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Abstract. Robust image representations such as classemes [1], Object
Bank (OB) [2], spatial pyramid representation(SPM) [3] have been pro-
posed, showing superior performance in various high level visual recog-
nition tasks. Our work is motivated by the need of exploring rich struc-
tural information encoded by these image representations. In this pa-
per, we propose a novel Multi-Level Structured Image Coding approach
to uncover the structure embedded in representations with rich regu-
lar structural information by learning a structured dictionary from it.
Specifically, we choose Object Bank [2] to demonstrate our algorithm
since it encodes both semantics and spatial location as structural infor-
mation. By using the learned structured dictionary from Object Bank,
we can compute a lower-dimensional and more compact encoding of the
image features while preserving and accentuating the rich semantic and
spatial information of OB. Our framework is an unsupervised method
based on minimizing the reconstruction error of the image and object
codes, with an innovative multi-level structural regularization scheme.
The object dictionary and the image code obtained by our model offer
intriguing intuition of real-world image structures while preserving in-
formative structure of the original OB. We show that our more compact
representation outperforms several state-of-the-art representations (in-
cluding the original OB) on a wide range of high-level visual tasks such
as scene classification, image retrieval and annotation.

1 Introduction

Of all the modules for a robust visual recognition system, the design of robust im-
age representation is of fundamental importance and has been attracting many
vision researchers. Recently there emerges development of effective image repre-
sentations such as classemes [1], Object Bank [4], spatial pyramid representation
(SPM) [3] and related sparse image representations [5, 6]. While these new image
representations demonstrate promising visual classification results, there is still
ample space to further explore the rich structural information and potential for
high level recognition tasks. Such rich structural information could be represen-
tation related to concepts in classmes, objects in Object Bank or spatial locations
in SPM. Towards this goal, [4] proposed a supervised method to learn a sparse

*indicates equal contributions.



2 Li-Jia Li*1,2, Jun Zhu*3,4, Hao Su1, Eric P. Xing3, Li Fei-Fei1

representation for classification task, which selects the most discriminative ob-
jects and responses at specific spatial locations in a class-dependent manner.
However, not only the sparsification deteriorates classification performance in
some cases, the supervision requires extensive labeling effort and prevents its
application for recognition tasks such as annotation. Unsupervised approach, on
the other hand, has the advantage of being applicable to unlabeled data and
enables the learned representation to be applied to general recognition tasks.

In this paper, we propose a novel unsupervised approach, called Multi-Level
Structured Image Coding (MUSIC), to compress a high-dimensional structured
data in a much more compact format while preserving the original information.
Specifically, we apply our algorithm on OB to demonstrate that our method is
capable of representing the high-dimensional OB with a much more compact
and semantically interpretable representation called image code. Given the OB
representation of a set of images, MUSIC learns a set of bases that span a
lower-dimensional semantic space in which unknown images can be encoded with
compact image representation, by minimizing a regularized reconstruction error
over the input representation. Specifically, we make the following contributions:

1. We demonstrate to compress the original OB feature into a much lower dimensional
latent space (40 folds reduction) while preserving the rich semantic and spatial
information encoded in the feature.

2. We propose a two-layer structured coding scheme at both object and image levels;
and a structured object dictionary that consists of both unique bases that encodes
the canonical spatial distribution patterns of every specific object in OB, as well
as shared bases that are generic to all objects. An efficient coordinate descent
algorithm is developed to solve the optimization problem of image coding and
dictionary learning in a fully unsupervised fashion.

3. The resulting image code can be efficiently applied to high level visual tasks such
as image classification, retrieval and annotation with superior performance.

2 Related Work

Image representation research has achieved substantial progress in image recog-
nition tasks recently with the emergence of robust representations such as [7],
classemes [1], and Object Bank [2] by encoding images as structural composi-
tion of semantically meaningful intermediate representations. However, little has
been done to uncover the structural information within these rich intermediate
representations. [4] explore sparsity within the high dimensional OB by using a
supervised approach. In Sec.3.6, we demonstrate the fundamental difference be-
tween our method and [4]. Compared to [4], our algorithm explores to learn a low
dimensional latent space in an unsupervised manner via regularized projection,
which generalizes knowledge to unseen classes.

One notable method for obtaining unsupervised features is deep learning al-
gorithms [8–10]. Deep belief network (DBN) can be viewed as composition of
multiple levels of non-linear operations. Sparse coding methods (SPC) [11, 12,
6, 13–17] have shown impressive potential in different applications. MUSIC fun-
damentally differs from these methods. First, MUSIC is a two-layer regularized
projection method, which explicitly leverages the rich semantic and spatial infor-
mation in OB to achieve compactness at both object and image levels. Second,
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MUSIC learns a structured dictionary by explicitly defining object-specific and
shared bases. The usage of object-specific and shared bases is related to [17],
which learns specific/shared dictionary elements for multi-view data analysis.
We defer the detailed comparison to Sec.3.6 after we introduce our model.

3 Multi-Level Structured Image Coding
In this section, we describe our multi-level structured image coding algorithm
by using Object Bank as an example. We first summarize the Object Bank
(OB) representation introduced by Li et al. [2]. A set of response maps are first
obtained by applying a set of pre-trained object detectors at multiple scales in an
image to extract the response value from each pixel at each scale. The resulting
response map at each scale is then divided into grids similar to SPM [3]. Within
each grid, maximum response score for each object filter is selected to build
the final OB representation1. Let O denote the number of object filters and G
denote the total number of grids for an image (G = nScales × nGridsperscale
i.e. 12×(1+4+16)=252). An OB representation is constructed by concatenating
a set of O object-wise sub-vectors x= [x1; · · · ;xO], where xo ∈RG denotes the
responses of the oth object filter across all grids2. The overall dimensionality of
the OB representation is O×G, which can easily grow into tens of thousands as
the number of object filters increases.

The OB representation departs from traditional low-level image features by
encoding both semantic and spatial information. For example, the response maps
of ‘sky’ or ‘airplane’ would show stronger signals in the upper half of the image,
whereas ‘beach’ or ‘car’ would be the opposite. Furthermore, the OB represen-
tation is an over-complete characterization of the image, in which redundant
information can be across different scales, overlapping spatial regions, and even
at object levels. The redundancy in OB representation potentiates a robust com-
pression without scarifying useful information. To extract a low dimensional com-
pact representation from the over-complete OB while preserving the semantic
and spatial information, we base our model upon regularized linear projection.
We present the Multi-Level Structured Image Coding (MUSIC) for unsupervised
learning of a structured dictionary constituted by a set of bases spanning the
low dimensional latent space. With this dictionary, the high dimensional OB
representation can be encoded by using the bases in the low dimensional latent
space to generate the compact image code with high fidelity.

In a typical encoding process, an input data x can be represented as a linear
combination of K basis vectors, x ≈

∑K
k=1 skβk learned via a loss minimization

scheme min
∑

d ∥x(d) − βs(d)∥22, where d represents the data index. The weight
vector s ∈ RK is called a code. The set of bases β = [β1; · · · ;βK ] is the dictionary.

Recent sparse coding (SPC) approaches [18, 11, 12] apply regularizers to en-
force sparsity, generating the so called sparse code usually with very few non-zero

1 We follow [2] and use the same 177 detectors, 12 scales and 3 pyramid levels.
2 There can be an alternative representation, in which x is organized as a concatenation
of set of grid-wise sub-vectors, where each sub-vector xg∈RO denotes the responses
produced by all the object filters in grid g. For simplicity, we focus on the object-wise
concatenation as an example.
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Fig. 1. Top: The learned structured object dictionary β. In β, the colored grids
(column-wise) represent object-specific bases while the shaded grids are shared bases.
Across all variables, grids in the same color are directly correlated. We show one ex-
ample basis for each object and one shared basis. Bottom: An illustration of MUSIC
for inferring a compact image code from high-dimensional OB features. Here, xo∈RG

is the response of an object filter in the original OB, so is the code of object o whose
dimension is much lower than G (Sec. 3.1), θ is the image code (Sec. 3.2) that aggre-
gates so to achieve a single compressed representation for entire image. Bo represents
all the bases needed for reconstructing signals from object o, in which faded columns
represents unused bases. (Best viewed in color and with magnification.)

elements. SPC can be directly applied to the OB features, treating the entire
O × G dimensional OB representation x of an image as an input sample, from
which the latent-space representation can be computed using some matrix fac-
torization methods. Let’s refer this method as basic SPC. The problem is that
the basic SPC approach can be extremely inefficient because all the bases need
to be as high-dimensional as the original OB. Moreover, this method does not
consider the rich structural information in OB discussed earlier.

Here, we seek to obtain a low dimensional projection θ of the OB features
x in a latent space spanned by a structured dictionary learned efficiently with
MUSIC by exploring the structural information in OB. Fig. 1 shows MUSIC,
which contains an object-level for object-wise encoding and an image-level for
image-wise encoding. Below, we elaborate our multi-level coding scheme.

3.1 Object Coding in MUSIC
To avoid expensive high-dimensional matrix factorization, MUSIC performs en-
coding at object-level (object coding) for individual object-wise response sub-
vector, i.e., xo in x, instead of the whole input x. Given an input x resultant
from a concatenation of O subvectors, each corresponding to an object-specific
spatial response, we begin by reconstructing each subvector xo from some bases
in a dictionary, as shown in the first layer from x to s in Fig. 1. Let β denote
a structured dictionary, consisting of O sets of object-wise unique bases, each
set denoted by βo ≡ {βo,1, ...,βo,M} where M is the number of bases unique to
every object; and one set of L shared bases βc ≡ {βc,1, ...,βc,L} that are used to



Multi-Level Structured Image Coding 5

reconstruct all the object-wise inputs. Putting all the bases together, we obtain
the structured dictionary β as a G×K matrix, where K=(O×M+L). Each basis
βk ∈ RG in the dictionary roughly represents a canonical response pattern of one
object detector on different spatial locations and scales in an image. Ideally, the
object-wise unique bases capture private object appearance and spatial patterns
of an object whereas the shared bases contain common patterns of all objects.
We adopt a linear scheme for object-signal reconstruction:

xo ≈
M∑
j=1

uo,jβo,j +

L∑
j′=1

vo,j′βo,j′ = βouo + βcvo, (1)

where uo and vo represent the vectors of weights measuring the contributions
of the unique bases and shared bases, respectively. We denote so ≡ cat(uo;vo),
which is a concatenation of uo and vo, as the code of object o; likewise, Bo ≡
cat(βo;βc)

3 represents all the bases needed for reconstructing the response sig-
nals from object o.

Naively, one can code the signals x
(d)
o of image d by estimating s

(d)
o via a loss

minimization scheme. To avoid manual engineering for selecting the best number
of bases for each object, we enforce a sparsity-inducing regularizer upon this
scheme to discover the number of useful bases automatically from a potentially
large number of candidates:

{s(d)o } = argmin
∑
d

∥x(d)
o −Bos

(d)
o ∥22 + ρ

∑
d

∥s(d)o ∥1, (2)

where ρ is a non-negative constant that balances the regularization term and
the reconstruction error term. For different objects, the Bo’s contain a common
element βc that couples different codes for similarity within different objects,
which may render all so’s of a single image not independent of each other due to
vo contained. Therefore, in the sequel we need to furthermore consider a global
image coding built on the object coding.

3.2 Image Coding in MUSIC

To capture the correlations among the codes of different object-wise responses,
MUSIC employs an additional layer of coding as shown in Fig. 1, which aggre-
gates the codes so of all object-wise sub-vectors to achieve a single compressed
OB representation θ of the entire image.

We define image code θ as a (O×M +L) dimensional vector of the form:
θ≡ cat(θ1; . . . ; θO; θc), of which the elements θo, o = 1, . . . , O correspond to the
prototype code of each of the unique portion uo of the object code so; and the last
element θc corresponds to the prototype code underlying all of the shared portion
vo. Similar to the object code extraction from xo’s, we adopt a regularized loss
minimization scheme to extract θ from so’s:

{θ} = argmin

O∑
o=1

∥θo − uo∥22 + ∥θc − vo∥22 + λ

O+1∑
i=1

∥θi∥2, (3)

where λ is another regularization constant. The choice of loss function deter-
mines how image code θ is aggregated from the individual so. The square error

3 Here cat() denotes a column-wise concatenation.
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loss above yields an average pooling for shared components and a re-weighted
feature concatenation for object-specific components. Since not all object filters
are equally important for describing an image, we employ an ℓ1,2-norm regular-
izer over the image code for automatically selecting useful object filters4.

3.3 Structured Dictionary in MUSIC

As mentioned earlier, the dictionary β is a G×K matrix, where K=O×M+L is
the total number of bases, and we use Bo to denote the sub-matrix cat(βo;βc)
for constructing the signals from object o. Fig. 1 illustrates the structure of
such a dictionary. We can see that an object-specific basis tends to represent
a canonical spatial pattern for a particular object and a shared basis tends to
capture the common spatial pattern of all the objects. Therefore, object-specific
bases are sharp and vary significantly from one object to another, while a shared
basis is much flatter. In MUSIC, the dictionary β is learned in conjunction with
the coding process that renders so and θ. This dictionary encodes rich structural
information in OB, upon which the compact image code can be extracted. We
will present a closer examination of β in Sec. 4.1.

3.4 The MUSIC Model

Putting the three components above together, in order to learn an optimum
dictionary β and infer the optimal coding coefficients (s, θ), we define MUSIC as a
coding/learning scheme based on minimizing a regularized square reconstruction
error. Formally, given a set of images {x(d)}, we solve the following problem:

min
θ,s,β

∑
d

L(x(d); s(d), β) + γL(s(d), θ(d)) +ρΩ(s(d))+λψ(θ(d)), s.t. : β ∈ B, (4)

where L(x(d); s(d), β) =
∑

o ∥x(d)
o −Bos

(d)
o ∥22 is the square error between input

features and their reconstructions; L(s(d), θ(d)) is a similar square error between
object codes and image code as defined in Sec. 3.2; Ω(s) is the ℓ1-norm of object
codes as in problem (2); and ψ(θ) is the ℓ1,2-norm of the image code as in problem
(3). Here, (λ, γ, ρ) are pre-specified non-negative hyper-parameters, which can be
chosen via cross validation. To make the problem identifiable, we put a constraint
on the dictionary β. We define B={β :

∑
k maxj |βkj |≤C}, which constrains the

ℓ1,∞-norm of β to be less or equal to a threshold C [19]. ℓ1,∞-norm encourages
some of the bases to be entirely zeroed-out. It effectively avoids the spread of
shared bases and bias the latent space towards being compact. Intuitively, we
expect that each object has fewer canonical spatial patterns.

In summary, MUSIC has the following main innovations over the basic SPC:
1) Rather than computing a global code directly from the entire input x, it com-
putes sparse codes at object-level for each subvector xo in x to avoid expensive
high-dimensional matrix factorization. 2) Rather than using a universal set of

4 Note that, the ℓ1,2-norm regularizer over θ can encourage joint sparsity of weights
within an object code over all regions, i.e., all elements in a subvector θo or θc is
shrunk to zero simultaneously, which is a desirable bias to clean up spurious object
filters. It is also possible to explore other structured sparsity, such as regional effects,
but for simplicity, we leave these enhancements to the future work.
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bases for reconstructing all xo’s, it employs a structured dictionary consisting
of both (small) basis-sets unique to each object and a basis-set shared by all
objects to reconstruct every xo for high fidelity and effective extraction of se-
mantic and spatial pattern. 3) Rather than obtaining a reconstruction simply
by pre-specifying the dictionary size, we impose both object-level and image-
level sparsity-inducing bias. This enables us to incorporate structural knowledge
such as preferred co-occurrence of objects, or appearance and/or filter-response,
directly to the image code, which is impossible in the basic SPC described above.

3.5 Optimization Algorithm: Coordinate Descent

Algorithm 1 Dictionary Learning

Input: image corpus {x(d)}Dd=1, regularization constants (λ, γ, ρ), basis numbers
(M,L).
Output: dictionary β
repeat

Coding: infer the sparse object codes s and image code θ for each image using
Alg. 2
Dictionary Learning: solve the following convex problem for β with projected gra-
dient descent

min
β

∑
do

∥x(d)
o −Bos

(d)
o ∥22, s.t.: β ∈ B. (5)

until convergence

Algorithm 2 Coding for Compact image code

Input: an image x and object dictionary β, regularization constants (λ, γ, ρ), basis
numbers (M,L).
Output: the image code θ and object codes s.
repeat

for o = 1 to O do
Solve the convex problem (2) for object-code so.

end for
Solve the convex problem (3) for θ.

until convergence (Image index is ignored for notation simplicity)

We present an efficient procedure to solve problem (4). We note that the
objective function is not joint convex, but it is bi-convex, that is, convex over
one of (θ, s) and β when the other is fixed. One natural choice is the coordinate
descent algorithm, which has been widely used in sparse coding [20, 6]. The
algorithm alternates between two steps of coding and dictionary learning, as
outlined in Alg. 1.

Coding: this step solves problem (4) for (θ, s) with β fixed, which is a convex
problem. We adopt a coordinate descent strategy to iteratively solve it over θ
and s, which has been shown suitable for ℓ1-norm and ℓ1,2-norm regularized least
squares loss [20]. Given the independence assumption of different images, we can
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perform this step for each image separately, as outlined in Alg. 2. Here, both
problems (2) & (3) have closed-form solutions. The time complexity for solving
problem (2) is O(O× (M +L)×G) and problem (3) O(O× (M +L)). We defer
the details to the Appendix.

Update dictionary: this sub-step involves solving the convex problem (5)
with a quadratic objective. We solve this problem via spectral projected gradient
descent, and the projection to the ℓ1,∞-ball is efficient [19]5.

3.6 Comparison with [4] and [17]

Our MUSIC model described above infers a low dimensional latent space of
OB based upon regularized linear projection, which requires no supervision. [4]
explores the sparsity resides in OB by using regularized logistic regression, where
supervision is necessary. Our method generalizes knowledge to unseen classes and
copes effectively with scarcity of labeled data, which is a major challenge in real-
world applications. In Sec.4.2, we apply our representation to general high level
recognition tasks such as retrieval and annotation whereas the representation
obtained by [4] is only applicable to classification.

Comparing to [17], which softly couples the dictionaries on multi-views by
using a structured regularizer, MUSIC is a multi-level model, which first explic-
itly defines object-specific and shared bases and then enforces bases selection.
Although [17] could potentially be more flexible in identifying the shared and
private bases, they are computationally much more demanding to obtain the
comparable number of bases. By exploring the structure of OB features and ex-
plicitly defining the specific and shared bases, MUSIC can dramatically reduce
the computational burden. For example, if we aim to learn M specific plus L
shared bases for each object, suppose each object-wise input is one view, [17]
needs to learn O× (O×M+L) bases in total, while we need only O×M+L
bases. Given that there are hundreds and potentially thousands of objects in the
high-level image representations such as OB, MUSIC demonstrates much more
potential in scalability.

4 Experiment

In this section, we analyze a number of important properties of the MUSIC
approach and evaluate its performance on several high-level recognition tasks,
including scene classification, image retrieval and annotation.

4.1 Analysis of MUSIC
Before showing performance of the proposed MUSIC approach on several bench-
mark applications, we examine some basic properties of MUSIC in this section.
We focus on interpretability of the learned structured dictionary; information
content of the image code, and discriminability of the MUSIC output over com-
peting methods. We use the UIUC-Sports event dataset, which contains images
from 8 event categories. 70 images from each class are used to learn the dic-
tionary and compute the image code. The original OB is generated from 177

5 More efficient solver for this problem exists, e.g. FISTA [21].
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object detectors following [2]. As described in Sec. 3, the overall dimensionality
is O × G = 44604. In MUSIC, 7 object specific bases for each object and 1
shared basis are used, which generates the image code with dimensionality of
7× 177 + 1 = 1240, approximately 40-fold reduction from the original OB. The
compact image code reconstructs the original OB with high fidelity, which is
reflected by average mean square error 0.0052 (less than 0.3%) with standard
deviation of 6×10−7 in each dimension with multiple randomly initialized runs.
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Fig. 2. (a) A heat matrix of the bases in the structured dictionary. Each column cor-
responds to a basis, and each row corresponds to a spatial location (i.e., a grid), which
are grouped as ‘Top’, ‘Middle’ and ‘Bottom’ locations in the image. Object names are
displayed at the bottom. A high value of a basis-element in a row indicates that the
object is likely to appear in the corresponding grid. The values of each object basis
are standardized for salient visualization. Bases are ordered as leaves of a hierarchical
clustering of the columns for salient visualization. (b) A heat matrix of the average
image code θ of images from different classes are displayed on the right.

A Close Examination of the Basis Dictionary As mentioned earlier, MU-
SIC learns a structured dictionary that includes O subsets of object-specific
bases, and 1 subset of shared bases. Each basis captures the canonical pattern
of either an object-specific or a universal OB signal in all the regions (i.e, grids)
of the image. Fig. 2(a) shows a few examples of the learned object-specific bases
(each as a column in the heat matrix). As we can see, there is an apparent spa-
tial preference revealed in different bases. Bases corresponding to objects such
as ‘water’, ‘beach’, ‘seashore’, etc. contain strong (i.e., red) signals at bottom;
whereas ‘maintain’, ‘pool table’, ‘rock’, etc. tend to have stronger signals in the
middle regions of the image. A simple hierarchical clustering of the bases can
reveal semantically coherent grouping based on the spatial preferences of ob-
jects; for example, ‘water’, ‘beach’ and “seashore” fall into a cluster on the left,
whereas ‘sail’ and ‘sailboat’ are in the same cluster on the right. However, as
spatial preferences are not the only cue for grouping objects (e.g., the apparent
heterogeneous composition of the cluster in the middle), we are cautious about
over-interpreting this groupings.

A Close Examination of the Image Code We expect the image code inferred
by MUSIC from OB to bear sufficient content so that they lead to high-quality
reconstruction of the original OB, as well as being semantically interpretable.
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Fig. 2(b) shows a heat matrix of subvectors of the average image code ob-
tained by extracting the object prototype code θo of 34 example objects for the
8 classes. Here, each row corresponds to an average image code for images from
a category, and each column corresponds to an object-specific basis used. Again,
columns are ordered by a hierarchical clustering simply for easy visualization. It
can be seen that different image categories do exhibit preferred usage of different
object-specific bases, reflecting more frequent occurrences of the corresponding
objects in the images. For example, ‘sail’ and ‘sailboat’ have higher image code
values in the ‘sailing’ class, while ‘sky’, ‘ship’ and ‘boat’ have higher image code
values in the ‘rowing’ class. Such content preference in the image code implies
its potential in semantic-based discrimination, as we explore later.

Predictive Performance Now we dissect the building blocks of MUSIC and
examine their influences on the predictive power of the inferred image code. The
evaluation is based on a scene classification experiment on the UIUC sports data.
We use 70 images for training and 60 for test from each class as the default set-
ting for all experiments on this data. In the following, if not specified, we employ
a multi-class linear SVM as the default classifier for different image representa-
tions, including image code. We compare with the following alternatives:

1. SPC: basic sparse coding that uses all shared bases to compute object codes sep-
arately, which were subsequently concatenated into a whole image-level represen-
tation6.

2. specSPC: image code from MUSIC, but using only object-specific bases (i.e.,
L = 0).

3. PCA: a representative dimensionality reduction method.

4. L1-LR [4]: ℓ1-norm regularized logistic regression (LR) trained directly on the high-
dimensional OB representations.

5. OB-SVM [2]: a linear SVM learned from the original OB.

Method Accuracy
OB-SVM 77.9%
L1-LR 76.2%
PCA 77.2%
SPC 78.7%
specSPC 78.0%
MUSIC 81.8%

Table 1. Classifica-
tion accuracy of dif-
ferent models.

Table 1 summarizes the classification accuracy of dif-
ferent methods. For MUSIC, the dimension of the image
code is 1240, much lower than that of the original OB
(44604). For SPC, specSPC and PCA, we use 7 bases per
object, which gives approximately the same dimensional-
ity. We observe that the full MUSIC outperforms other
algorithms. Specifically, the superior performance of MU-
SIC over specSPC demonstrates that shared bases can help
separate common background information from the more
semantic salient information regarding unique objects.

6 If we use average or max-pooling in the SPC to obtain image-level representations,
it is found that the performance will drop dramatically when only using a modest
number (e.g., hundreds) of bases. Using a large number of bases could help but it is
much more expensive than MUSIC. For example, suppose we use the same number
of bases as that of objects in both SPC and MUSIC (i.e., M = 1 & L = 0). Then,
MUSIC will be roughly the number of objects times faster than SPC. This is because
SPC uses all the bases to reconstruct each object-wise OB feature, while MUSIC uses
only 1 basis to reconstruct each object-wise OB feature.
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Fig. 3. (a) Comparison of classification performance to the methods that use existing
low-level representations and state-of-the-art approaches including previous OB related
methods on UIUC sports data. Average accuracy of a multi-way classification is used as
the evaluation metric. (b) Comparison of classification performance to the methods that
use existing low-level representations and state-of-the-art approaches on MIT Indoor.
Error bars represent standard deviation of 5-fold random split of the training/test data.

4.2 Applications in High-level Image Recognition

In this section, we evaluate the potential of image code in high-level visual recog-
nition tasks, specifically: scene classification, image retrieval and annotation.

Scene Classification We first analyze the predictive power of the image code
learned by MUSIC for classifying scene images from two complex scene datasets –
UIUC sports event [22] and MIT indoor scene [23]. For MIT indoor scene dataset,
we follow the settings in [23], using 80 images from each of the 67 classes to train
a multi-class linear SVM and test on a total of 1340 images (20 per class). We
compare image code obtained by MUSIC with those methods using low-level
features (e.g., SIFT, SPM and GIST) and the state-of-the-art algorithms. We
use a linear SVM classifier for SIFT and GIST features and a more complex
classifier (i.e. SVM with an intersection kernel) for SPM as in [3]. Fig. 3 shows

Method MUSIC MUSIC-kNN MUSIC-LR Self-Taught

Accuracy 81.8% 69.5% 79.2% 80.4%

Table 2. Classification performance of different classifiers and self-taught learning
(learn on MIT indoor data and apply it to infer image code for images in UIUC sports
data) on the image code inferred by MUSIC.

the accuracy of different methods. The improvement of image code from MUSIC
over the low-level representations and the state-of-the-art approaches indicates
image code can successfully preserve the rich structure and semantic meaning of
the OB representation. It is worth noticing that all OB unrelated state-of-the-art
algorithms here require extensive supervision during training ([24] and [22] use
object labels within each training image. [23] requires manual segmentation of
a subset of training images.), whereas MUSIC does not require such supervi-
sion. The fact MUSIC outperforms the original OB underscores the importance
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of obtaining a more compact feature, where discriminative information in both
semantic and spatial domains are preserved, but the smaller dimensionality cur-
tails the high-dimensionality challenge posed by the original OB.

We also investigate how different end classifiers affect the classification per-
formance by using our image code from MUSIC. Here, we compare linear SVM
(the default classifier) with kNN and logistic regression (LR), which are denoted
by MUSIC-kNN and MUSIC-LR, respectively. We also report the performance
of using our image code for self-taught learning [13]. As shown in Table 2, the
linear LR and SVM perform comparably. Although inferior to SVM or LR, kNN
is comparable to the best method that uses a low-level representation (e.g.,
SPM [3]) and the state-of-the-art methods as shown in Fig. 3(a).

Our image code is much more efficient when applied to high level visual tasks.
Taking scene classification on MITIndoor dataset as an example, training and
test efficiency has been improved over 20 and 60 times respectively over the OB
representation. Given that coding time for an unknown image is negligible, our
representation has much more potential in scalability.

Image Retrieval We investigate the usefulness of our image code inferred from
MUSIC on content based image retrieval task, i.e. use a query image to retrieve
relevant images7.
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We compare the retrieval performance of image code to that of low-level
representations and the original OB [2] on the UIUC sports data, where 130
images from each of the 8 classes are used. We use precision of the top ranked
images as the evaluation criterion (Fig. 4). Image code by MUSIC outperforms
those using low-level representations with a large margin. We attribute this
advantage of MUSIC to its encoding of rich semantic and spatial information.
It is worth noticing that although achieving comparable performance, the image
code has a much lower dimension (1240) and hence more efficient for practical
applications than the OB representation (>40k dimension).

7 We also test our image code on concept based image retrieval, i.e. use a concept
to retrieve images. The compactness of image code makes it a better choice over
OB [2] for large scale retrieval application. Image code significantly outperforms the
state-of-the-art algorithms in [1], which is largely attributed to the incorporation of
the spatial patterns of the objects. See result and details about this experiment in
the Appendix.
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Image Annotation Our last experiment is to apply the image code to an im-
age annotation task, where a list of image or object concepts is inferred for an
image. We conduct this experiment on the UIUC sports data, with 70 images per
class for training (18 of them are used as the validation set) and 60 for testing.
We train an SVM classifier of each object based on our representation of the
images. Given a query image, the classifier makes an annotation prediction for
each concept. Our result (48.27% in standard F-measure, used in [24]) is superior
than the reported state-of-the-art performance of 38.20% in [24]. We attribute
this improvement to the rich semantic information encoded by the object fil-
ters, which is suitable for high-level visual tasks such as image annotation. Our
method also outperforms the original OB representation (45.46%), suggesting
that the compact image code successfully preserve the semantic contents of the
image while discarding the noise and redundancy.
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Fig. 5. Example image annotation results by MUSIC. Proposed tags are listed on the
right side of the image. Incorrect tags are highlighted in red. The average number of
tags proposed is ∼10. For those images with more than 7 tags predicted, only the top
7 tags with highest empirical frequencies in the tag list of that image are shown.

Fig. 5 shows a few example results annotated by MUSIC. One source of
mistakes is due to semantic confusion, e.g. ‘net’ in 2nd row and 1st column is
proposed as a result of its expected occurrence in badminton images. Another
source of errors is the object filters in OB, such as incorrectly labeling ‘ski’ as
‘stick’. These observations point out several useful future directions in improving
our work.

5 Conclusion

We have proposed a novel MUSIC model that learns a structured object dictio-
nary in an unsupervised manner using a high-level representation (i.e., OB) and
infers much more compact image code representation (∼ 1k dimension) than the
original OB (44604 dimension). Our analysis demonstrates that the structural
regularity in the learned dictionary and the inferred image code are consistent
with human knowledge. Using the inferred image code, superior performance
over original OB can be obtained with a much lower computational cost on var-
ious high-level image recognition tasks. We plan to explore the potential of the
compact image code in large scale recognition problems, which are infeasible for
the original OB due to its high dimensionality and over-completeness.
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