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Abstract— Relational topic models (RTMs) provide a probabilistic generative process to describe both the link structure and
document contents for document networks, and they have shown promise on predicting network structures and discovering latent topic
representations. However, existing RTMs have limitations in both the restricted model expressiveness and incapability of dealing with
imbalanced network data. To expand the scope and improve the inference accuracy of RTMs, this paper presents three extensions:
1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to
use a full weight matrix that captures all pairwise topic interactions and is applicable to asymmetric networks; 2) instead of doing
standard Bayesian inference, we perform regularized Bayesian inference (RegBayes) with a regularization parameter to deal with
the imbalanced link structure issue in real networks and improve the discriminative ability of learned latent representations; and 3)
instead of doing variational approximation with strict mean-Þeld assumptions, we present collapsed Gibbs sampling algorithms for
the generalized relational topic models by exploring data augmentation without making restricting assumptions. Under the generic
RegBayes framework, we carefully investigate two popular discriminative loss functions, namely, the logistic log-loss and the
max-margin hinge loss. Experimental results on several real network datasets demonstrate the signiÞcance of these extensions on
improving prediction performance.

Index Terms— Statistical network analysis, relational topic models, data augmentation, regularized Bayesian inference
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1 INTRODUCTION

MANY scientific and engineering fields involve analyz-
ing large collections of data that can be well described

by networks, where vertices represent entities and edges
represent relationships or interactions between entities.
Such data include online social networks, protein interac-
tion networks, academic paper citation and coauthorship
networks, etc. As the availability and scope of network data
increase, statistical network analysis (SNA) has attracted a
considerable amount of attention (see [17] for a comprehen-
sive survey). Among the many SNA tasks, link prediction
[4], [25] is a most fundamental one that estimates the link
structure of networks based on partially observed links
and/or entity attributes (if exist). Link prediction could pro-
vide useful predictive models for suggesting friends to
social network users or citations to scientific articles.

Many link prediction methods have been proposed,
including the work on designing similarity measures [25]
that are used to rank unobserved links and those on learn-
ing supervised classifiers with well-conceived features [19],
[26]. Though specific domain knowledge can be used to
design effective feature representations, feature engineering
is generally a labor-intensive process. In order to expand
the scope and improve the ease of applicability of machine
learning methods, fast growing efforts have been made to

learn feature representations from data [6]. Along this line,
recent work on link prediction has focused on learning
latent variable models, including both parametric [2], [20],
[21] and nonparametric Bayesian methods [31], [40].
Though these methods could model the network structures
well, little attention has been paid to account for observed
attributes of the entities, such as the text contents of papers
in a citation network or the contents of web pages in a
hyperlinked network. One work that accounts for both text
contents and network structures is the relational topic mod-
els (RTMs) [8], an extension of latent Dirichlet allocation
(LDA) [7] to predicting link structures among documents as
well as discovering their latent topic structures.

Though powerful, existing RTMs have some assump-
tions that could limit their applicability and inference accu-
racy. First, RTMs define a symmetric link likelihood model
with a diagonal weight matrix that allows the-same-topic
interactions only, and the symmetric nature could also
make RTMs unsuitable for asymmetric networks. Second,
by performing standard Bayesian inference under a gener-
ative modeling process, RTMs do not explicitly deal with
the common imbalance issue in real networks, which nor-
mally have only a few observed links while most entity
pairs do not have links, and the learned topic representa-
tions could be weak at predicting link structures. Finally,
RTMs and other variants [27] apply variational methods to
estimate model parameters with mean-field assumptions
[24], which are normally too restrictive to be realistic in
practice.

To address the above limitations, this paper presents dis-
criminative relational topic models, which consist of three
extensions to improving RTMs:

1) We relax the symmetric assumption and define the
generalized relational topic models (gRTMs) with a
full weight matrix that allows all pairwise topic interac-
tions and is more suitable for asymmetric networks;
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2) We perform regularized Bayesian inference (Reg-
Bayes) [42] that introduces a regularization parame-
ter to deal with the imbalance problem in common
real networks;

3) We present a collapsed Gibbs sampling algorithm
for gRTMs by exploring the classical ideas of data
augmentation [11], [14], [39].

Ourmethods are generic, in the sense thatwe can use various
loss functions to learn discriminative latent representations.
This paper focuses on two types of popular loss functions,
namely, logistic log-loss and max-margin hinge loss. For the
max-margin loss, the resulting max-margin RTMs are new
contributions to the field of statistical network analysis.

For posterior inference, we present efficient Markov chain
Monte Carlomethods for both types of loss functions by intro-
ducing auxiliary variables. For the logistic log-loss, we intro-
duce a set of Polya-Gamma random variables [34], one per
training link, to derive an exact mixture representation of the
logistic link likelihood; while for the hinge loss, we introduce
a set of generalized inverse Gaussian variables [12] to derive a
mixture representation of the corresponding unnormalized
likelihood. Then, we integrate out the intermediate Dirichlet
variables and derive the local conditional distributions for
collapsed Gibbs sampling analytically. These “augment-and-
collapse” algorithms are simple and efficient. More impor-
tantly, they do not make any restricting assumptions on the
desired posterior distribution. Experimental results on sev-
eral real networks demonstrate that these extensions are
important and can significantly improve the performance.

The rest paper is structured as follows. Section 2 summa-
rizes related work. Section 3 presents the generalized RTMs
with both log-loss and hinge loss. Section 4 presents the
“augment-and-collapse” Gibbs sampling algorithms for
both loss functions. Section 5 presents experimental results.
Finally, Section 6 concludes with future directions discussed.

2 RELATED WORK

Probabilistic latent variable models have been widely devel-
oped for modeling link relationships between documents, as
they share nice properties on dealing with missing attributes
anddiscovering representative latent structures. For instance,
RTMs [8] capture both text contents and network relations for
document link prediction; Topic-Link LDA [27] performs
topic modeling and author community discovery in an
unified framework; Link-PLSA-LDA [32] combines probabi-
listic latent semantic analysis (PLSA) [23] and LDA into a sin-
gle framework to explicitly model the topical relationship
between documents; Others include Pairwise-Link-LDA [33],
Copycat and Citation Influence models [13], latent topic
hypertext models [1], Block-LDA models [5], etc. One shared
goal of the aforementioned models is link prediction. For
static networks, our focus in this paper, this problem is usu-
ally formulated as inferring the missing links given the other
observed ones. However, very few studies explicitly impose
discriminative training, and many models suffer from the
common imbalance issue in sparse networks (e.g., the num-
ber of unobserved links is much larger than that of the
observed ones). In this paper, we build our approaches
by exploring the nice framework of regularized Bayesian
inference [43], under which one could easily introduce

posterior regularization and do discriminative training in a
cost sensitivemanner.

Another under-addressed problem in most probabilistic
topic models for link prediction [8], [27] is the intractability of
posterior inference due to the non-conjugacy between the
prior and link likelihood (e.g., logistic likelihood). Existing
approaches using variational inference with mean field
assumption are often too restrictive in practice. Recently, [34]
and [35] show that by making use of the ideas of data aug-
mentation, the intractable likelihood (either a logistic likeli-
hood or the one induced from a hinge loss) could be
expressed as a marginal of a higher-dimensional distribution
with augmented variables that leads to a scale mixture of
Gaussian components. These strategies have been success-
fully explored to develop efficient Gibbs samplers for super-
vised topicmodels [41], [44]. This paper further explores data
augmentation techniques to do collapsed Gibbs sampling for
our discriminative relational topic models. Please note that
our methods could also be applied to many of the aforemen-
tioned relational latent variable models. Finally, this paper is
a systematical generalization of the conference paper [9].

3 GENERALIZED RTMS

We consider document networks with binary link struc-
tures. Let D ¼ fðw i; w j; yijÞgði;jÞ2I be a training set, where

w i ¼ fwingNi
n¼1 denote the words in document i and yij is the

link label (either 0 or 1).1 A relational topic model consists

of an LDA model [7] for describing the words W ¼ fw igD
i¼1

and a classifier for considering link structures y ¼ fyijgði;jÞ2I .
Let K be the number of topics and each topic FFk is a multi-
nomial distribution over a V -word vocabulary. For Bayesian
RTMs, the topics are samples drawn from a Dirichlet prior,
FFk � DirðbbÞ. The generating process can be described as:

1) For each document i ¼ 1; 2; . . . ; D:
a) draw a topic mixing proportion uui � DirðaaÞ
b) for each word n ¼ 1; 2; . . . ; Ni:

i) draw a topic assignment zin � MultðuuiÞ
ii) draw the observed word win � MultðFFzin

Þ
2) For each pair of documents ði; jÞ 2 I :

a) draw a link indicator yij � pð:jzi; zj; hhÞ, where

zi ¼ fzingNi
n¼1.

We have used Multð�Þ to denote a multinomial distribution;
and used FFzin

to denote the topic selected by the non-zero

entry of zin, a K-dimensional binary vector with only one
entry equaling to 1.

Previous work has defined the link likelihood as

pðyij ¼ 1 j zi; zj; hhÞ ¼ s hh>ðzi � zjÞ
� �

; (1)

where zi ¼ 1
Ni

PNi
n¼1 zin is the average topic assignments of

document i; s is the sigmoid function; and � denotes ele-
mentwise product. In [8], other choices of s such as the
exponential function and the cumulative distribution func-
tion of the normal distribution were also used, as long as it
is a monotonically increasing function with respect to the

1. Our setting is slightly different from [8], which only models
observed links while introducing an artificial penalty for unobserved
links in order to learn a predictive model. Our setting is common in sta-
tistical network analysis [19], [26], [31], [40].
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where pðD jZ; FF; UÞ ¼ pðWjZ; FFÞpðy jZ; UÞ is the likelihood
of the observed data and p0ðQQ; Z; FF; UÞ ¼ p0ðUÞ½Qi pðuui jaaÞQ

n pðzin j uuiÞ�
Q

k pðFFkjbbÞ is the prior distribution defined by
the model. One common issue with this estimation is that
real networks are highly imbalanced—the number of posi-
tive links is much smaller than the number of negative links.
For example, less than 0:1 percent document pairs in the
Cora network have positive links.

To deal with this imbalance issue, we propose to do regu-
larized Bayesian inference [42] which offers an extra free-
dom to handle the imbalance issue in a cost-sensitive
manner. Specifically, we define a Gibbs classifier for binary
links as follows.

1) A latent predictor. If the weight matrix U and topic
assignments Z are given, we build a classifier using
the latent prediction rule

ŷij j zi;zj;U ¼ Iðvij > 0Þ; (3)

where Ið�Þ is an indicator function that equals to 1 if
predicate holds otherwise 0. Then, the training error
of this latent prediction rule is

ErrðU; ZÞ ¼
X

ði;jÞ2I
Iðyij 6¼ ŷij j zi;zj;UÞ:

Since directly optimizing the training error is hard, a
convex surrogate loss is commonly used in machine
learning. Here, we consider two popular examples,
namely, the logistic log-loss and the hinge loss

R1ðU; ZÞ ¼ �
X

ði;jÞ2I
log pðyijjzi; zj; UÞ;

R2ðU; ZÞ ¼
X

ði;jÞ2I
max 0; ‘ � ~yijvij

� �
;

where ‘ð	 1Þ is a cost parameter that penalizes a
wrong prediction and ~yij ¼ 2yij � 1 is a transforma-
tion of the 0=1 binary links to be �1= þ 1 for notation
convenience.

2) Expected loss. Since both U and Z are hidden varia-
bles, we infer a posterior distribution qðU; ZÞ that has
the minimal expected loss

R1ðqðU; ZÞÞ ¼ Eq R1ðU; ZÞ½ � (4)

R2ðqðU; ZÞÞ ¼ Eq R2ðU; ZÞ½ �: (5)

Remark 1. Note that both loss functions R1ðU; ZÞ and
R2ðU; ZÞ are convex over the parameters U when the
latent topics Z are fixed. The hinge loss is an upper
bound of the training error, while the log-loss is not.
Many comparisons have been done in the context of clas-
sification [36]. Our results will provide a careful compari-
son of these two loss functions in the context of relational
topic models.

Remark 2. Both R1ðqðU; ZÞÞ and R2ðqðU; ZÞÞ are good surro-
gate loss for the expected link prediction error

ErrðqðU; ZÞÞ ¼ Eq ErrðU; ZÞ½ �;

of a Gibbs classifier that randomly draws a model U from
the posterior distribution q and makes predictions [28],
[16]. The expected hinge loss R2ðqðU; ZÞÞ is also an upper
bound of ErrðqðU; ZÞÞ.
With the above Gibbs classifiers, we define the gener-

alized relational topic models as solving the RegBayes
problem

min
qðU;QQ;Z;FFÞ2P

LðqðU; QQ; Z; FFÞÞ þ cRðqðU; ZÞÞ; (6)

where LðqÞ ¼ KLðqðU; QQ; Z; FFÞjjp0ðU; QQ; Z; FFÞÞ � Eq½log pðW jZ; FFÞ� is
an information theoretical objective; c is a positive regulari-
zation parameter controlling the influence from link struc-
tures; and P is the space of normalized distributions. In fact,
minimizing the single term of LðqÞ results in the posterior
distribution of the vanilla LDA without considering link
information. For the second term, we have usedR to denote
a generic loss function, which can be either the log-loss R1

or the hinge-loss R2. Note that the Gibbs classifiers and the
LDA likelihood are coupled by sharing the latent topic
assignments Z, and the strong coupling makes it possible to
learn a posterior distribution that can describe the observed
words well and make accurate predictions.

To better understand the above formulation, we define
the unnormalized likelihood for links:

c1ðyij j zi; zj; UÞ ¼ pcðyij j zi; zj; UÞ ¼ ecyijvij

ð1 þ evijÞc ; (7)

c2ðyij j zi; zj; UÞ ¼ exp �2c maxð0; 1 � yijvijÞ
� �

: (8)

The likelihood c1 is normalized if c ¼ 1. Then, the inference
problem (6) can be written as

min
qðU;QQ;Z;FFÞ2P

LðqðU; QQ; Z; FFÞÞ � Eq log cðy jZ; UÞ½ �; (9)

where cðyjZ; UÞ ¼Qði;jÞ2I c1ðyijjzi; zj; UÞ if using log-loss
and cðyjZ; UÞ ¼Qði;jÞ2I c2ðyijjzi; zj; UÞ if using hinge loss.

We can show that the optimum solution of problem (6) or
the equivalent problem (9) is the posterior distribution with
link information

qðU; QQ; Z; FFÞ ¼ p0ðU; QQ; Z; FFÞpðW jZ; FFÞcðy jZ; UÞ
fðy; WÞ ;

where fðy; WÞ is the normalization constant to make q as a
normalized distribution.

Therefore, by solving problem (6) or (9) we are in fact
doing Bayesian inference with a generalized likelihood,
which is a powered version of the likelihood (2) when using
the log-loss. The flexibility of using regularization parame-
ters can play a significant role in dealing with imbalanced
network data as we shall see in experiments. For example,
we can use a larger c value for sparse positive links, while
using a smaller c for dense negative links. This simple strat-
egy has been shown effective in learning classifiers [3] and
link prediction models [40] with highly imbalanced data.
Finally, for the logistic log-loss an ad hoc generative story
can be described as in RTMs, where c can be understood as
the pseudo-count of a link.

976 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 5, MAY 2015



4 AUGMENT AND COLLAPSE SAMPLING

For gRTMs with either the log-loss or hinge loss, exact infer-
ence is intractable due to the non-conjugacy between the
prior and the likelihood. Previous inference methods for the
standard RTMs use variational techniques with mean-field
assumptions. For example, a variational EM algorithm was
developed in [8] with the factorization assumption,

qðU; QQ; Z; FFÞ ¼ qðUÞ�Qi qðuuiÞ
Q

n qðzinÞ
�Q

k qðFFkÞ, which can

be too restrictive to be realistic in practice. In this section,
we present simple and efficient Gibbs samplers without any
restricting assumptions on q. Our “augment-and-collapse”
sampling algorithms rely on a data augmentation reformu-
lation of the RegBayes problem (9).

Before a full exposition of the algorithms, we summarize
the high-level ideas. For the likelihood cðy jZ; UÞ, it is not
easy to derive a sampling algorithm directly. Instead, we
develop our algorithms by introducing auxiliary variables,
which lead to a scale mixture of Gaussian components and
analytic conditional distributions for Bayesian inference
without an accept/reject ratio.

4.1 Sampling Algorithm for the Log-Loss
For the case with the log-loss, our algorithm represents an
extension of Polson et al.’s approach [34] to deal with
the highly non-trivial Bayesian latent variable models for
relational data analysis.

4.1.1 Formulation with Data Augmentation
Let us first introduce the Polya-Gamma variables [34].

DeÞnition 3. A random variable X has a Polya-Gamma distribu-
tion, denoted by X�PGða; bÞ, if

X ¼ 1

2p2

X1
m¼1

gm

ðm � 1=2Þ2 þ b2=ð4p2Þ ;

where ða > 0; b 2 RÞ are parameters and each gm � Gða; 1Þ is
an independent Gamma random variable.

Then, using the ideas of data augmentation [34], we have
the following results

Lemma 4. The likelihood can be expressed as

c1ðyij j zi; zj; UÞ ¼ 1

2c
eðkijvijÞ

Z 1

0

e
�

�ijv2
ij

2

� �
pð�ij j c; 0Þd�ij;

where kij ¼ cðyij � 1=2Þ and �ij is a Polya-Gamma variable
with parameters a ¼ c and b ¼ 0.

Lemma 4 indicates that the posterior distribution of the
generalized Bayesian logistic relational topic models, i.e.,
qðU; QQ; Z; FFÞ, can be expressed as the marginal of a higher
dimensional distribution that includes the augmented varia-
bles ��. The complete posterior distribution is

qðU; ��; QQ; Z; FFÞ ¼ p0ðU; QQ; Z; FFÞpðW jZ; FFÞcðy; �� jZ; UÞ
fðy; WÞ ;

where the unnormalized distribution of y and �� iscðy; ��jZ; UÞ ¼Q
ði;jÞ2I exp

�
kijvij �

�ijv2
ij

2

�
pð�ij j c; 0Þ.

4.1.2 Inference with Collapsed Gibbs Sampling
Although we can do Gibbs sampling to infer the complete
posterior qðU; ��; QQ; Z; FFÞ and thus qðU; QQ; Z; FFÞ by ignoring
��, the mixing rate would be slow due to the large sample
space. An effective way to reduce the sample space and
improve mixing rates is to integrate out the intermediate
Dirichlet variables ðQQ; FFÞ [18] and build a Markov chain
whose equilibrium distribution is the collapsed distribution
qðU; ��; ZÞ. For gRTMs, the collapsed posterior distribution is

qðU; ��; ZÞ / p0ðUÞpðW; Z jaa; bbÞcðy; �� jZ; UÞ

¼ p0ðUÞ
YK
k¼1

dðCk þ bbÞ
dðbbÞ

YD
i¼1

dðCi þ aaÞ
dðaaÞ

�
Y

ði;jÞ2I
exp
�

kijvij �
�ijv

2
ij

2

�
pð�ij j c; 0Þ;

where

dðxÞ ¼
QdimðxÞ

i¼1
GðxiÞ

G
�PdimðxÞ

i¼1
xi

�

with Gð�Þ being the Gamma function, Ct
k is the number of

times the term t being assigned to topic k over the whole

corpus and Ck ¼ fCt
kgV

t¼1; Ck
i is the number of times that

terms are associated with topic k within the ith document

and Ci ¼ fCk
i gK

k¼1. Then, the conditional distributions used
in collapsed Gibbs sampling are as follows.

For U . we define zij ¼ vecðziz>j Þ and hh ¼ vecðUÞ for clar-
ity, where vecðAÞ is a vector concatenating the row vectors
of matrix A. Then, we have the discriminant function value

vij ¼ hh>zij. For the common isotropic Gaussian prior

p0ðUÞ ¼Qkk0 N ðUkk0 ; 0; n2Þ, i.e., p0ðhhÞ ¼
QK2

m¼1 Nðhm; 0; n2Þ,
we have

qðhh jZ; ��Þ / p0ðhhÞ
Y

ði;jÞ2I
exp kijhh

>zij � �ijðhh>zijÞ2

2

 !

¼ Nðhh; mm; SSÞ;
(10)

where SS ¼ � 1
n2 I þPði;jÞ2I �ijzijz>ij

��1
and mm ¼ SS

�P
ði;jÞ2I kijzij

�
.

Therefore, we can easily draw a sample from a K2-dimen-
sional multivariate Gaussian distribution. The inverse can
be robustly done using Cholesky decomposition. Since K is
normally not large, the inversion is relatively efficient, espe-
cially when the number of documents is large. We will pro-
vide empirical analysis in the experiment section. Note that
for large K this step can be a practical limitation. But fortu-
nately, there are good parallel algorithms for Cholesky
decomposition [15], which can be used for applications
with large K values.

For Z: the conditional distribution of Z is

qðZ jU; ��Þ /
YK
k¼1

dðCk þ bbÞ
dðbbÞ

YD
i¼1

dðCi þ aaÞ
dðaaÞ

Y
ði;jÞ2I

c1ðyij j��; ZÞ;

where c1ðyij j��; ZÞ ¼ expðkijvij �
�ijv2

ij

2 Þ. By canceling com-
mon factors, we can derive the local conditional of one vari-
able zin given others Z: as:
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q
�
zk

in ¼ 1 jZ:;U; ��; win ¼ t
� / ðCt

k;:n þ btÞðCk
i;:n þ akÞP

t Ct
k;:n þPV

t¼1 bt

�
Y

j2Nþ
i

c1

�
yij j��; Z:; zk

in ¼ 1
�

�
Y

j2N�
i

c1

�
yji j��; Z:; zk

in ¼ 1
�
;

(11)

where C�
�;:n indicates that term n is excluded from the corre-

sponding document or topic; and Nþ
i ¼ fj : ði; jÞ 2 Ig and

N�
i ¼ fj : ðj; iÞ 2 Ig denote the neighbors of document i in

the training network. For symmetric networks, Nþ
i ¼ N�

i ,
only one part is sufficient. We can see that the first term is
from the LDA model for observed word counts and the sec-
ond term is from the link structures y.

Algorithm 1. for gRTMs with Logistic Log-Loss

1: Initialization: set �� ¼ 1 and randomly draw zdn from a uni-
form distribution.

2: for m ¼ 1 to M do
3: draw hh (i.e., U) from the distribution (10)
4: for i ¼ 1 to D do
5: for each word n in document i do
6: draw a topic from distribution (11)
7: end for
8: end for
9: for ði; jÞ 2 I do
10: draw �ij from distribution (12).
11: end for
12: end for

For ��. The conditional distribution of the augmented var-
iables �� is a Polya-Gamma distribution

qð�ij jZ; UÞ / exp ��ijv
2
ij

2

 !
p �ij j c; 0
� � ¼ PG �ij; c; vij

� �
: (12)

The equality is achieved by using the construction definition
of the general PGða; bÞ class through an exponential tilting of
the PGða; 0Þ density [34]. To draw samples from the Polya-
Gamma distribution, a naive implementation using the infi-
nite sum-of-Gamma representation is not efficient and it
also involves a potentially inaccurate step of truncating the
infinite sum. Here we adopt the method proposed in [34],
which draws the samples from the closely related exponen-
tially tilted Jacobi distribution.

With the above conditional distributions, we can con-
struct a Markov chain which iteratively draws samples of hh

(i.e., U) using Eq. (10), Z using Eq. (11) and �� using Eq. (12)
as shown in Algorithm 1, with an initial condition. In our
experiments, we initially set �� ¼ 1 and randomly draw Z
from a uniform distribution. In training, we run the Markov
chain for M iterations (i.e., the so-called burn-in stage).

Then, we draw a sample Û as the final classifier to make
predictions on testing data. After training, we also get a

MAP estimate of the topics F̂F, f̂kt / Ct
k þ bt, which will be

used in testing in Section 4.3. As we shall see in practice, the
Markov chain converges to stable prediction performance
with a few burn-in iterations.

4.2 Sampling Algorithm for the Hinge Loss
Now, we present an “augment-and-collapse” Gibbs sam-
pling algorithm for the gRTMs with the hinge loss. The
algorithm represents an extension of the recent techniques
[41] to relational data analysis.

4.2.1 Formula with Data Augmentation
As we do not have a closed-form of the expected margin
loss, it is hard to deal with the expected hinge loss in Eq. (5).
Here, we develop a collapsed Gibbs sampling method
based on a data augmentation formulation of the expected
margin loss to infer the posterior distribution

qðU; QQ; Z; FFÞ ¼ p0ðU; QQ; Z; FÞpðWjZ; FÞcðyjZ; UÞ
fðy; WÞ ;

where fðy; WÞ is the normalization constant and cðyjZ; UÞ ¼Q
sði;jÞ2I c2ðyij j zi; zj; UÞ in this case. Specifically, we have

the following data augmentation representation of the
unnormalized likelihood [35]:

c2ðyijjzi; zj; UÞ ¼
Z 1

0

1�����������
2p�ij

p exp �ð�ij þ czijÞ2

2�ij

( )
d�ij;

where zij ¼ ‘ � yijvij. It indicates that the posterior distribu-
tion qðU; QQ; Z; FFÞ can be expressed as the marginal of a
higher dimensional posterior distribution that includes the
augmented variables ��:

qðU; ��; QQ; Z; FFÞ ¼ p0ðU; QQ; Z; FFÞpðW jZ; FFÞcðy; �� jZ; UÞ
fðy; WÞ ;

where the unnormalized distribution of y and �� is

cðy; ��jZ; UÞ ¼Qði;jÞ2I
1���������

2p�ij

p exp
�
� ð�ijþczijÞ2

2�ij

�
:

4.2.2 Inference with Collapsed Gibbs Sampling
Similar as in the log-loss case, although we can sample the
complete distribution qðU; ��; QQ; Z; FFÞ, the mixing rate would
be slow due to the high dimensional sample space. Thus, we
reduce the sample space and improve mixing rate by inte-
grating out the intermediate Dirichlet variables ðQQ; FFÞ and
building a Markov chain whose equilibrium distribution is
the resulting marginal distribution qðU; ��; ZÞ. Specifically,
the collapsed posterior distribution is

qðU; ��; ZÞ / p0ðUÞpðW; Z jaa; bbÞ
Y
i;j

fðyij; �ij j zi; zj; UÞ

¼ p0ðUÞ
YD
i¼1

dðCi þ aaÞ
dðaaÞ

YK
k¼1

dðCk þ bbÞ
dðbbÞ

�
Y

ði;jÞ2I

1�����������
2p�ij

p exp �ð�ij þ czijÞ2

2�ij

( )
:

Then we could get the conditional distribution using the
collapsed Gibbs sampling as following:

For U . We use the similar notations, hh ¼ vecðUÞ and

zij ¼ vecðziz>j Þ. For the commonly used isotropic Gaussian

prior, p0ðUÞ ¼Qk;k0 N ðUk;k0 ; 0; n2Þ, the posterior distribution

of qðU jZ; ��Þ or qðhh jZ; ��Þ is still a Gaussian distribution:
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compute the likelihood of the link between i and the train-
ing document j; ðj ¼ 1; . . . ; DÞ by Eq. (2) with the inferred
zi in Section 4.3, and sort the training documents in a
descending order of the likelihoods. Let rij be the rank of
training document j. The average link rank is computed as

ðPD0
i¼1

PD
j¼1 Iðyij ¼ 1ÞrijÞ=ð

PD0
i¼1

PD
j¼1 Iðyij ¼ 1ÞÞ. Similarly,

word rank is defined as the average rank of the ground-
truth words in testing documents where the vocabulary is
sorted according to the word likelihood in Eq. (16) given
their links to the training documents. Therefore, lower link
rank and word rank are better, and higher AUC value is bet-
ter. The test documents are completely new that are not
observed during training. In the training phase all the words
along with their links of the test documents are removed.

5.2.1 Results with the Log-Loss
Figs. 2, 3, and 4 show the five-fold average results and stan-
dard deviations of various models on all the three datasets
with varying numbers of topics. For the RTM models using
collapsed Gibbs sampling, we randomly draw 1 percent of
the unobserved links as negative training examples, which
leads to imbalanced training sets. We can see that the gener-
alized Gibbs-gRTM can effectively deal with the imbalance
and achieve significantly better results on link rank and
AUC scores than all other competitors. For word rank, all
the RTM models using Gibbs sampling perform better than
the RTMs using variational EM methods when the number
of topics is larger than 5.

The outstanding performance of Gibbs-gRTM is due to
many possible factors. For example, the superior perfor-
mance of Gibbs-gRTM over the diagonal Gibbs-RTM dem-
onstrates that it is important to consider all pairwise topic
interactions to fit real network data; and the superior perfor-
mance of Gibbs-RTM over Var-RTM shows the benefits of
using the regularization parameter c in the regularized

Bayesian framework and a collapsed Gibbs sampling algo-
rithm without restricting mean-field assumptions.5

To single out the influence of the proposed Gibbs sam-
pling algorithm, we also present the results of Var-RTM and
Gibbs-RTM with c ¼ 1, both of which randomly sample
0:2 percent unobserved links6 as negative examples on the
Cora dataset. We can see that by using Gibbs sampling with-
out restricting mean-field assumptions, Gibbs-RTM (neg
0:2 percent) outperforms Var-RTM (neg 0:2 percent) that
makes mean-field assumptions when the number of topics is
larger than 10.We defermore careful analysis of other factors
in the next section, including c and the subsampling ratio.

We also note that the cost we pay for the outstanding
performance of Gibbs-gRTM is on training time, which is
much longer than that of Var-RTM because Gibbs-gRTM
has K2 latent features in the logistic likelihood and more
training link pairs, while Var-RTM has K latent features
and only uses the sparse positive links as training examples.
Fortunately, we can apply a simple approximate method in
sampling Z as in Approx-gRTM to significantly improve
the training efficiency, while the prediction performance is
not sacrificed much. In fact, Approx-gRTM is still signifi-
cantly better than Var-RTM in all cases, and it has compara-
ble link prediction performance with Gibbs-gRTM on the
WebKB dataset, when K is large. Table 3 further shows the
training time spent on each sub-step of the Gibbs sampler of
Gibbs-gRTM. We can see that the step of sampling Z takes
most of the time (>70 percent); and the steps of sampling Z

Fig. 5. Results of various models with different numbers of topics on the Cora dataset.

Fig. 6. Results of various models with different numbers of topics on the Citeseer dataset.

5. Gibbs-RTM doesn’t outperform Var-RTM on Citeseer because
they use different strategies of drawing negative samples. If we use the
same strategy (e.g., randomly drawing 1 percent negative samples),
Gibbs-RTM significantly outperforms Var-RTM.

6. Var-RTM performs much worse if using 1 percent negative links,
while Gibbs-RTM could obtain similar performance due to its effective-
ness in dealing with imbalance.
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and hh take more time as K increases, while the step of sam-
pling �� takes almost a constant time when K changes.

5.2.2 Results with the Hinge Loss
Figs. 5 and 6 show the five-fold average results with stan-
dard deviations of the RTMs with hinge loss, comparing
with the RTMs with log-loss on Cora and Citeseer datasets.7

We can see that the discriminative RTM models with hinge
loss (i.e., Gibbs-gMMRTM and Gibbs-MMRTM) obtain com-
parable predictive results (e.g., link rank and AUC scores)
with the RTMs using log-loss (i.e., Gibbs-gRTM and Gibbs-
RTM). And owing to the use of a full weight matrix, Gibbs-
gMMRTM obtains superior performance over the diagonal
Gibbs-MMRTM. These results verify the fact that the max-
margin RTMs can be used as a competing alternative
approach for network link prediction. For word rank, all the
RTMmodels using Gibbs sampling perform similarly.

As shown in Fig. 7, one superiority of the max margin
Gibbs-gMMRTM is that the time cost of drawing �� is
cheaper than that in Gibbs-gRTM with log-loss. Specifically,
the time of drawing �� in Gibbs-gRTM is about 10 times lon-
ger than Gibbs-gMMRTM (Fig. 7a). This is because sam-
pling from a Polya-gamma distribution in Gibbs-gRTM
needs a few steps of iteration for convergence, which takes
more time than the constant time sampler of an inverse
Gaussian distribution [30] in Gibbs-gMMRTM. We also
observe that the time costs for drawing hh (Fig. 7b) in
Gibbs-gRTM and Gibbs-gMMRTM are comparable.8 As
most of the time is spent on drawing Z and hh, the total
training time of the RTMs with the two types of losses
are similar (gMMRTM is slightly faster on Citeseer).
Fortunately, we can also develop Approx-gMMRTM by
using a simple approximate method in sampling Z to
greatly improve the time efficiency (Figs. 5 and 6), and the

prediction performance is still very compelling, especially
on the Citeseer dataset.

5.3 Sensitivity Analysis
To provide more insights about our discriminative RTMs,
we present a careful analysis of various factors.

5.3.1 Hyper-Parameter c

Figs. 8 and 10 show the prediction performance of the diag-
onal Gibbs-RTM and Gibbs-MMRTMwith different c values
on both Cora and Citeseer datasets,9 and Figs. 9 and 11
show the results of the generalized Gibbs-gRTM and Gibbs-
gMMRTM. For Gibbs-RTM and Gibbs-MMRTM, we can see
that the link rank decreases and AUC scores increase when
c becomes larger and the prediction performance is stable in
a wide range (e.g., 2 
 ���

c
p 
 6). But the RTM model (i.e.,

c ¼ 1) using Gibbs sampling doesn’t perform well due to its
ineffectiveness in dealing with imbalanced network data. In
Figs. 9 and 11, we can observe that when 2 
 c 
 10, the
link rank and AUC scores of Gibbs-gRTM achieve the local
optimum, which performs much better than the perfor-
mance of Gibbs-gRTM when c ¼ 1. In general, we can see
that both Gibbs-gRTM and Gibbs-gMMRTM need a smaller
c to get the best performance. This is because by allowing
all pairwise topic interactions, Gibbs-gRTM and Gibbs-
gMMRTM are much more expressive than Gibbs-RTM and
Gibbs-MMRTM with a diagonal weight matrix; and thus
easier to over-fit when c gets large.

For all the proposed models, the word rank increases
slowly with the growth of c. This is because a larger c value
makes the model more concentrated on fitting link struc-
tures and thus the fitness of observed words sacrifices a bit.

Fig. 8. Performance of Gibbs-RTM with different c values on the Cora
dataset.

Fig. 7. Time complexity of drawing ll and hh on the Citeseer dataset.

Fig. 9. Performance of Gibbs-gRTM with different c values on the Cora
dataset.

TABLE 3
Split of Training Time on Cora Dataset

Sample Z Sample ll Sample U

K = 10 331.2 (73.55%) 55.3 (12.29%) 67.8 (14.16%)
K = 15 746.8 (76.54%) 55.0 (5.64%) 173.9 (17.82%)
K = 20 1300.3 (74.16%) 55.4 (3.16%) 397.7 (22.68%)

7. The result on WebKB dataset is similar, but omitted for saving
space. Please refer to Fig. 16 in Appendix, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2014.2361129.

8. Sampling Z also takes comparable time; omitted for space.
9. We have similar observations on the WebKB dataset, again omit-

ted for saving space.
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