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ABSTRACT
Topic models have shown great promise in discovering la-
tent semantic structures from complex data corpora, rang-
ing from text documents and web news articles to images,
videos, and even biological data. In order to deal with mas-
sive data collections and dynamic text streams, probabilis-
tic online topic models such as online latent Dirichlet al-
location (OLDA) have recently been developed. However,
due to normalization constraints, OLDA can be ineffective
in controlling the sparsity of discovered representations, a
desirable property for learning interpretable semantic pat-
terns, especially when the total number of topics is large. In
contrast, sparse topical coding (STC) has been successfully
introduced as a non-probabilistic topic model for effectively
discovering sparse latent patterns by using sparsity-inducing
regularization. But, unfortunately STC cannot scale to very
large datasets or deal with online text streams, partly due
to its batch learning procedure. In this paper, we present a
sparse online topic model, which directly controls the sparsi-
ty of latent semantic patterns by imposing sparsity-inducing
regularization and learns the topical dictionary by an online
algorithm. The online algorithm is efficient and guaranteed
to converge. Extensive empirical results of the sparse online
topic model as well as its collapsed and supervised extension-
s on a large-scale Wikipedia dataset and the medium-sized
20Newsgroups dataset demonstrate appealing performance.

Categories and Subject Descriptors
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General Terms
Algorithms, Experimentation

Keywords
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1. INTRODUCTION
Probabilistic topic models, such as probabilistic latent se-

mantic indexing [17] and its fully Bayesian generalization of
latent Dirichlet allocation (LDA) [5], have been widely ap-
plied to discover latent semantic structures from collections
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of data, which can be text documents [5, 3, 6, 4, 9, 28],
images [13, 34, 12, 31, 22, 37], and even biological data [1].
Since exact posterior inference is intractable, both variation-
al [5] and Monte Carlo [15] methods have been widely de-
veloped for approximate inference, which can normally deal
with medium-sized datasets. In order to deal with large-
scale data analysis problems, which are not uncommon in
many application areas, various techniques have been de-
veloped to speed up the inference algorithms, such as the
parallel inference algorithms on multiple CPU or GPU cores
and multiple machines (please see [40] for a nice summary of
existing techniques). Another nice advance is the develop-
ment of online inference algorithms, which can not only deal
with massive data corpora but also can deal with dynamic
text streams, where data samples are incoming one-by-one
or in small batches. One representative work is the online
variational inference method for latent Dirichlet allocation
(OLDA) [16]. OLDA and its later extensions, including the
online collapsed Gibbs sampling [20] and the hybrid online
variational-Gibbs [27] methods have shown a success to scale
to corpora containing millions of articles.

However, the above online probabilistic topic models can
be ineffective in controlling the sparsity of the discovered
representations, partly due to their normalization constraints
on the admixing proportions [42]. Sparsity of the represen-
tations in a semantic space is a desirable property in text
modeling [33] and human vision [29]. For example, we will
expect not every topic or sense, but only a few of them that
make a non-zero contribution for each document or each
word [33]; this is especially important in practice for large
scale text mining endeavors such as those undertaken in in-
dustry, where it is not uncommon to learn hundreds if not
thousands of topics for millions or billions of documents.
Without an explicit sparcification procedure, it would be
extremely challenging, if not impossible, to nail down the
semantic meanings of a document or word.

In this paper, we present an approach to learning sparse
online topic models, both to improve time efficiency and to
deal with streaming data. Our approach is based on our re-
cent work of sparse topical coding (STC) [42], a hierarchical
non-negative matrix factorization (NMF) [23] model using
word codes and document codes to represent an article at
the individual word level and the whole document level, re-
spectively. By using unnormalized code vectors, STC offers
an extra freedom to reconstruct word counts in text using
a log-Poisson loss, and it can effectively control the sparsity
of latent representations to find compact topical representa-
tions by imposing appropriate sparsity-inducing regulariza-



tion. Such effectiveness has been further demonstrated in
the context of learning compact descriptors for images and
videos [21, 14, 25]. However, the existing batch dictionary
learning algorithm takes a full scan of the corpus at each
gradient descent step, which is demanding in terms of both
memory and computation; also, the batch algorithm cannot
explore the redundancy of large-scale datasets for more ef-
fective training. Thus, in the current batch form, STC does
not scale up to large-scale datasets and cannot deal with
dynamic text streams.
To address the above weakness of STC, we propose a nov-

el sparse online topic model, which is essentially an online
algorithm to learn the topical dictionary in STC. Our algo-
rithm, based on the recent success of online stochastic op-
timization [8, 32], can scale to large data corpora (e.g., the
entire Wikipedia corpus containing 6.6M articles) and can
cope with dynamic text streams. Our main contributions
can be summarised as follows:

• We introduce online sparse topical coding (OSTC),
which is efficient for learning online sparse topical rep-
resentations.

• We provide a theoretical analysis that when using a
general setting for the learning rate, our online learn-
ing algorithm converges to a stationary point under
reasonable conditions.

• We present the collapsed sparse topical coding model
as well as its online learning algorithm, and the on-
line learning algorithm for the supervised max-margin
sparse topical coding (MedSTC) [42].

• Our empirical results on the medium-sized 20News-
groups dataset and a large-scale Wikipedia dataset
show that 1) online learning algorithms can improve
time efficiency, while not sacrificing prediction perfor-
mance or the perplexity performance of held-out data;
2) online sparse topical coding achieves lower perplex-
ity and higher word code sparsity than probabilistic
online LDA.

The rest of the paper is structured as follows. Section 2
summarizes related works. Section 3 briefly overviews STC
and its batch learning algorithm. Section 4 presents the
online sparse topical coding algorithm, analyzes its conver-
gence, and discusses two extensions for learning collapsed
STC and supervised STC. Section 5 presents empirical re-
sults on Wikipedia and 20Newsgroups data. Finally, Sec-
tion 6 concludes.

2. RELATED WORK
Various works have been developed for modeling indepen-

dent dynamic text streams [39, 20] and dealing with large
data corpora using topic models [16, 27, 38]. Online topic
models combine these two targets into one objective. It has
been shown that these models can easily scale up to a corpus
containing a few millions of articles [16, 27] by using proper
inference methods.
Another thing we care about is the sparsity of latent rep-

resentations for the data [23]. Suppose we have an article,
we can expect only a few topical meanings in it. In the
language of topic models, the latent representations of the
article and its words tend to be sparse. Sparsity is also im-
portant for large scale text mining endeavors, where it is
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Figure 1: Graphical structure of STC [42].

common to cut down the semantic meaning of a document
or word from its topical descriptors learned from millions of
articles for storage. Several models aim at faster and more
efficient inference procedures [15, 36, 2]. However, the in-
ferred latent representations for these models are very dense.
STC is a sparse topic model which relaxes the normalization
constraints of the latent representations and explicitly put
a sparse-inducing regularization on them. This method has
been proved to be more successful to learn a sparse topical
representation and its MAP inference is even significantly
faster than some probabilistic topic models [42].

Our online model is based on STC. We aim at building a
topic model that can scale to a large corpus and can deal
with dynamic text streams while simultaneously preserving
sparse coding.

3. SPARSE TOPICAL CODING
In this section, we briefly overview sparse topical coding

and its existing batch learning algorithm. We also provide
a new interpretation for the sparse topic model from the
projection point of view.

Let V be a vocabulary with N terms. In a bag-of-words
model, a document d is represented as a vector wd = (wd1,
· · · , wd|Id|)

⊤, where Id is the index set of words that appear
and wdn (n ∈ Id) is the number of appearances of word n
in document d. Sparse topical coding is a technique that
projects the input wd into a linear latent space spanned
by a set of automatically learned bases (a basis set is al-
so called a dictionary). The combination weights denote a
representation of document d in the latent space. STC is
a hierarchical non-negative matrix factorization [29], with
two-layers of latent representations for words and the entire
documents, respectively. For the ease of understanding, it
is helpful to start with a probabilistic generating process,
which also provides an explicit comparison with LDA.

3.1 A Probabilistic Generating Process
Let β denote a dictionary with K bases, of which each

row βk is a N dimensional basis. For text documents, βk

is a topic, i.e., a unigram distribution over the terms in V .
This statement leads to the constraint that βk ∈ P, where
P is a (N − 1)-simplex. We will use β.n ∈ RK to denote
the nth column of β. Graphically, STC is a hierarchical la-
tent variable model, as shown in Fig. 1, where θd ∈ RK is
the document code (i.e., the latent representation of a doc-
ument d) while each sdn ∈ RK is a word code (i.e., latent
representation of the individual word n in document d).

Formally, STC assumes that for each document d the word
codes sdn are conditionally independent given its document
code θd and the observed word counts wdn are independent
given their latent representations sdn. The generative pro-
cess for each document d is:



1. draw a document code θd ∼ p(θ);

2. for each word n ∈ Id:

(a) draw a word code sdn ∼ p(s|θd);

(b) draw a word count wdn ∼ p(w|sdn,β).

For the last step of generating word counts, we require the
distribution to satisfy the constraint Ep[w] = s⊤dnβ.n + ϵ,
where ϵ is a small positive number for avoiding degenerated
distributions. One nice choice, as used in STC, is the Poisson
distribution

p(wdn|sdn,β) = Poisson(wdn; s
⊤
dnβ.n + ϵ), (1)

where the linear combination s⊤dnβ.n has been used as the
mean parameter of a Poisson distribution Poisson(x; ν) =
νxe−ν

x!
. This idea of using the linear combination s⊤dnβ.n as

mean parameters can be generalized to the broad class of
exponential family distributions for modeling various types
of data. We refer the readers to [42] for more details. But we
emphasize one advantage of such a mean parametrization,
that is, using the linear combination as mean parameter
makes it natural and convenient to constrain the feasible do-
mains (e.g., non-negative domain for modeling word counts)
of the word codes in order to have a good interpretation,
while it would be reluctant to do so when using the linear
combination as natural parameters1. As shown in [23], im-
posing appropriate constraints such as non-negativity con-
straints could result in significantly sparser and more inter-
pretable patterns.

3.2 STC as a MAP Estimation
The generating procedure defines a joint distribution

p(θd, sd,wd|β) = p(θd)
∏
n∈Id

p(sdn|θd)p(wdn|sdn,β), (2)

where sd = {sdn, n ∈ Id}. To infer sparse word codes, STC
defines p(sdn|θd) as a product of two component distribu-
tions

p(sdn|θd) ∝ p(sdn|θd, γ)p(sdn|ρ) (3)

where p(sdn|θd, γ) is an isotropic Gaussian distributionN (θd,
γ−1) and p(sdn|ρ) = Laplace(0, ρ−1) is a Laplace distribu-
tion. This composite distribution is super-Gaussian [19] and
the Laplace term will bias towards finding sparse word codes.
For p(θd), both the normal prior p(θd) = N (0, λ−1) and the
Laplace prior p(θd) = Laplace(0, λ−1) were discussed in [42].
Let Θ = {θd},S = {sd} and W = {wd} to denote all

the latent document codes, latent word codes and observed
word counts in the whole corpus. When p(θ) is normal, STC
solves the constrained problem

min
Θ,S,β

ℓ(S,β) + λ∥Θ∥22 +
γ

2

∑
d,n∈Id

∥sdn − θd∥22 + ρ∥S∥1

s.t. : Θ ≥ 0; S ≥ 0; βk ∈ P, ∀k, (4)

where the objective function is the negative logarithm of the
posterior p(Θ,S,β|W) with a constant omitted; ∥Θ∥22 =

1For example, the natural parameter of the Poission dis-
tribution Poisson(x; ν) is log ν. If we use the natural
parametrization and let log ν = s⊤dnβ.n + ϵ, we will have
ν = exp(s⊤dnβ.n + ϵ). The exponential transformation will
make the resulting problem of STC hard to solve.
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Figure 2: A new projection view of STC with two
topical bases over a vocabulary with three terms.

∑
d ∥θd∥22 and ∥S∥1 =

∑
d,n ∥sdn∥1. For text, the log-Poisson

loss is ℓ(S,β) =
∑

d ℓ(sd,β), where

ℓ(sd,β) =
∑
n∈Id

ℓ(wdn, s
⊤
dnβ.n) (5)

is the log-loss contributed by document d and

ℓ(wdn, s
⊤
dnβ.n) = − logPoisson(wdn; s

⊤
dnβ.n + ϵ) (6)

is the loss contributed by the individual word n. Since word
counts are non-negative, a negative θ or s will lose inter-
pretability. Therefore, STC constrains the code parameters
to be non-negative, as in [18]. A non-negative code θ or s
can be interpreted as representing the relative importance of
topics. The parameters (λ, γ, ρ) are non-negative constants
and they can be selected via cross-validation.

To help understand the above definition of STC, we also
provide a new projection interpretation of STC as illustrated
in Fig. 2. Suppose we have two topical bases β1 and β2 over
a vocabulary with three terms w1, w2, and w3. The docu-
ment d1 has two terms, each being projected to a point in
the spanned convex cone2 under a KL-divergence measure3,
and the document code θ1 is an aggregation of the two word
codes s11 and s12. By using appropriate regularization, the
projection could be sparse. In this figure we illustrate both
sparse and non-sparse cases. For example, the word code
s11 is sparse (i.e., on the boundary) while s12 is not.

3.3 Existing Batch Learning Algorithm
Problem (4) is biconvex, i.e., convex over β or (Θ,S) when

the other is fixed, but not joint convex over (Θ,S,β). A
natural algorithm to solve this biconvex problem for a local
optimum is coordinate descent, as used in [42] and sparse
coding methods [24]. The algorithm alternately performs
the following two steps.

Hierarchical sparse coding: optimizing over S and Θ.
Since documents are i.i.d, we can perform the hierarchical
sparse coding for each document separately. For document

2The combination weight is a word code.
3Minimizing the log-Poisson loss in Eq. (6) is equiva-
lent to minimizing the unnormalized KL-divergence be-
tween observed word counts wdn and their reconstructions
s⊤dnβ.n [35].



d, we solve the constrained optimization problem

min
θd,sd

ℓ(sd,β) + λ∥θd∥22+
γ

2

∑
n∈Id

∥sdn−θd∥22 + ρ ∥sd∥1

s.t. : θd ≥ 0; sdn ≥ 0,∀n ∈ Id. (7)

As shown in [42], a coordinate descent procedure can be
developed with iterative closed-form updates for word codes
and document codes. Moreover, this algorithm has the same
structure as the variational inference algorithm of the coun-
terpart LDA [5] model. To compare with online LDA [16],
which uses variational inference, we adopt the coordinate
descent strategy to solve problem (7) in our online sparse
topical coding. More formally, the algorithm alternatively
solves
Optimize over sd: when θd is fixed, sdn are not coupled.

For each sdn, the solution is skdn = max(0, νk
dn), where νk

dn

is the larger solution of the equation

γβkn(ν
k
dn)

2 + (γµ+ βknη)ν
k
dn + µη − wdnβkn = 0,

where µ =
∑

j ̸=k s
j
dnβjn + ϵ and η = βkn + ρ − γθkd . This

one dimensional problem can be solved in closed-form.
Optimize over θd: when sd is fixed, the closed-form solu-

tion is

∀k, θkd =
γ

λ/|Id|+ γ
s̄kd, (8)

where s̄kd = 1
|Id|

∑
n∈Id

skdn. If λ≪ γ, the document code θd

is close to the averaging aggregation of its individual word
codes. Another choice is to set λ = γ, and we have θkd =
|Id|

1+|Id|
s̄kd, which is again close to the average if |Id| is large.

Following [42], we set λ = γ since it reduces one parameter to
tune. Moreover, if the Laplace prior p(θd) = Laplace(0, λ−1)
is used, a closed-form solution also exists,

∀k, θkd = max(0, s̄kd −
λ

γ|Id|
), (9)

which is a truncated averaging strategy for aggregating indi-
vidual word codes to obtain θd.
Dictionary learning: this step involves solving

min
β

ℓ(S,β), s.t. : βk ∈ P, ∀k. (10)

STC uses a projected gradient descent method to update β,
where the projection to the ℓ1-ball can be done efficiently in
O(N) time [11]. We will use the public implementation of
the batch algorithm as our baseline4.

4. ONLINE SPARSE TOPICAL CODING
The above algorithm empirically converges faster than

the variational inference algorithm of probabilistic LDA by
avoiding calls to digamma function [42]. However, it requires
a full pass through the corpus at each gradient descent step
of learning dictionary. A full pass of a very large dataset
would be very expensive in terms of both memory and effi-
ciency. Furthermore, the batch gradient descent for dictio-
nary learning can be inefficient in utilizing the redundance
information of a large dataset. To overcome such inefficien-
cy, we propose the online sparse topical coding (OSTC),
which uses an online learning algorithm to learn the dic-
tionary β. Our online algorithm is nearly as simple as the

4http://www.ml-thu.net/∼jun/stc.html

Algorithm 1 Online Sparse Topical Coding

1: Initialize β0,θ0, s0
2: for t= 0,1,2,... do
3: read document dt

4: (θt, st) = HierarchicalSparseCoding(dt)
5: let gt = ∇ℓ(βt) and αt = τ0/(t+ τ)
6: βt+1 ← ΠP (β

t − αtgt)
7: end for

batch coordinate descent algorithm for STC, but converges
much faster for large datasets, as we shall see.

The online learning algorithm for STC is described in al-
gorithm 1. At each iteration t, we randomly sample a data
point wt and perform the hierarchical sparse coding step
to find the optimal codes θt and st, holding the dictionary
fixed. Then, we update the dictionary using the information
collected from the data wt by using the first-order update
rule

βt+1 = ΠP (β
t − αtg(βt;wt)) (11)

where the gradient

g(βt;wt) = ∇ℓ(st,β)|βt

and αt denotes the learning rate. The update rule is in fact
the solution of the subproblem

min
β

ℓ(st,β
t)− αt⟨g(βt;wt),β − βt⟩+ 1

2
∥β − βt∥22

under a projection to ensure β be a topical dictionary. We
have denoted the projection to the simplex P by ΠP .

Mini-batches: A useful technique to reduce noise in s-
tochastic learning is to consider multiple observations per
iteration. Suppose we have M data at each iteration. Af-
ter fitting the sparse codes for each document, the online
update rule is

βt+1 = ΠP (β
t − αt 1

M

M∑
d=1

g(βt;w
d
t )), (12)

where wd
t is the dth document in mini-batch t. Note that

when M = D, we recover the batch STC. To provide some
intuitive ideas, an illustration of the online learning proce-
dure is shown in Fig. 3, whose detail description will be
presented at the end of this section, after we have presented
the convergence analysis and extensions.

Comparison with online LDA: Recently efficient on-
line learning algorithms have been proposed for LDA to scale
up to large datasets and to deal with dynamic text stream-
s [16, 20, 27]. Our algorithm closely resembles the online
variational Bayesian algorithm for LDA [16]. This similari-
ty makes it convenient to compare the two variants of online
topic models, including time efficiency and sparsity of word
codes, as reported in the experiments.

4.1 Analysis of Convergence
The deterministic formulation of STC allows us to analyze

the convergence behavior of the online algorithm. First, we
analyze the regularity of the objective function in dictionary
learning.

Lemma 1. The cost function ℓ(st,β;wt) is convex over
β and bounded from below; and its gradient and Hessian
matrix are bounded.
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Figure 3: The change of perplexity and average word codes on test documents during the training process
of OMedSTC (See section 4.2.2), as the online algorithm scans more articles (see the numbers near the blue
curve). From top to bottom, we can see that the held-out perplexity drops down (in the left figure); the
average word codes grow sparser (the right five columns); and the semantic meaning of the most salient topics
representing the 5 selected words becomes clearer (for each topic, we present the 5 top-ranked terms inside
the boxes).

Proof: The first part is obvious for the log-Poisson loss,
since we have avoided the degenerated cases by introducing
the parameter ϵ and the maximum word count is bounded
in real cases. The gradient ∇β.n

ℓ(st,β;wt) = I(n ∈ It)(1−
wtn

s⊤tnβ.n+ϵ
)stn is also bounded for the same reason. For the

last part, we directly prove the largest eigenvalue of Hessian
matrix is bounded:

λmax = sup
β≥0

sup
∥z∥2≤1

z⊤∇2
β.n

ℓ(st,β;wt)z

= sup
β≥0

sup
∥z∥2≤1

z⊤(
∑
n∈It

stnwtns
⊤
tn

(s⊤tnβ.n + ϵ)2
)z

= sup
∥z∥2≤1

z⊤(
∑
n∈It

stnwtns
⊤
tn

ϵ2
)z =

∥stdiag(wt)s
⊤
t ∥2

ϵ2

≤ 1

ϵ2
∥st∥22∥diag(wt)∥2 ≤

wtmax

ϵ2
∥st∥1∥st∥∞.

Since stn and β.n are non-negative, the first supremum is
achieved when s⊤tnβ.n = 0. Then we use the definition of the
induced matrix 2-norm to get a more compact expression.
Finally, using inequalities of matrix norm and the maximum
word count wtmax , we get the last inequality. Note that
∥st∥1 = maxk Σns

k
tn was bounded by the number of different

words exist in a mini-batch and ∥st∥∞ = maxn Σks
k
tn relates

to the scale of stn and was controlled by hyperparameters.
So the Hessian matrix of ℓ(st,β;wt) is bounded.

To analyze the convergence of OSTC, we follow the method
used in [16]. Suppose that we sample articles together with
their word codes, then we can compute the expected gra-
dient of the cost function. Since STC and OSTC perform
MAP estimates and find a single value of each word code, we
compute the expectation over s by using an impulse distri-
bution with our estimate of the codes. Then, we can derive
results which are similar as in [7] to ensure that our online
algorithm converge to a stationary point, as shown in the
following theorem.

Theorem 2. Assume that the learning rate αt satisfies∑∞
t=1(α

t)2 <∞,
∑∞

t=1 α
t =∞. Then, OSTC converges.

Proof: The proof is partly based on [7]. We first define
the Lyapunow sequence ht = ∥βt − β∗∥2 where β∗ is a s-
tationary point and prove that βt converges based on the
convergence of ht. We denote the previous knowledge (i.e.,

βt̂,θt̂, st̂,∀0 ≤ t̂ ≤ t) by P t. Then

E[ht+1 − ht|P t] = −2αt(βt − β∗)Ewt [∇βℓ(st,β
t;wt)|P t]

+ (αt)2Ewt [(∇βℓ(st,β
t;wt))

2|P t]

Note that the first order derivative is bounded and the sec-
ond order term was also bounded by A+B(βt−β∗)2, where
A and B are non-negative values. This is because the eigen-
values of Hessian matrix is bounded and the gradient will



not exceed a polynomial threshold. Transforming previous
equation we get

E[(ht+1 − (1− (αt)2B)ht|P t] =

− 2αt(βt − β∗)Ewt [∇βℓ(st,β
t;wt)|P t](αt)2A (13)

Using the techniques in [7], if we replace ht with a scaling
term and choose αt = τ0/(t+ τ) where τ and τ0 are positive
constants, we can prove that ht converges and the infinite
sum of the left hand side of Eq. (13) also converges. There-
fore, the infinite sum of the right hand side of Eq. (13) also
converges, i.e.,

∞∑
t=1

αt(βt − β∗)Ewt [∇βℓ(st,β
t;wt)|P t] <∞. (14)

Since
∑∞

t=1 α
t =

∑∞
t=1 τ0/(t + τ) = ∞ and the first order

derivative is bounded, we must have that |βt−β∗| converges
to zero.

In all the experiments, we set αt = τ0/(t+10), which satisfies
the assumptions in the above theorem.

4.2 Extensions
Before ending this section, we briefly present two exten-

sions of the online learning algorithm for collapsed sparse
topical coding and max-margin supervised dictionary learn-
ing.

4.2.1 Online Collapsed STC
STC was intentionally designed as having a hierarchical

structure, similar as the hierarchical probabilistic topic mod-
els, for easy comparison. But for practical performance, it
has been demonstrated in probabilistic topic models that
collapsing some parts of the latent variables could poten-
tially improve performance [15]. We take the analogy and
develop a collapsed STC (CSTC), and show that our online
learning algorithm can be naturally extended for CSTC.
Specifically, as described in Section 3.2, STC is a MAP

estimate of a hierarchical Bayesian model. When using a
normal prior on θ, we can derive the collapsed STC by
marginalizing out θ. For each document d, we have the
collapsed distribution

p(sd,wd|β) ∝ ζd

∫
θd

exp
{
− λ∥θd∥22 −

γ

2

∑
n∈Id

∥sdn − θd∥22
}

∝ ζd exp
{
− a

∑
n∈Id

∥sdn∥22 + 2b
∑

m ̸=m′
s⊤dmsdm′

}
,

where ζd = exp{−ℓ(sd,β) − ρ∥sd∥1} is independent of θd,

a = γ
2
− γ2

4(λ+
γ|Id|

2
)
and b = γ2

4(λ+
γ|Id|

2
)
. Then, by performing

MAP estimation, we derive the collapsed STC as solving

min
S,β

tr(s⊤d Λsd) + ℓ(sd,β) + ρ∥sd∥1 (15)

s.t.: S ≥ 0; βk. ∈ P,∀k,

where Λ = (a − b)I + bE and sd is an K × |Id| matrix, of
which the column n corresponds to sdn.
The problem is again biconvex, i.e., convex over S or β

when the other is fixed. Both batch and online algorithm-
s can be developed to solve Eq. (15), since the dictionary
learning step is the same as in STC. The difference is on
the sparse coding step, which is now to find the optimal

word codes for each document. We can also derive a coordi-
nate descent algorithm, of which each substep has a closed-
form solution. Specifically, the optimal solution of skdn is
max(0, νk

dn), where νk
dn is the larger solution of the quadrat-

ic equation

2aβkn(ν
k
dn)

2 + cβknν
k
dn + c

∑
k′ ̸=k

sk
′

dnβk′n − wdnβkn = 0

where c = βkn + ρ+ 2b
∑

m ̸=n skdm.

4.2.2 Online Max-margin STC
Both STC and CSTC learn dictionaries and infer sparse

representations of unlabeled samples. But with the increas-
ing availability of free on-line information such as image
tags, user ratings, etc., various forms of “side-information”
that can potentially offer “free” supervision have lead to a
need for new topic models and training schemes that can
make an effective use of such information to achieve bet-
ter results, such as more discriminative latent representa-
tions of text contents and more accurate classifiers [4, 41].
In [42], a supervised max-margin STC (MedSTC) was de-
veloped to learn predictive representations and a supervised
dictionary [26] by exploring the available side-information.

The basic idea of MedSTC is to use document codes as
input features for max-margin classifiers, e.g., the multi-class
SVM [10]. Formally, MedSTC solves the problem

min
Θ,S,β,η

f(Θ,S,β) + CR(Θ,η) +
1

2
∥η∥22 (16)

s.t. : Θ ≥ 0;S ≥ 0;βk ∈ P, ∀k,

where f(Θ,S,β) is the objective function of STC and

R(Θ,η) =
1

D

∑
d

max
y

[∆(yd, y) + η⊤
y θd − η⊤

yd
θd]

is the multiclass hinge loss with parameters η = [η1; · · · ;ηL]
for L classes, of which each ηl is a K-dimensional vector
associated with class l. The loss function ∆(yd, y) measures
the cost of making a prediction y if the ground truth label
is yd. Normally, we assume ∆(y, y) = 0, i.e., no cost for a
correct prediction.

The problem is again biconvex, i.e., convex over (Θ,S) or
(β,η) when the other is fixed. In [42], a batch algorithm was
developed to alternately solve for (Θ,S) and (β,η). Since
β and η are not coupled, we can solve for each of them
separately. For η, the subproblem is to learn a linear multi-
class SVM. Based on the above online dictionary learning
algorithm and the existing high-performance online learning
algorithm for SVMs [32], we can develop an online learning
algorithm for MedSTC, which is still guaranteed to converge.
We denote this method by OMedSTC.

Before presenting all the details of the experiments, we use
Fig. 3 to illustrate the change of the perplexity on held-out
documents and the word codes along the iterations of on-
line learning. We present the results of OMedSTC with 70
topics on the 20Newsgroup data with a standard train/test
split, which will be clear in the next section. Fig. 3 shows
the perplexity of the test set and the average word codes of
the five popular words, of which each one is from a differ-
ent category, at different stages of online learning. For each
word, we calculate the average word code over the test doc-
uments that are from the category as that particular word.
For example, the average word code of bike is the mean of



all the word codes for bike in the rec.motorcycles category.
We can see the held-out perplexity goes down when scan-
ning more articles while at the same time the average word
codes for each word grows sparser and at the end of training
most words are dominated by a few topics. It is also nice
to see that the semantic meanings of the most salient topics
describing the selected words become clearer by listing their
top words (i.e., words that have highest values in the topic).
For example, the average word code for the word christians
was dominated by some not-clearly-meaningful topics when
we scan 20K articles, while at the end of our algorithm it
was captured by only one topic that has a very clear topical
meaning, with the top five words being god, people, jesus,
christian, and bible, all relating to the target word chris-
tians.

5. EXPERIMENTS
Now, we present all the details of our empirical results on a

dataset with 6.6M articles collected from Wikipedia and the
20Newsgroups dataset to evaluate the effectiveness of online
learning algorithms for STC, MedSTC and CSTC. We set
the learning rate αt = τ0/(t + 10) and tune τ0 for models
with different batch sizes5. All the experiments are done on
a standard desktop with 2.67GHz processors and 2GB RAM.
Note that to reduce the influence of network speed, all the
datasets were pre-collected. Thus, the experiments are not
really online. But they suffice to evaluate the effectiveness
and efficiency of the online learning algorithms.

5.1 Experiments on the Wikipedia Dataset
We first report the results on the unsupervised Wikipedi-

a dataset. We use perplexity as the performance measure,
which is defined as the geometric mean of the inverse marginal
probability of each word in a held-out set of documents
Wtest. Here, we randomly select 1000 articles as the held-
out set. We compare OSTC with the ordinary batch STC
and the online LDA (OLDA) using variational inference6 [16].
We note that other versions of OLDA have been developed
by doing hybrid variational inference and Monte Carlo sam-
pling [27], which could improve the time efficiency of OLDA.
But since our main focus is on topic sparsity7, we compare
with the variational OLDA, whose procedure is more similar
as OSTC. We will discuss the influence of various inference
methods for LDA on perplexity later. In the experiments,
we set K = 100, which is sufficient to fit the data well8.
Below we first explain the perplexity measure we use for

our STC models, which is slightly different from the com-
monly used perplexity for probabilistic models like LDA.

5.1.1 Perplexity for STC models

5Since τ0 may affect the convergence speed, we tune τ0 for
the best performance. Similar as in [16], we set a smaller τ0
for a larger batch size.
6We use the authors’ implementation:
http://www.cs.princeton.edu/∼blei/downloads/onlineldavb .tar
7Although sampling methods for LDA often result in sparse
topic representations due to the limited number of samples,
both LDA and OLDA are not sparse models. In contrast,
both STC and OSTC are sparse due to a soft-thresholding
operators as presented in Section 3.3.
8We tried K=100, 150, 200 and found no big difference in
held-out perplexity.

Perplexity is a common measure of topic models’ ability to
generalize to test data. It is defined as the geometric mean
of word likelihood. For probabilistic models, word likelihood
is a marginal of the joint distribution of words and topic
assignment, where the topic distribution is inferred from test
data. But for STC, since we do not have a distribution of
word codes, we then have our perplexity definition different
with probabilistic topic models. We now use LDA as an
example of probabilistic topic models to explicitly discuss
its perplexity definition compared with STC.

For probabilistic topic models, the perplexity was defined
as follows. Let ntest

i denote all words in a test document i
and N test

i is the total word counts in document i. Then the
perplexity is the geometric mean of word likelihood in the
test set:

perplexity = exp
{
−

∑
i log p(n

test
i )∑

i N
test
i

}
. (17)

For LDA and OLDA, since exact inference is intractable,
a variational bound was developed to approximate the per-
plexity [16]. However, this variational bound utilize words
in the held-out set and may over-fit the test data. Here we
use a ‘document completion’ method [30] to evaluate the
held-out perplexity and this is done by first using half of the
test words (denoted by ntest

i1 ) to infer document codes for
the test documents and then evaluating the held-out per-
plexity by sampling word code for the other half of words in
the test data (denoted by ntest

i2 ). This method avoid over-
fitting since ntest

i2 was not used for inference. Precisely, the
perplexity of LDA is computed as

perplexityLDA ≈ exp
{
−

∑
i log p(ntest

i2 |p(ntest
i1 ,α,β)∑

i |Ntest
i2 |

}
. (18)

For STC and OSTC, we do not define a posterior distri-
bution of word codes, which means we can not compute the
marginal of the joint distribution of words and topic assign-
ment as in probabilistic topic models. However, in STC we
can use a similar strategy as done in LDA by first utilizing
half of the test terms (denoted by wtest

i1 ) to infer the docu-
ment codes for the test set and then sample word codes for
the other half of terms (denoted by wtest

i2 ) to calculate the
held-out perplexity as

perplexitySTC ≈ exp
{
−

∑
i log p(w

test
i2 |wtest

i1 ,β)∑
i |Itesti2 |

}
. (19)

From above discussions, we argue that both perplexity
definations are proper for their own settings. To further
check this, we also provide an ‘interchange’ experiment in
the Appendix. In the following experiments we will use the
Eq. (18) to calculate perplexity for LDA models and Eq. (19)
for our STC models.

5.1.2 Experiments on 99K subset
To compare with OLDA, we follow the same settings in [16]

and randomly choose a 99K subset of the whole Wikipedia
data. Fig. 4(a) shows the perplexity of OSTC (with batch
size M = 64), batch STC and OLDA (M = 64). We can see
that OSTC converges much faster than batch STC because
of its effective exploration of document redundancy. We also
observe that OSTC has a lower perplexity than OLDA. The
main reason is that STC uses un-normalized word codes,
which offer an additional freedom compared to the normal-
ized probability in LDA. This extra freedom could lead to
better fitness of the observed data.
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Figure 4: (a) held-out perplexity of STC, online STC and online LDA on the 99K Wikipedia dataset; (b,c)
perplexity and sparsity of OSTC and OLDA when the hyper-parameters ρ and α change.

Table 1: Perplexity of LDA, CG-LDA and STC on
two datasets.

LDA CG-LDA STC
Wikipedia 1609.16 1503.85 265.37

20Newsgroups 5656.38 4847.65 1588.59

To examine the influence of approximate inference algo-
rithms on perplexity, Table 1 further compares the perplex-
ity of STC with those of the LDA models using variational
mean-field as well as the collapsed Gibbs sampling [15]. We
denote the LDA using collapsed Gibbs sampling by CG-
LDA. We can see that although using collapsed Gibbs sam-
pling can improve the performance of LDA, its perplexity is
still significantly higher than that of STC.
Fig. 4(b) and Fig. 4(c) further compare the held-out per-

plexity and word code sparsity of OSTC and OLDA when
their hyper-parameters change. Both models have a single
pass on the 99K subset. For OSTC, we fix λ = γ = 0.025
and only change ρ (changing both ρ and γ will lead to even
better results), and for OLDA, the hyper-parameter is the
Dirichlet parameter α. We can see that for both models, the
hyper-parameter affects the word code sparsity much. But
for OLDA, the held-out perplexity doesn’t change much, all
remaining at a level of about 1,600. In contrast, ρ affect-
s much on the perplexity of OSTC. At all points, OSTC
obtains a smaller perplexity than OLDA. Moreover, when
ρ is set at a relatively large value (e.g., 0.01), OSTC ob-
tains much lower perplexity and higher word code sparsity.
Our observations are consistent with those in [42, 21], whose
experiments demonstrate the effectiveness of STC on discov-
ering sparse (and interpretable) topical representations.
We also investigate the performance of collapsed STC us-

ing online learning. From Fig. 4(b) and Fig. 4(c), we can
see that the collapsed OSTC (i.e., OCSTC) outputs slight-
ly sparser word codes and achieves even lower perplexity
than OSTC, when both methods using the same hyper-
parameters. This performance gain comes from relaxation of
conditional independence constraints in the inference step.

5.1.3 Experiments on 6.6M Wikipedia corpus
Now, we use the whole 6.6M Wikipedia dataset to exam-

ine the scalability of OSTC. Fig. 5 shows the perplexity of
OSTC with different batch sizes, as a function of the running
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Figure 5: held-out perplexity of online STC using
different batch sizes on the whole 6.6M Wikipedia
dataset.

time. We can see that the convergence speeds of different
algorithms vary9. First, since batch algorithm suffers from
writing disk operations due to its huge memory cost10, its
performance is much worse than those of the online alter-
natives. Second, online algorithms with medium batch sizes
(e.g., M = 256) converge faster than others. When we use
a too small batch size (e.g., M = 4), it takes a long time
to converge because we update the dictionary too frequent-
ly in each iteration without enough evidence. Finally, we
also note that as the batch size becomes too large (e.g.,
M = 4096), the convergence speed of online algorithm ap-
proaches the very slow batch algorithm.

5.2 Experiments on 20Newsgroups Dataset
The 20Newsgroups dataset consists of 18,774 documents

from 20 different newsgroups with a standard train/test s-
plit11 of 11,269/7,505. The vocabulary contains 61188 terms,
and we remove a standard list of 524 stop words as in [42].

9Almost all the OSTC models with different batch sizes con-
verge before scanning the whole corpus.

10If we use float type and assume each document has on
average 100 words, we will need about 4GB memory to store
the word codes for the 99K subset when K = 100. For the
6.6M dataset, we will need about 250GB.

11http://people.csail.mit.edu/jrennie/20Newsgroups/



Table 2: Classification accuracy of LDA, STC and MedSTC on the 20Newsgroups dataset.
LDA STC MedSTC

batch size accuracy(%) time(ks) accuracy(%) time(ks) accuracy(%) time(ks)
1 52.3 61.2 53.1 41.1 65.3 44.4
8 58.3±1.4 17.9 64.7±1.2 7.0 80.0 14.1
16 60.5±0.7 8.5 66.1±0.7 3.9 81.2 12.3
32 61.7±0.7 6.2 66.3±1.0 2.7 80.5 8.8
64 60.9±0.9 4.0 65.2±1.6 2.2 81.3 10.9

batch 61.4±0.7 8.6 62.7±0.6 4.7 81.6 18.4
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Figure 6: (a) error rates of STC and MedSTC as a
function of running time; (b) error rates of STC and
CSTC as a function of running time.

In these experiments, we focus on comparing both time effi-
ciency and test accuracy between STC and online STC with
different batch sizes. The results of other supervised topic
models, including MedLDA and sLDA, were reported in [42].
We choose the parameters K = 60, ∆(y, y′) = 3600I(y ̸=
y′), ρ = 0.1 and λ = γ = 0.01, which produce good results
as shown in [42].
Table 2 presents the classification accuracy of different

models with different batch sizes. We can observe that the
online STC obtains higher accuracy while with less running
time than the online LDA using the same batch size. For
STC, online learning algorithms generally improve the time
efficiency in order to get a good classification model. For in-
stance, the online STC with a batch size of 32 takes about a
half of the running time of the batch STC, and its classifica-
tion performance is surprisingly much better; for MedSTC,
when the batch size is 16, the online MedSTC performs com-
parably with the batch MedSTC, while taking less running
time. We also observe that batch sizes can affect the conver-
gence and classification performance of various online topic
models. The reason is that too small batches update β slow-
ly since β is high dimensional, while large batches tend to
reach another extreme of being ineffective in exploring data
redundancy.
Fig. 6(a) shows the error rates of STC and MedSTC, using

both batch and online learning algorithms, as a function of
running time. We can see that by cycling on the medium-
sized 20Newsgroups dataset, the online algorithms gener-
ally reach a good model faster than the batch algorithms.
In the unsupervised setting, the online algorithm performs
better both in time and classification accuracy. As has been
demonstrated on the Wikipedia articles, we can expect large
improvements in a much larger and redundant corpus.
Then we report the evaluation of the collapsed STC on the

20Newsgroups dataset for prediction performance, again us-
ing both batch and online learning algorithms. Fig. 6(b)
presents the error rates as a function of running time. We
can see that the online learning algorithms generally con-

verge faster to fairly good results. But the collapsed STC
does not shows dramatic improvements compared with STC.
This is probably due to the fact that the problem of STC
can be solved very well on the this dataset using the coor-
dinate descent algorithm with a hierarchical sparse coding,
and the collapsed sparse coding does not help a lot.

Finally, to examine the semantics of the learned topics,
Table 3 presents top words (i.e., words that have highest
values in the topic) of the most salient topic learned by the
online MedSTC for each category (i.e., topic that has highest
value in the average document code of each category) on
the 20Newsgroups dataset. We can generally see the strong
association of the categories and the learned topics.

6. CONCLUSIONS AND DISCUSSIONS
We have presented a sparse online topic model for model-

ing dynamic text streams and discovering topic representa-
tions from large-scale datasets. The online dictionary learn-
ing algorithm is efficient and guaranteed to converge. Ex-
tensive empirical studies on Wikipedia and 20Newsgroups
data have shown appealing performance in terms of held-
out perplexity, word code sparsity and prediction accuracy.

For future work, we are interested in various extensions
and improvements, including cleverly adjusting the learning
rates during learning and dealing with large-scale complex
data analysis problems, such as relational network analysis.
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8. APPENDIX

An alternative way to compare STC and LDA
Due to different definitions, more careful analysis should

be done on comparing the perplexity between STC and L-
DA. We now do an interesting ‘interchange’ experiment.
The idea is that although the inference procedure is dif-
ferent between STC and LDA, they both learn normalized
topical bases (i.e. the dictionary). So we can turn to test
the quality of their bases to see whether one model is strictly
better than the other. To do this we first train bases with
each model and then calculate the STC held-out perplex-
ity and the LDA held-out perplexity using both bases by
Eq. (19) and Eq. (18) separately. For example, we can use
STC for training bases (STC bases) and LDA for calculating
held-out perplexity (LDA testing). As an upper bound, we



Table 3: Example topics learned by OMedSTC. For each category, we show the most salient topic.
comp. misc. talk.

graphics ms-windows ibm.pc mac windows.x forsale politics.misc politics.guns politics.mideast religion.misc
compass allocation dma gnd widget trade mov gun cosmo incoming

cols windows drive init entry msdos hitler cranston power taoism
rows yap aspi vv libx bid time guns erzurum allocation

graphics cfg wires applelink xsizehints toshiba stephanopoulos militia armenian aleph
rtheta mywinobj compaq mac libxmu laptop viability people turks jesus
ellipse vb harddisk apple converter baud government weapons negotiations bible
sphinx dos isa nubus accelerators modem throws firearms turkish objective
image file scsi backlit decnet mpc chancellor fire bayonet morality
files bitmap card wolves focus coupons president fbi labor christ
color files pc drive myhint send african law armenians christian

sci. rec. alt. soc.
crypt electronics med space autos motorcycles baseball hockey atheism christian
mov pin jl ics car gun roster pt contradictory babylon

nffutils compass hiv incoming writes bike lefthanded period rapist god
maxbyte tesla polio het tint zephyr baseball switzerland god pentecostals

db hook oily space article teflon idle italy depression husband
nist wire spect nasa carburetor dog year aids writes jesus
push brightness methanol launch lojack shaft team norway people senses
offset doherty tinnitus orbit cars ride ball czech don ceremonial

trinomials power eye moon vw good game austria allah people
encryption blinker patients earth good hawk players qtr article christian

key circuit msg shuttle volvo back pitching game islam church

also report the results by using the non-informative uniform
basis. Experimental results using different number of topics
on the 20Newsgroups dataset are shown below.
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Figure 7: (a) STC testing perplexity for different
bases; (b) LDA testing perplexity for different bases.

The left figure shows held-out perplexity by STC using E-
q. (19) and the right one shows held-out perplexity by LDA
using Eq. (18). Each figure compares among bases learned
by both models and the uniform bases (as a baseline). The
red bar shows the perplexity calculated by uniform bases
as an upper bound. Obviously, both STC and LDA learn
meaningful bases and their held-out perplexity is significant-
ly lower than the perplexity produced by the uniform bases
(In both figures we use log scale for the perplexity axis.). In
the left figure when we calculate held-out perplexity by STC,
we achieve a lower perplexity by using STC bases. However,
LDA bases get a lower perplexity in the other setting in the
right figure. Thus, using the same model for training and
testing achieves better results. The bases learned by other
models can be useful, but not as accurate as the original one.
Finally, we also note that in general, we get lower perplexity
when using STC for testing.
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