (νs − µs)(νs − µs)
⊤. Although in principle the covariance matrix can

be non-positive semidefinite, in practice this can be avoided by choosing a large enough λ, which is
much larger than C. For β and η, the optimal solutions are

βmkr ∝
∑
d

∑
s

(I(s=sd) + (1 +
λ

C
)I(s=ŝ))

∑
n

ϕdsnkI(rdnm=r)

ηkx ∝
∑
d

∑
s

(I(s=sd) + (1 +
λ

C
)I(s=ŝ))

∑
nm

ϕdsnkI(xdnm=x).

5By the inequality: log x ≤ a−1x− 1 + log a, ∀a > 0, where the equality holds when a = x.
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Table 3: Annotation accuracy of several example objects detected in the sports dataset.

athlete grass tree horse water floor rock

Object-Level
P 0.369 0.397 0.510 0.394 0.447 0.251 0.266
R 0.528 0.243 0.512 0.238 0.427 0.370 0.325
F1 0.435 0.301 0.511 0.297 0.437 0.299 0.292

Pixel-Level
P 0.279 0.577 0.631 0.567 0.633 0.343 0.496
R 0.613 0.651 0.688 0.511 0.742 0.629 0.648
F1 0.384 0.612 0.659 0.537 0.683 0.444 0.562
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Figure 6: (Left) object-level; and (Right) pixel-level overall accuracy of object annotation.

A.3. Object Annotation on the Sports Dataset

Although our main goal is to improve the imbalanced prediction rule achieved by MLE for scene
categorization, the joint scene and object model can also be used to annotate objects when human
annotated training examples of objects are available, as explained in Sec. 2.2. For the two datasets,
only the sports dataset [13] contains manually labeled objects. Here, we report some results of
object annotation on the sports dataset by the scene model learned with different methods. For
each object class, we randomly sample 40 percent of the regions in testing images as examples
with labeled objects and use the k-Nearest Neighbor (kNN) to annotate the rest regions based on
the cosine similarity of their latent object representations. We compute two scores: (1) object-level
accuracy–the percentage of correctly annotated objects; and (2) pixel-level accuracy–the percentage
of the area of correctly annotated regions.

Fig. 6 shows the average overall accuracy of object annotation in both object-level and pixel-level,
and Table 3 presents the Precision, Recall and F1 scores for several example objects. Note that
the MLE-Scene-NG model is similar to the spatially coherent latent topic model [6]. For the kNN
algorithm, the optimum parameter k is chosen for each case. From the results, we can see that the
joint scene models learned with partially labeled images can achieve promising results on annotating
some objects, and the max-margin method can result in slightly better performance than the MLE-
based methods. From these results, we can also identify some challenging problems for future
investigation, for example, how to effectively incorporate global features, and how to explore max-
margin learning to improve object annotation accuracy.
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