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Abstract
We present online Bayesian Passive-Aggressive (BayesPA) learning, a generic online learning
framework for hierarchical Bayesian models with max-margin posterior regularization. We pro-
vide provable Bayesian regret bounds for both averaging classifiers and Gibbs classifiers. We show
that BayesPA subsumes the standard online Passive-Aggressive (PA) learning and more importantly
extends naturally to incorporate latent variables for both parametric and nonparametric Bayesian in-
ference, therefore providing great flexibility for explorative analysis. As an important example, we
apply BayesPA to topic modeling and derive efficient online learning algorithms for max-margin
topic models. We further develop nonparametric BayesPA topic models to resolve the unknown
number of topics. Experimental results on 20newsgroups and a large Wikipedia multi-label data
set (with 1.1 millions of training documents and 0.9 million of unique terms in the vocabulary)
show that our approaches significantly improve time efficiency while maintaining comparable re-
sults with the batch counterpart methods.

1. Introduction

In the Big Data era, it is becoming a norm that massive data corpora need to efficiently handled
in many application areas, while standard batch learning algorithms may fail. This has lead to the
fast growing interests in developing scalable online or distributed learning algorithms. This paper
focuses on online learing, a process of answering a sequence of questions (e.g., which category does
a document belong to?) given knowledge of the correct answers (e.g., the true category labels) to
previous questions. Such a process is especially suitable for the applications with streaming data.
For the applications with a fixed large-scale data set, online learning algorithms can effectively ex-
plore data redundancy relative to the model to be learned, by repeatedly subsampling the data; and
they often lead to faster convergence to satisfactory results than the batch counterpart algorithms.
Among the many popular algorithms, online Passive-Aggressive (PA) learning (Crammer et al.,
2006) provides a generic framework of performing online learning for large-margin methods (e.g.,
SVMs), with many applications in natural language processing and text mining (McDonald et al.,
2005; Chiang et al., 2008). Though enjoying strong discriminative ability that is preferable for pre-
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dictive tasks, existing online PA methods are formulated as a point estimate problem by optimizing
some deterministic objective function. This may lead to some inconvenience. For example, a single
large-margin model is often less than sufficient in describing complex data, such as those with rich
underlying structures.

On the other hand, Bayesian methods enjoy the great flexibility in describing the possible un-
derlying structures of complex data by incorporating a hierarchy of latent variables. Moreover, the
recent progress on nonparametric Bayesian methods (Hjort, 2010; Teh et al., 2006a) further pro-
vides an increasingly important framework that allows the Bayesian models to have an unbounded
model complexity, e.g., an infinite number of components in a mixture model (Hjort, 2010) or an
infinite number of units in a latent feature model (Ghahramani and Griffiths, 2005), and to adapt
when the learning environment changes. In particular, adaptation to the changing environment is
of great importance in online learning. For Bayesian models, one challenging problem is posterior
inference, for which both variational and Monte Carlo methods can be too expensive to be applied
to large-scale applications. To scale up Bayesian inference, much progress has been made on de-
veloping stochastic variational Bayes (Hoffman et al., 2013; Mimno et al., 2012) and stochastic
Monte Carlo (Welling and Teh, 2011; Ahn et al., 2012) methods, which repeatedly draw samples
from a given finite data set. To deal with the potentially unbounded streaming data, streaming vari-
ational Bayes methods (Broderick et al., 2013) have been developed as a general framework, with
an application to topic models for learning latent topic representations. However, due to the genera-
tive nature, Bayesian models are lack of the discriminative ability of large-margin methods and are
usually less than sufficient in performing discriminative tasks.

Successful attempts have been made to bring large-margin learning and Bayesian methods to-
gether. For example, maximum entropy discrimination (MED) (Jaakkola et al., 1999) made a signif-
icant advance in conjoining max-margin learning and Bayesian generative models, in the context of
supervised learning and structured output prediction (Zhu and Xing, 2009). Recently, much atten-
tion has been devoted to generalizing MED to incorporate latent variables and perform nonparamet-
ric Bayesian inference in various contexts, including topic modeling (Zhu et al., 2012), matrix fac-
torization (Xu et al., 2012, 2013), social link prediction (Zhu, 2012), and multi-task learning (Jebara,
2011; Zhu et al., 2011). Regularized Bayesian inference (RegBayes) (Zhu et al., 2014b) provides a
unified framework for Bayesian models on performing max-margin learning, where the max-margin
principle is incorporated through imposing posterior constraints to an information-theoretical opti-
mization problem. RegBayes subsumes the standard Bayes’ rule and is more flexible in incorporat-
ing domain knowledge or max-margin constraints. Though flexible in discovering latent structures
and powerful in discriminative predictions, posterior inference in such models remains a challenge.
By exploring data augmentation techniques, recent progress has been made to develop efficient
MCMC methods (Zhu et al., 2014a), which can also be implemented in distributed clusters (Zhu
et al., 2013). However, these batch-learning methods are not applicable to streaming data, and they
do not explore the statistical redundancy in large-scale corpura either.

To address the above problems of both online PA on incorporating flexible latent structures and
Bayesian max-margin models on scalable streaming inference, this paper presents online Bayesian
Passive-Aggressive (BayesPA) learning, a general framework of performing online learning for
Bayesian max-margin models. We show that online BayesPA subsumes the standard online PA
when the underlying model is linear and the parameter prior is Gaussian (See Table 1 for its close
relationships with streaming variational Bayes and RegBayes). We characterize the performance
of BayesPA by providing regret bounds, for both the case when using an averaging classifier and
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the case when using a Gibbs classifier. We further show that one major significance of BayesPA
is its natural generalization to incorporate a hierarchy of latent variables for both parametric and
nonparametric Bayesian inference, therefore allowing online BayesPA to have the great flexibility
of (nonparametric) Bayesian methods for explorative analysis as well as the strong discriminative
ability of large-margin learning for predictive tasks. As concrete examples, we apply the theory of
online BayesPA to topic modeling and derive efficient online learning algorithms for max-margin
supervised topic models (Zhu et al., 2012). We further develop efficient online learning algorithms
for the nonparametric max-margin topic models, an extension of the nonparametric topic mod-
els (Teh et al., 2006a) for predictive tasks. Extensive empirical results on real data sets demonstrate
significant improvements on time efficiency and maintenance of comparable results with the batch
counterparts.

The paper is structured as follows. We discuss the related work in Section 2, and review the
preliminary knowledge in Section 3. Then, we move on to the detailed description of BayesPA in
Section 4. Section 5 presents the regret bounds. Section 6 presents the concrete instantiations on
topic modeling, and Section 7 presents the extensions to nonparametric topic models and multi-task
learning. Section 8 presents experimental results. Finally, Section 9 concludes this paper with future
directions discussed.

2. Related Work

As a well-established learning paradigm, online learning is of both theoretical and practical interest.
The goal of online learning is to make a sequence of decisions, such as classifications and regression,
and use the knowledge extracted from previous correct answers to produce decisions on incoming
ones. The root of online learning could be traced back to early studies of repeated games (Hannan,
1957), where an agent dynamically makes choices with the summary of past information. The
idea became popular with the advent of Perceptron algorithms (Rosenblatt, 1958), which adopt
an additive update rule for the classifier weights, and its multiplicative counterpart is the Winnow
algorithm (Littlestone, 1988). The class of online multiplicative algorithms was further generalized
by Adaboost (Freund and Schapire, 1997) in a decision theoretic sense and now widely applied to
various fields of study (Arora et al., 2012).

As a member of the family of weight updating methods, online Passive-Aggressive (PA) algo-
rithms provide a generic online learning framework for max-margin models, first presented by Cram-
mer et al. (2006). In particular, they considered loss functions that enforce max-margin constraints,
and showed that surprisingly simple update rules could be derived in closed forms. Motivated by
online PA learning and to handle unbalanced training sets, Dredze et al. (2008) proposed confidence-
weighted learning, which maintains a Gaussian distribution of the classifier weights at each round
and replaces the max-margin constraint in PA with a probabilistic constraint enforcing confidence
of classification. Within the same framework, Crammer et al. (2008) derived a new convex form of
the constraint and demonstrated performance improvements through empirical evaluations.

The theoretical analysis of online learning typically relies on the notion of regret, which is the
average loss incurred by an adaptive online learner on streaming data versus the best achievable
through a single fixed model having the hindsight of all data (Murphy, 2012). It can be shown
that the notion of regret is closely related to weak duality in convex optimization, which brings
online learning to the algorithmic framework of convex repeated games (Shalev-Shwartz and Singer,
2006).
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Although the classical regime of online learning is based on decision theory, recently much
attention has been paid to the theory and practice of online probabilistic inference in the context
of Big Data. Rooted either in variational inference or Monte Carlo sampling methods, there are
broadly two lines of work on the topic of online Bayesian inference. Stochastic variational infer-
ence (SVI) (Hoffman et al., 2013) is a stochastic approximation algorithm for mean-field varia-
tional inference. By approximating the nature gradients in maximizing the evidence lower bound
with stochastic gradients sampled from data points, Hoffman et al. (2013) demonstrated scalable
inference of topic models on large corpora. Mimno et al. (2012) showed the performance of SVI
could be improved through structured mean-field assumptions and locally collapsed variational in-
ference. SVI is also applicable to the stochastic inference of nonparametric Bayesian models, such
as hierarchical Dirichlet process (Wang et al., 2011; Wang and Blei, 2012b).

There is also a large body of work on extending Monte Carlo methods to the online setting. A
classic approach is sequential Monte Carlo methods (SMC) or particle filters (Doucet and Johansen,
2009), which arose from the numerical estimation of state-space models. For example, through Rao-
Blackwellized particle filters (Doucet et al., 2000), one could obtain online inference algorithms for
latent Dirichlet allocation (Canini et al., 2009). To tackle the sparsity issues and inadequate coverage
of particles, Steinhardt and Liang (2014) leveraged “abstract particles” to represent entire regions of
the sample space. Recently, Korattikara et al. (2014) introduced an approximate Metropolis-Hasting
rule based on sequential hypothesis testing that allows accepting and rejecting samples using only a
fraction of the data. As an alternative, Bardenet et al. (2014) proposed an adaptive sampling strategy
of Metropolis-Hastings from a controlled perturbation of the target distribution. With elegant use
of gradient information that Metropolis-Hastings algorithms neglected, a line of work (Welling and
Teh, 2011; Ahn et al., 2012; Patterson and Teh, 2013) also developed stochastic gradient methods
based on Langevin dynamics.

While most online Bayesian inference methods have adopted a stochastic approximation of the
posterior distribution by sub-sampling a given finite data set, in many applications data arrives in
stream so that the data set is changing over time and its size is unknown. To relax the previous
request on knowing the data size, Broderick et al. (2013) made streaming updates to the estimated
posterior and demonstrated the advantage of streaming variational Bayes (SVB) over stochastic
variational inference. As will be discussed in this paper, BayesPA also does not impose assumptions
on the size of data set and works on streaming data.

The idea to discriminatively train univariate or structured output classifiers was popularized by
the seminal work on support vector machines (Vapnik, 1995) and max-margin Markov networks
(aka structural SVMs) (Taskar et al., 2003). In the sequel, research on developing max-margin
models with latent variables has received increasing attention, because of the promise to capture
underlying complex structures of the problems. A promising line of work focused on Bayesian ap-
proaches, and one representative is maximum entropy discrimination (MED) (Jaakkola et al., 1999;
Jebara, 2001; Zhu and Xing, 2009), which learns distributions of model parameters discrimina-
tively from labeled data. MedLDA (Zhu et al., 2012) extended MED to infer latent topical structure
from data with large margin constraints on the target posteriors. Similarly, nonparametric Bayesian
max-margin models have also been developed, such as infinite SVMs (iSVM) (Zhu et al., 2011)
for building SVM classifiers with latent mixture structure, and infinite latent SVMs (iLSVM) (Zhu
et al., 2011) for automatic discovering predictive features for SVMs. Furthermore, the idea of
nonparametric Bayesian learning has been widely applied to link prediction (Zhu, 2012), matrix
factorization (Xu et al., 2012), etc. Regularized Bayesian inference (RegBayes) (Zhu et al., 2014b)
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provides a unified framework for performing max-margin learning of (nonparametric) Bayesian
models, where the max-margin principle was incorporated through imposing posterior constraints
to a variational formulation of the standard Bayes’ rule.

Max-margin Bayesian learning in the batch mode has already been one of the common chal-
lenges facing this class of models. Despite its general intractability, efficient algorithms have been
proposed under different settings. One way is to solve the problem via variational inference under
a mean-field (Zhu et al., 2012) or structured mean-field (Jiang et al., 2012) assumption. Recently,
Zhu et al. (2014a) provided a key insight in deriving efficient Monte Carlo methods without making
strict assumptions. Their technique is based on a data augmentation formulation of the expected
margin loss. Based on similar techniques, fast inference algorithms have also been developed for
generalized relational topic models (Chen et al., 2013), matrix factorization (Xu et al., 2013), etc.
Data augmentation (DA) refers to the method of introducing augmented variables along with the
observed data to make their joint distribution tractable. The technique was popularized in the statis-
tics community by the well-known expectation-maximization algorithm (EM) (Dempster et al.,
1977) for maximum likelihood estimation with missing data. For posterior inference, the technique
is popularized by Tanner and Wong (1987) in statistics and by Swendsen and Wang (1987) for the
Ising and Potts models in physics. For a broader introduction to DA methods, we refer the readers
to Van Dyk and Meng (2001).

Finally, our conference version of the paper (Shi and Zhu, 2014) has introduced some prelimi-
nary work, which would be largely extended.

3. Preliminaries

This section reviews the preliminary knowledge that is needed to develop online Bayesian Passive-
Aggressive learning. The relationships with BayesPA will be summarized in Table 1 later.

3.1 Online Passive-Aggressive Learning

Based on a decision-theoretic view, the goal of online supervised learning is to minimize the cu-
mulative loss for a certain prediction task from the sequentially arriving training samples. Online
Passive-Aggressive (PA) learning (Crammer et al., 2006) achieves this goal by updating some para-
metric model w ∈ RK (e.g., the weights of a linear SVM) in an online manner with the instan-
taneous losses from arriving data {xt}t≥0 (xt ∈ RK) and corresponding responses {yt}t≥0. The
losses `ε(w;xt, yt), as they consider, could be the hinge loss (ε− ytw>xt)+ for binary classifica-
tion (yt ∈ {0, 1}) or the ε-insensitive loss (|yt −w>xt| − ε)+ for regression (yt ∈ R), where ε is a
hyper-parameter and (x)+ = max(0, x). The online Passive-Aggressive update rule is then derived
by defining the new weight wt+1 as the solution to the following optimization problem:

min
w

1

2
||w −wt||2 s.t.: `ε(w;xt, yt) = 0, (1)

where ‖ · ‖2 is the Euclidean 2-norm. Intuitively, if wt suffers no loss from the new data, i.e.,
`ε(wt;xt, yt) = 0, the algorithm passively assigns wt+1 = wt; otherwise, it aggressively projects
wt to the feasible zone of parameter vectors that attain zero loss on the new data. With provable
regret bounds, Crammer et al. (2006) showed that online PA algorithms could achieve comparable
results to the optimal classifier w∗, which has the hindsight of all data. In practice, in order to
account for inseparable training samples, soft margin constraints are often adopted and the resulting
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PA learning problem is

min
w

1

2
||w −wt||2 + 2c · `ε(w;xt, yt), (2)

where c is a positive regularization parameter and the constant factor 2 is included for simplicity
as will be clear soon. For problems (1) and (2) with samples arriving one at a time, closed-form
solutions can be derived (Crammer et al., 2006). For example, for the binary hinge loss the update
rule is wt+1 = wt + τytxt, where τt = min(2c,max(0, ε − ytw

>xt)/||xt||2); and for the ε-
insensitive loss, the update rule is wt+1 = wt + sign(yt − w>xt)τtxt, where τt = max(0, ε −
ytw

>xt)/||xt||2.

3.2 Streaming Variational Bayes

For Bayesian models, Bayes’ rule naturally leads to a streaming update procedure for online learn-
ing. Specifically, suppose the data {xt}t≥0 are generated i.i.d. according to a distribution p(x|w)
and the prior p(w) is given. Bayes’ theorem implies that the posterior distribution of w given the
first T samples (T ≥ 1) satisfies

p(w|{xt}Tt=0) ∝ p(w|{xt}T−1
t=0 )p(xT |w).

In other words, the posterior after observing the first T − 1 samples is treated as the prior for the
incoming data point. This natural streaming Bayes’ rule, however, is often intractable to compute,
especially for complex models (e.g., when latent variables are present). Streaming variational Bayes
(SVB) (Broderick et al., 2013) suggests that a variational approximation should be adopted and it
practically works well. Specifically, let A be any algorithm that calculates an approximate pos-
terior q(w) = A(X, q0(w)) based on data X and prior q0(w). Then, the recursive formula for
approximate streaming update is:

q(w|{xt}Tt=0) = A
(
xT , q(w|{xt}T−1

t=0 )
)
.

The choice of A can be problem-specific. For topic modeling, Broderick et al. (2013) showed that
one may adopt mean-field variational Bayes (Wainwright and Jordan, 2008), expectation propaga-
tion (Minka, 2001), and one-pass posterior approximation algorithms using stochastic variational
inference (Hoffman et al., 2013) or sufficient statistics update (Honkela and Valpola, 2003; Luts
et al., 2013). By applying the streaming update in a distributed setting asynchronously, SVB could
also be scaled up across multiple computer clusters (Broderick et al., 2013).

3.3 Regularized Bayesian Inference

The decision-theoretic and Bayesian view of learning can be reciprocal. For example, it would be
beneficial to combine the flexibility of Bayesian models with the discriminative power of large-
margin methods. The idea of regularized Bayesian inference (RegBayes) (Zhu et al., 2014b) is to
treat Bayesian inference as an optimization problem with an imposed loss function. Mathematically,
RegBayes can be formulated as

min
q∈P

KL
[
q(w)||p0(w)

]
− Eq(w)

[
log p(X|w)

]
+ 2c · `

(
q(w);X

)
, (3)
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Figure 1: Graphical Illustration of BayesPA learning. (a). Update passively by Bayes rule, if the
resulting distribution suffer zero loss. (b) Otherwise, aggressively project the resulting
distribution to the feasible zone of weights with zero loss.

where P is the probability simplex, p(X|w) is the likelihood function and KL is the Kullback-
Leibler divergence.1 Note that if `(q(w);X) = 0, then the optimal solution q∗(w) ∝ p0(w)p(X|w),
which is just the Bayes’ rule. However, when `(q(w);X) 6= 0, RegBayes biases the inferred pos-
terior towards discriminating the supervising side-information, with the parameter c controlling
the extent of regularization. If the posterior regularization term `(·) is a convex function of q(w)
through the linear expectation operator, Zhu et al. (2014b) presented a general representation the-
orem to characterize the solution to problem (3). To distinguish from the posterior obtained via
Bayes’ rule, the solution to problem (3) is called post-data posterior (Zhu et al., 2014b). Many
instantiations have been developed following the generic framework of RegBayes to demonstrate
its superior performance than standard Bayesian models in various settings, such as topic model-
ing (Jiang et al., 2012; Zhu et al., 2014a), matrix factorization (Xu et al., 2012, 2013), link predic-
tion (Zhu, 2012), etc.

4. Bayesian Passive-Aggressive Learning

In this section, we present online Bayesian Passive-Aggressive (BayesPA) learning, a general per-
spective on online max-margin Bayesian inference. Without loss of generality, we consider binary
classification. The techniques can be applied for other learning tasks. We provide an extension in
Section 7.2.

1. We assume that the model space W is a complete separable metric space endowed with its Borel σ-algebra B(W ).
Let P0 and Q be probability measures on W . The Kullback-Leibler (KL) divergence of the probability measure Q
with respect to the measure P0 is defined as KL[Q‖P0] =

∫
dQ
dP0

(w) log dQ
dP0

(w)dP0(w), where dQ
dP0

(w) is the
Radon-Nikodym derivative (Durret, 2010). It is required that Q is absolutely continuous with respect to P0 such
that this derivative exists. In the sequel, we further assume that P0 is absolutely continuous with respect to some
background measure µ. Thus, there exists a density p0 that satisfies dP0 = p0dµ and there also exists a density q
that satisfies dQ = qdµ. Then, the KL-divergence can be expressed as KL[q‖p0] =

∫
q(w) log q(w)

p0(w)
dµ(w).
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4.1 Online BayesPA Learning

Instead of updating a point estimate of w, online Bayesian PA (BayesPA) sequentially infers a new
post-data posterior distribution qt+1(w), either parametric or nonparametric, on the arrival of new
data (xt, yt) by solving the following optimization problem:

min
q(w)∈Ft

KL
[
q(w)||qt(w)

]
− Eq(w)

[
log p(xt|w)

]
s.t.: `ε

(
q(w);xt, yt

)
= 0,

(4)

where Ft can be some family of distributions or the probability simplex P . In other words, we
find a post-data posterior distribution qt+1(w) in the feasible zone that is not only close to qt(w)
in terms of KL-divergence, but also has a high likelihood of explaining new data. As a result,
if Bayes’ rule already gives the posterior distribution qt+1(w) ∝ qt(w)p(xt|w) that suffers no
loss (i.e., `ε = 0), BayesPA passively updates the posterior following just Bayes’ rule; otherwise,
BayesPA aggressively projects the new posterior to the feasible zone of posteriors that attain zero
loss. The passive and aggressive update cases are illustrated in Figure 1. We should note that
when no likelihood is defined (e.g., p(xt|w) is independent of w), BayesPA will passively set
qt+1(w) = qt(w) if qt(w) suffers no loss; otherwise, it will aggressively project qt(w) to the
feasible zone. We call it non-likelihood BayesPA.

In practical problems, the constraints in (4) could be unrealizable. To deal with such cases,
we introduce the soft-margin version of BayesPA learning, which is equivalent to minimizing the
objective function L(q(w)) in problem (4) with a regularization term (Cortes and Vapnik, 1995):

qt+1(w) = argmin
q(w)∈Ft

L
(
q(w)

)
+ 2c · `ε

(
q(w);xt, yt

)
. (5)

For the max-margin classifiers that we consider, two types of loss functionals `ε(q(w);xt, yt) are
common:

1. Averaging classifier: assume that a post-data posterior distribution q(w) is given, then an
averaging classifier makes predictions using the sign rule ŷt = sign Eq(w)[w

>xt] when the
discriminant function has the simple linear form, f(xt;w) = w>xt. For this classifier, its
hinge loss is therefore defined as:

`ave
ε

(
q(w);xt, yt

)
=
(
ε− ytEq(w)

[
w>xt

])
+
.

2. Gibbs classifier: assume that a post-data posterior distribution q(w) is given, then a Gibbs
classifier randomly draws a weight vector w ∼ q(w) to make predictions using the sign rule
ŷt = sign w>xt, when the discrimant function has the same linear form. For each single
w, we can measure its hinge loss (ε − ytw>xt)+. To account for the randomness of w, the
expected hinge loss of a Gibbs classifier is therefore defined as:

`gibbs
ε

(
q(w);xt, yt

)
= Eq(w)

[(
ε− ytw>xt

)
+

]
.

They are closely connected via the following lemma due to the convexity of the function (x)+.
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Methods Max-margin learning ? Bayesian inference ? Streaming update ?
PA yes no yes

SVB no yes yes
RegBayes yes yes no
BayesPA yes yes yes

Table 1: The comparison between BayesPA and its various precursors, including online PA, stream-
ing variational Bayes (SVB) and regularized Bayesian inference (RegBayes), in three dif-
ferent aspects.

Lemma 1 The expected hinge loss `gibbs
ε is an upper bound of the hinge loss `ave

ε , that is,

`gibbs
ε

(
q(w);xt, yt

)
≥ `ave

ε

(
q(w);xt, yt

)
.

BayesPA is deeply connected to its various precursors reviewed in Section 3, as summarized
in Table 1. First, BayesPA is a natural Bayesian extension of online PA, which is explicated via
the following theorem. The idea of the proof details would later be applied to develop practical
BayesPA algorithms for topic models. Therefore, we include the complete proof here.

Theorem 2 If q0(w) = N (0, I), Ft = P and we use the averaging classifier `ave
ε , the non-

likelihood BayesPA subsumes the online PA.

Proof The soft-margin version of BayesPA learning can be reformulated using a slack variable ξt:

qt+1(w) = argmin
q(w)∈P

KL
[
q(w)||qt(w)

]
+ 2c · ξt

s.t. : ytEq(w)

[
w>xt

]
≥ ε− ξt, ξt ≥ 0.

(6)

Similar to Corollary 5 in Zhu et al. (2012), the optimal solution q∗(w) of the above problem can be
derived from its functional Lagrangian and has the following form:

q∗(w) =
1

Γ(τ∗t ,xt, yt)
qt(w) exp

(
τ∗t ytw

>xt

)
, (7)

where the normalization term Γ(τt,xt, yt) =
∫
w qt(w) exp

(
τtytw

>xt

)
dw, and τ∗t is the optimal

solution to the dual problem
max
τt

ετt − log Γ(τt,xt, yt)

s.t. 0 ≤ τt ≤ 2c.
(8)

Using this primal-dual interpretation, we prove that for the normal prior p0(w) = N (w0, I), the
post-data posterior is also Gaussian: qt(w) = N (µt, I) for some µt in each round t = 0, 1, 2, ...
This can be shown by induction. By our assumption, q0(w) = p0(w) = N (w0, I) is Gaussian.
Assume for round t ≥ 0, the distribution qt(w) = N (µt, I). Then for round t+ 1, Eq. (7) suggests
the distribution

qt+1(w) =
C

Γ(τ∗t ,xt, yt)
exp

(
−1

2
||w − (µt + τ∗t ytxt)||2

)
,
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where the constant C = exp(ytτ
∗
t µ
>
t xt + 1

2τ
∗2
t x

>
t xt) . Therefore, the distribution qt+1(w) =

N (µt+τ
∗
t ytxt, I), and the normalization term is Γ(τt,xt, yt) = (

√
2π)K exp(τtytx

>
t µt+

1
2τ

2
t x
>
t xt)

for any τt ∈ [0, 2c].
Next, we show that µt+1 = µt + τ∗t ytxt is the optimal solution of the online PA update rule

(Crammer et al., 2006). To see this, we replace Γ(τt,xt, yt) in problem (8) with our derived form.
Ignoring constant terms, we obtain the dual problem

max
τt

ετt − 1
2τ

2
t x
>
t xt − ytτtµ>t xt

s.t.: 0 ≤ τt ≤ 2c,
(9)

which is exactly the dual form of the online PA update equation:

µPA
t+1 = arg min

µ

1
2 ||µ− µt||

2 + 2c · ξt
s.t. ytµ>xt ≥ ε− ξt, ξt ≥ 0.

The optimal solution is µPA
t+1 = µt + τ∗t ytxt. Note that τ∗t is the optimal solution of dual problem

(9) shared by both PA and BayesPA. Therefore, we conclude that µt+1 = µPA
t+1.

Second, suppose some algorithm A is capable of solving problem (5), then it would produce
streaming updates to the posterior distribution. For averaging classifiers, it is easy to modify the
proof of theorem 2 to derive the update rule of BayesPA, which is be presented in the following
lemma.

Lemma 3 If Ft = P and we use the averaging classifier with loss functional `ave
ε , the update rule

of online BayesPA is

qt+1(w) =
1

Γ(τ∗t ,xt, yt)
qt(w)p(xt|w) exp

(
τ∗t ytw

>xt

)
, (10)

where Γ(τt,xt, yt) is the normalization term

Γ(τt,xt, yt) =

∫
w
qt(w)p(xt|w) exp

(
τtytw

>
t xt

)
dw

and τ∗t is the optimal solution to the dual problem

max
τt

ετt − log Γ(τt,xt, yt)

s.t. 0 ≤ τt ≤ 2c.

For Gibbs classifiers, we have the following lemma to characterize its streaming update rule.

Lemma 4 If Ft = P and we use the Gibbs classifier with loss functional `gibbs
ε , the update rule of

online BayesPA is

qt+1(w) =
qt(w)p(xt|w) exp

(
−2c

(
ε− ytw>xt

)
+

)
Γ(xt, yt)

, (11)

where Γ(xt, yt) is the normalization constant.

10
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Figure 2: Graphical illustrations of: (a) the abstraction of models with latent structures; and (b) the
procedure of BayesPA learning with latent structures.

In both update rules in Eq. (10) and Eq. (11), the post-data posterior qt(w) in the previous round t
can be treated as a prior, while the newly observed data and the loss it incurs provide a likelihood
and an un-normalized pseudo-likelihood respectively. Note that if there is no loss functional (i.e.,
`ε = 0), both Eq. (10) and Eq. (11) reduce to the streaming Bayesian update problem. Therefore,
BayesPA is an extension to streaming variational Bayes (SVB) with imposed max-margin posterior
constraints.

Finally, the update formulation (5) is essentially a RegBayes problem with a single data point
(xt, yt). Although RegBayes inference is normally intractable, we would show later in the paper
how to use variational approximation to bypass the difficulty for specific settings. This would lead
to variational approximation algorithm A for the streaming update of post-data posterior.

Besides treating a single data point at a time, a useful technique in practice to reduce the noise
in data is to use mini-batches. Suppose that we have a mini-batch of data points at time t with an
index set Bt. Let Xt = {xd}d∈Bt ,Yt = {yd}d∈Bt . The online BayesPA update equation for this
mini-batch can be defined in a natural way:

min
q∈Ft

KL
[
q(w)||qt(w)

]
− Eq(w)

[
log p(Xt|w)

]
+ 2c · `ε

(
q(w);Xt,Yt

)
,

where `ε(q(w);Xt,Yt) =
∑

d∈Bt `ε(q(w);xd, yd). Like PA methods (Crammer et al., 2006),
BayesPA on mini-batches may not have closed-form update rules, and numerical optimization meth-
ods are needed to solve this new formulation.

4.2 BayesPA Learning with Latent Structures

To expressively explain complex real-word data, Bayesian models with latent structures have been
extensively developed. The latent structures could typically be characterized by a hierarchy of vari-
ables, which are generally grouped into two sets—local latent variables hd (d ≥ 0) that characterize
the hidden structures of each observed data xd and global variables M that capture the common
properties shared by all data.

As illustrated in Figure 2, BayesPA learning with latent structures aims to update the distribution
of M as well as the classifier weights w, based on each incoming mini-batch (Xt,Yt) and their
corresponding latent variables Ht = {hd}d∈Bt . Because of the uncertainty in Ht, our posterior

11
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approximation algorithm A would first infer the joint posterior distribution qt+1(w,M,Ht) from

min
q∈Ft

L
(
q(w,M,Ht)

)
+ 2c · `ε

(
q(w,M,Ht);Xt,Yt

)
, (12)

where L(q) = KL[q(w,M,Ht)||qt(w,M)p0(Ht)] − Eq(w,M,Ht)[log p(Xt|w,M,Ht)] and
`ε(q(w,M,Ht);Xt,Yt) is some cumulative loss functional on the min-batch data incurred by
some classifiers on the latent variablesHt and/or global variables M. As in the case without latent
variables, both averaging classifier and Gibbs classifier can be used.

In the sequel, algorithm A produces the approximate posterior qt+1(w,M). In general we
would not obtain a closed-form posterior distribution by marginalizing outHt, especially in dealing
with some involved models like MedLDA (Zhu et al., 2012). The intractability is bypassed through
the mean-field assumption q(w,M,Ht) = q(w)q(M)q(Ht). Specifically, algorithm A solves
problem (12) using an iterative procedure and obtain the optimal distribution q∗(w)q∗(M)q∗(Ht).
Then it sets qt+1(w,M) = q∗(w)q∗(M) and proceeds to next round. Concrete examples of this
method will be discussed in Section 6 and Section 7.

5. Theoretical Analysis

In this section, we provide theoretical analysis for BayesPA learning. We consider the fully observed
case where no latent structures are assumed, and leave the more complex case with hidden structures
as future work. Specifically, we prove regret bounds (Murphy, 2012; Shalev-Shwartz and Singer,
2006), which relate the cumulative loss attained by our algorithms on any sequence of incoming
samples to that by a fixed distribution of models p(w). Such bounds guarantee that the loss `ε of the
online learning algorithms cannot be too much larger compared to the loss `∗ε of any fixed predictor
chosen with hindsight of all data.

In BayesPA learning, however, not only do we desire a model w with low cumulative loss, we
also want w to have high cumulative likelihood. To capture this fact, we generalize the notion of
regret as follows.

Definition 5 (Bayesian Regret) The Bayesian Regret at observing (xt, yt) with the current model
q(w) is defined as

Rc(q(w);xt, yt) = −Eq(w)[log p(xt|w)] + 2c · `ε(q(wt);xt, yt) (13)

where c is a parameter determining the trade-off between likelihood and loss, characterized by some
loss function `ε(q(wt);xt, yt).

We will use the notationRave
c for the Bayesian regret if choosing the averaging loss `ave

ε and use the
notationRgibbs

c if choosing the Gibbs loss `gibbs
ε . For non-likelihood BayesPA, the regret is naturally

reduced to beRc(q(w);xt, yt) = `ε(q(wt);xt, yt). Our below analysis considers the full BayesPA.
The main results are applicable for non-likelihood BayesPA, as remarked later.

Theorem 6 (A regret bound for BayesPA with Gibbs classifiers) Let the initial prior be q0(w).
For all t ∈ {0, 1, ..., T − 1}, define the exponential family of tilted distributions

qt,τ (w) ∝ qt(w) exp(τT (w,xt, yt))

12
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with parameter τ and sufficient statistics

T (w,xt, yt) = − log p(xt|w) +
1

2c
(ε− ytw>xt)+.

If the Fisher information of T (w,xt, yt) about τ satisfies

JT (w,xt,yt)(τ) = Vqt,τ (w) [T (w,xt, yt)] ≤ R (14)

for all parameters 0 < τ < 2c and some constant R > 0. Then for any fixed distribution p(w), the
regret of BayesPA is bounded as

T−1∑
t=0

Rgibbs
c (qt(w);xt, yt) ≤

T−1∑
t=0

Rgibbs
c (p(w);xt, yt) + KL[p(w)||p0(w)] + 2c2RT. (15)

Proof According to Lemma 4, the update rule for the distribution q(w) is

qt+1(w) =
1

Γ(xt, yt)
qt(w)p(xt|w)e

−2c(ε−ytw>xt)+ ,

where Γ(xt, yt) is the partition function

Γ(xt, yt) =

∫
w
qt(w)p(xt|w)e

−2c(ε−ytw>xt)+dw.

The proof idea is to relate the loss `gibbs
ε (xt) in each round with the difference of prior qt(w) and

posterior qt+1(w), which is

KL[p(w)||qt(w)]−KL[p(w)||qt+1(w)] = −Rgibbs
c (p(w);xt, yt)− log Γ(xt, yt). (16)

Construct a canonical exponential family qt,τ (w) parameterized by τ through tilting the base distri-
bution qt(w) as follows:

qt,τ (w) = qt(w) exp
( τ

2c
(log p(xt|w)− 2c(ε− ytw>xt)+)− log f(τ)

)
,

where the log partition function

log f(τ) = log

(∫
w
qt(w)

(
p(xt|w)

1
2c e−(ε−ytw>xt)+

)τ
dw

)
.

According to properties of exponential family, the first-order and second-order derivatives can be
related to its cumulants:

∂

∂τ
log f(τ) = Eqt,τ (w)

[
1

2c
log p(xt|w)−

(
ε− ytw>xt

)
+

]
= − 1

2c
Rgibbsc (qt,τ (w);xt, yt),

∂2

∂τ2
log f(τ) = Vqt,τ (w)

[
1

2c
log p(xt|w)−

(
ε− ytw>xt

)
+

]
= JT (w,xt,yt)(τ).

13
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Using the fact that log f(0) = 0 and applying Taylor’s theorem with the Lagrange’s remainder 2 at
τ = 0, we have a second-order expression

log f(τ) = − 1

2c
Rgibbs
c (qt(w);xt, yt)τ +

1

2
JT (τ̂)τ2,

for some 0 ≤ τ̂ ≤ τ . By assumption, JT (τ̂) ≤ R,

log f(2c) ≤ Rgibbs
c (qt(w);xt, yt) + 2c2R,

Since Γ(xt, yt) = f(2c), Eq. (16) can be lower bounded as

KL[p(w)||qt(w)]−KL[p(w)||qt+1(w)] ≥−Rgibbs
c (p(w);xt, yt) +Rgibbs

c (qt(w);xt, yt)− 2c2R.

Summing over all t = 0, 1, 2, ..., T − 1 and neglecting KL[p(w)||qT (w)], we can obtain (15).

Theorem 7 (A regret bound for BayesPA with averaging classifiers) Let the initial prior be q0(w).
For all t ∈ 0, 1, ..., T − 1, define the expoential family of tilted distributions,

qt,τ,u(w) ∝ qt(w) exp(uU(w,xt, yt) + τT (w,xt, yt))

with two parameters τ, u and the sufficient statistics,

U(w,xt, yt) = log p(xt|w), and T (w,xt, yt) = ytw
>xt.

If the Fisher information satisfies,

JU(w,xt,yt) = Vqt,τ,u [U(w,xt, yt)] ≤ S

and
JT (w,xt, yt) = Vqt,τ,u [T (w,xt, yt)] ≤ R

for all (τ, u) ∈ (0, 2c)×(0, 1). Then for any fixed distribution p(w), the regret of BayesPA satisfies,

T−1∑
t=0

Rave
c (qt(w);xt, yt) ≤

T−1∑
t=0

Rave
c (p(w);xt, yt) + KL[p(w)||p0(w)] +

(
S

2
+ 2c2R

)
T.(17)

Proof The proof is similar to that of Gibbs classifiers. According to Lemma 3, for BayesPA with
averaging classifiers, we have the streaming update rule

qt+1(w) =
1

Γ(τt;xt, yt)
qt(w)p(xt|w)eτtytw

>xt ,

where Γ(τt;xt, yt) is the partition function and τt is the solution of the dual problem:

max
0≤τ≤2c

ετ − log Γ(τ ;xt, yt). (18)

2. The theorem states that if a function g : Rk → R is k+1 times differentiable in a closed ball B, then for x0,x ∈ B,
∃c ∈ (0, 1) such that f(x) = f(x0) + ∂f(x0)(x− x0) +

1
2
(x− x0)

>∂2f [cx0 + (1− c)x](x− x0).
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By definition, the partition function is Γ(τt;xt, yt) =
∫
w qt(w)p(xt|w)eτtytwtxtdw. Construct the

two parameter exponential family

qt,τ,u(w) = qt(w) exp
(
u log p(xt|w) + τytw

>xt − log f(τ, u)
)
,

where the log partition function f(τ, u) is

log f(τ, u) = log

∫
w
qt(w)p(xt|w)ueτytwxtdw.

Using Taylor’s theorem again at the origin (0, 0), we have

log f(τ, u) = Eqt(w) [log p(xt|w)]u+ Eqt(w)

[
ytw

>xt

]
τ

+
1

2

(
Vqτ̂ ,û [ytwxt] τ

2 + Vqτ̂ ,û [log p(xt|w)]u2
)
,

for some 0 < τ̂ < τ and 0 < û < u. Using our assumption on the fisher information and the fact
that Γ(τ ;xt, yt) = f(τ, 1), we have the bound

ετ − log Γ(τ ;xt, yt) ≥ −Eqt(w) [log p(xt|w)] +
(
ε− Eqt(w)

[
ytw

>xt

])
τ − 1

2
Rτ2 − 1

2
S. (19)

The optimal solution for the lower bound is τ∗ = min{2c, (ε−Eqt(w)[ytw
>xt])/R}. Now, assume

that the current round qt(w) suffers non-zero loss and consider the difference

KL [p(w)||qt(w)]−KL [p(w)||qt+1(w)]

=
∫
w p(w)τt

(
ytw

>
t xt − ε

)
dw + Ep(w)[log p(xt|w)] +

(
ετt − log Γ(τt;xt, yt)

)
≥ −Rave

c (p(w);xt, yt) +
(
ετt − log Γ(τt;xt, yt)

)
.

(20)

Notice that the second term in Eq. (20) is exactly the optimization objective in the dual problem
(18). Therefore, if (ε− Eqt(w)[ytw

>xt]) ≥ 2cR, we have τ∗ = 2c and use (19) to show

Rave
c (qt(w);xt, yt) ≤ Rave

c (p(w);xt, yt) + KL[p||qt]−KL[p||qt+1] + 2c2R+
S

2
.

If (ε− Eqt(w)[ytw
>xt]) < 2cR, we obtain

`ave
ε (qt(w);xt, yt) ≤ 2

√
cR · 1

2c

(
Rave
c (p(w);xt, yt) + KL[p(w)||qt(w)]−KL[p(w)||qt+1(w)] + S/2

)
≤ cR+ 1

2c

(
Rave
c (p(w);xt, yt) + KL[p(w)||qt(w)]−KL[p(w)||qt+1(w)] + S/2

)
.

where we have used the geometric inequality. Summing over all t = 0, 1, 2, ..., T −1 gives (17) and
further relax it by neglecting KL[p(w)||qT (w)], we then derive Eq. (17).
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Remark 1. The bounds (15) and (17) both imply that the regrets satisfy

1

T

T−1∑
t=0

Rc(qt(w);xt, yt) ≤
1

T

T−1∑
t=0

Rc(p(w);xt, yt) +
1

T
KL[p(w)||q0(w)] + const.

When T →∞, the asymptotic average regret of BayesPA is at most larger than that of the optimal
batch learner by a constant factor.

Remark 2. Interestingly, KL[p(w)||q0(w)] +
∑T−1

t=0 Rc(p(w);xt, yt) is the RegBayes objec-
tive function of the batch learner with T data samples. In other words, if there exists a batch learner
p(w) who achieves a small objective, so can BayesPA learning.

Remark 3. For non-likelihood BayesPA, the regret is Rc(qt(w);wt, yt) = `ε(qt(w);wt, yt),
which recovers the notion of regret in the classical sense. As a special case, theorems 6 and 7 also
hold true.

Remark 4. Both theorem 6 and 7 assume the Fisher information is bounded by a constant
factor. In other words, each data point does not cause abrupt change in paramter estimate. This is
a practical assumption for online learning because to allow for reasonable inference, the concept
space should be sufficiently restricted. Detecting abrupt change points (Adams and MacKay, 2007)
in streaming data is beyond the scope of this paper.

6. Online Max-Margin Topic Models

In this section, we apply the theory of online BayesPA to topic modeling. We first review the basic
ideas of max-margin topic models, and develop online learning algorithms based on BayesPA with
averaging and Gibbs classifiers respectively.

6.1 Basics of MedLDA

A max-margin topic model consists of a latent Dirichlet allocation (LDA) model (Blei et al., 2003)
for describing the underlying topic representations of document content and a max-margin classifier
for making predictions. Specifically, LDA is a hierarchical Bayesian model that treats each docu-
ment as an admixture ofK topics, Φ = {φk}Kk=1, where each topic φk is a multinomial distribution
over a given W -word vocabulary.3 The generative process of the d-th document (1 ≤ d ≤ D) is
described as follows:

• Draw a topic mixture proportion vector θd|α ∼ Dir(α)

• For the i-th word in document d, where i = 1, 2, ..., nd,

– draw a latent topic assignment zdi ∼ Mult(θd).

– draw the word instance xdi ∼ Mult(φzdi).

where Dir is the Dirichlet distribution and Mult is the multinomial distribution. For Bayesian LDA,
the topics are also drawn from a Dirichlet distribution, i.e., φk ∼ Dir(γ).

3. Without causing confusion, we slightly abused the notation K to denote the topic number (i.e., the latent dimension)
in topic models.
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Given a document set X = {xd}Dd=1. Let Z = {zd}Dd=1 and Θ = {θd}Dd=1 denote all the
topic assignments and topic mixing vectors. LDA infers the posterior distribution p(Φ,Θ,Z|X) ∝
p0(Φ,Θ,Z)p(X|Z,Φ) via Bayes’ rule. From a variational point of view, the Bayes’ post-data
posterior is identical to the solution of the optimization problem:

min
q∈P

KL
[
q(Φ,Θ,Z)||p(Φ,Θ,Z|X)

]
.

The advantage of the variational formulation of Bayesian inference lies in the convenience of posing
restrictions on the post-data distribution with a regularization term. For supervised topic models
(Blei and McAuliffe, 2010; Zhu et al., 2012), such a regularization term could be a loss function
of a prediction model w on the data X = {xd}Dd=1 and response signals Y = {yd}Dd=1. As a
regularized Bayesian (RegBayes) model (Jiang et al., 2012), MedLDA infers a distribution of the
latent variables Z as well as classification weights w by solving the problem:

min
q∈P
L
(
q(w,Φ,Θ,Z)

)
+ 2c

D∑
d=1

`ε

(
q(w, zd);xd, yd

)
,

where L(q(w,Φ,Θ,Z)) = KL[q(w,Φ,Θ,Z)||p(w,Φ,Θ,Z|X)] . To specify the loss function, a
linear discriminant function needs to be defined with respect to w and zd

f(w, zd) = w>z̄d, (21)

where z̄dk = 1
nd

∑
i I[zdi = k] is the average frequency of assigning the words in document d to

topic k. Based on the discriminant function, both averaging classifiers with the hinge loss

`ave
ε (q(w, zd);xd, yd) =

(
ε− ydEq(w,zd)[f(w, zd)]

)
+
, (22)

and Gibbs classifiers with the expected hinge loss

`gibbs
ε (q(w, zd);xd, yd) = Eq(w,zd)

[
(ε− ydf(w, zd))+

]
, (23)

have been proposed, with extensive comparisons reported in Zhu et al. (2014a) using batch learning
algorithms.

6.2 Online MedLDA

We first apply online BayesPA to MedLDA with averaging classifiers, which will be referred to
as paMedLDAave in the sequel. During inference, we integrate out the local variables Θt using the
conjugacy between a Dirichlet prior and a multinomial likelihood (Griffiths and Steyvers, 2004; Teh
et al., 2006b), which potentially improves the inference accuracy. Then we have the global variables
M = Φ and local variablesHt = Zt. The latent BayesPA rule (12) becomes:

min
q,ξd

KL
[
q(w,Φ,Zt)||qt(w,Φ)p0(Zt)p(xt|Φ,Zt)

]
+ 2c

∑
d∈Bt

ξd, (24)

s.t.: ydEq(w,zd)[w
>z̄d] ≥ ε− ξd, ξd ≥ 0, ∀d ∈ Bt,

q(w,Φ,Zt) ∈ P.

Since directly solving the above problem is intractable, we would impose a mild mean-field assump-
tion q(w,Φ,Zt) = q(w)q(Φ)q(Zt). Now, problem (24) can be solved using an iterative procedure
that alternately updates each factor distribution (Jordan et al., 1998), as detailed below:
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1. Update global q(Φ): By fixing the distributions q(Zt) and q(w), we can ignore irrelevant
terms and solve

min
q(Φ)

KL
[
q(Φ)q(Zt)||qt(Φ)p0(Zt)p(xt|Φ,Zt)

]
.

The optimal solution has the following closed form:

q∗(Φk) ∝ qt(Φk) exp
(
Eq(Zt)

[
log p0(Zt)p(X|Zt,Φ)

])
, k = 1, 2, ...,K. (25)

If initially the prior is q0(Φk) = Dir(∆0
k1, ...,∆

0
kW ), then by induction the inferred distri-

butions in each round are also in the family of Dirichlet distributions, namely, qt(Φk) =
Dir(∆t

k1, ...,∆
t
kW ). Using equation (25), we can derive

q∗(Φk) = Dir(∆∗k1, ...,∆
∗
kW ), (26)

where ∆∗kw = ∆t
kw +

∑
d∈Bt

∑nd
i=1 γ

k
di · I[xdi = w] for all words w (1 ≤ w ≤ W ) in the

vocuabulary and γkdi = Eq(zd)I[zdi = k] is the probability of assigning each word xdi to topic
k.

2. Update global weight q(w): Keeping all the other distributions fixed, q(w) can be solved as

min
q(w)

KL
[
q(w)||qt(w)

]
+ 2c

∑
d∈Bt

ξd,

s.t.: ydEq(w)[w]>ẑd ≥ ε− ξd, ξd ≥ 0, ∀d ∈ Bt,

where ẑd = Eq(zd)[z̄d] is the expectation of topic assignments under the fixed distribution
q(Z). Similar to Proposition 2 in MedLDA (Zhu et al., 2012), the optimal solution is attained
by solving the Lagrangian form with respect to q(w), which gives

q∗(w) =
1

Z(τ∗d )
qt(w) exp

∑
d∈Bt

τ∗d ydw
>ẑd

 , (27)

where the Lagrange multipliers τ∗d (d ∈ Bt) are obtained by solving the dual problem

max
0≤τd≤2c

ε
∑
d∈Bt

τd − logZ(τd).

For the common spherical Gaussian prior q0(w) = N (0, σ2I), by induction the distribution
qt(w) = N (µt, σ

2I) at each round. So equation (27) gives q∗(w) = N (µ∗, σ2I), where

µ∗ = µt + σ2
∑
d∈Bt

τ∗d ydẑd. (28)

Furthermore, the dual problem becomes,

max
0≤τd≤2c

ε
∑
d∈Bt

τd −
∑

d1,d2∈Bt

1

2
σ2τd1τd2 ẑ

>
d1 ẑd2 − µ

>
t

∑
d∈Bt

ydτdẑd, (29)
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which is identical to the Lagrangian dual of the classical PA problem with mini-batch Bt
(expressed in the equivalent constrained form by introducing slack variables)

min
µ

||µ− µt||2

2σ2
+ 2c

∑
d∈Bt

(
ε− ydµ>ẑd

)
+
. (30)

This equivalence suggests that we could rely on contemporary PA techniques to solve for µ∗.
In particular, for instances coming one at a time (i.e.,Bt = {t}, ∀t), we have the closed-form
solution

τ∗t = min

{
2c,

(
ε− ytµ>t ẑt

)
+

||ẑt||2

}
,

whose computation requires O(K) time; for mini-batches, we could adapt methods solving
linear SVM to either the dual (29) or primal (30) problem, which by state-of-the-arts require
complexityO(poly(ε−1)K) per training instance in order to obtain ε-accurate solutions. Here
we choose a gradient-based method similar to Shalev-Shwartz et al. (2011). Specifically, we
first set µ1 = µt, and then take the gradient steps i = 2, 3, ... until µi converges to µ∗. Let
Ait be the set of instances in Bt that suffer non-zero loss at step i, then we use the gradients
to iteratively update

µi+1 ← µi − ρi∇i, (31)

where annealing rate ρi = σ2i−1 and

∇i =
µi − µt
σ2

− 2c
∑
d∈Ait

ydẑd.

Correspondingly, we can derive the gradient-based update rule for the dual parameters. Imag-
ine that we implicitly maintain the relationship µ = µt + σ2

∑
d∈Bt τdydẑd. Then the fol-

lowing update rule for τd (d ∈ Bt) naturally implies the update rule (31) for µ:

τ id ←
{

(1− 1
i )τ

i
d + 2c

i for d ∈ Ait
(1− 1

i )τ
i
d for d 6∈ Ait.

Therefore, the gradient steps adaptively adjust the contribution of each latent ẑd to µ based on
the loss it incurs. Furthermore, the annealing makes sure that 0 ≤ τ id ≤ 2c for all i. Since the
problem (29) is concave, it can be guaranteed that τ id converges to τ∗d . This correspondence
would be used in updating q(Zt).

3. Update local q(Zt): Fixing all the other distributions, we aim to solve

min
q(Zt)

KL
[
q(Zt)||p0(Zt)p(Xt|Zt,Φ)

]
+ 2c

∑
d∈Bt

ξd,

s.t.: ydµ∗>Eq(zd)[z̄d] ≥ ε− ξd, ξd ≥ 0, ∀d ∈ Bt,

where µ∗ = Eq(w)[w] is the expectation of w under the fixed distribution q(w). Unlike the
weight w, the expectation over Zt during optimization is intractable due to combinatorial
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Algorithm 1 Online MedLDA

1: Let q0(w) = N (0;σ2I), q0(φk) = Dir(γ), ∀ k.
2: for t = 0→∞ do
3: Set q(Φ,w) = qt(Φ)qt(w). Initialize Zt.
4: for i = 1→ I do
5: Draw samples {Z(j)

t }Jj=1 from Eq. (32).
6: Discard the first β burn-in samples (β < J ).
7: Use the rest J − β samples to update q(Φ,w) following Eq.s (26, 27).
8: end for
9: Set qt+1(Φ,w) = q(Φ,w).

10: end for

space of values. Instead, we adopt the same approximation strategy as MedLDA (Zhu et al.,
2012): fix ξ, τd at the previous global step, and use the approximate solution

q∗(Zt) = p0(Zt)p(Xt|Zt,Φ) exp

∑
d∈Bt

τ∗d ydµ
∗>z̄d

 .

Then the expectation of z̄d, as needed in the global updates, could be approximated by sam-
ples from the distribution q∗(Zt). Specifically, we use Gibbs sampling with the conditional
distribution

q(zdi = k | Z¬dit ) ∝
(
α+ C¬didk

)
exp

(
Λk,xdi +

∑
d∈Bt

n−1
d ydτ

∗
dµ
∗
k

)
. (32)

where Λzdi,xdi = Eq(Φ)[log(Φzdi,xdi)] = Ψ(∆∗zdi,xdi)−Ψ(
∑

w ∆∗zdi,w) (note that Ψ(·) is the
digamma function) and C¬did is a vector with the k-th entry being the number of words in
document d (except the i-th word) that are assigned to topic k.

Then we draw J samples {Z(j)
t }Jj=1 using Eq. (32), discard the first β (0 ≤ β < J ) burn-in

samples, and approximate ẑdk with the empirical sum (J − β)−1
∑J

j=β+1

∑
d,i I[z

(j)
di = k].

At each round t of BayesPA optimization during training, we run the global and local updates
alternately until convergence, and assign qt(Φ,w) = q∗(Φ)q∗(w), as outlined in Algorithm 1. To
make predictions on testing data, we use the mean µ as the classification weight and apply the
prediction rule. The inference of z̄ for testing documents is similar to Zhu et al. (2014a). First, we
draw a single sample of Φ, and for each test document d, we infer the MAP of θd. In the sequel, we
directly run the sampling of zd until the burn-in stage is completed, and use the average of several
samples to compute ẑd. Then the prediction rule is applied on µ and ẑd.

6.3 Online Gibbs MedLDA

In this section, we apply the theory of BayesPA to Gibbs MedLDA. As shown in Zhu et al. (2014a),
using Gibbs classifiers admits efficient inference algorithms by exploring data augmentation (DA)
techniques (Tanner and Wong, 1987; Polson and Scott, 2011). Based on this insight, we will
develop our efficient online inference algorithms for Gibbs MedLDA. We denote the model by
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paMedLDAgibbs . Specifically, let ζd = ε − ydf(w, zd) and ψ(yd|zd,w) = e−2c(ζd)+ . By Lemma
4, the optimal solution to problem (12) is

qt+1(w,M,Ht) =
qt(w,M)p0(Ht)p(Xt|Ht,M)ψ(Yt|Ht,w)

Γ(Xt,Yt)
,

where ψ(Yt|Ht,w) =
∏
d∈Bt ψ(yd|hd,w) and Γ(Xt,Yt) is a normalization constant. The ba-

sic idea of DA is to construct conjugacy between prior and data during inference by introducing
augmented variables. Specifically, we would use the following equality (Zhu et al., 2014a):

ψ(yd|zd,w) =

∫ ∞
0

ψ(yd, λd|zd,w)dλd, (33)

where ψ(yd, λd|zd,w) = (2πλd)
−1/2 exp

(
− (λd+cζd)2

2λd

)
. Equality (33) essentially implies that the

collapsed posterior qt+1(w,Φ,Zt) is a marginal distribution of

qt+1(w,Φ,Zt,λt) =
p0(Zt)qt(w,Φ)p(Xt|Zt,Φ)ψ(Yt,λt|Zt,w)

Γ(Xt,Yt)
,

where ψ(Yt,λt|Zt,w)=
∏

d∈Bt
ψ(yd, λd|zd,w) and λt = {λd}d∈Bt are augmented variables locally

associated with individual documents. In fact, the augmented distribution qt+1(w,Φ,Zt,λt) is the
solution to the problem:

min
q∈P
L
(
q(w,Φ,Zt,λt)

)
− Eq

[
logψ(Yt,λt|Zt,w)

]
, (34)

whereL(q(w,Φ,Zt,λt)) = KL[q(w,Φ,Zt,λt)‖qt(w,Φ)p0(Zt)]−Eq[log p(Xt|Zt,Φ)]. In fact,
this objective is an upper bound of that in the original problem (12) (See Appendix A for details).

Again, with the mild mean-field assumption that q(w,Φ,Zt,λt) = q(w,Φ)q(Zt,λt), we can
solve problem (34) via an iterative procedure that alternately updates each factor distribution (Jordan
et al., 1998), as detailed below.

1. Global Update: By fixing the distribution of local variables, q(Zt,λt), and ignoring irrele-
vant terms, the optimal distribution ofw and Φ can be shown to have the induced factorization
form, q(w,Φ) = q(w)q(Φ). For q(Φ), the update rule is exactly (26). For q(w), we have
the update rule

qt+1(w) ∝ qt(w) exp
(
Eq(Zt,λt)

[
log p0(Zt)ψ(Yt,λt|Zt,w)

])
.

If the initial prior is normal q0(w) = N (w;µ0,Σ0), by induction we can show that the in-
ferred distribution in each round is also a normal distribution, namely, qt(w) = N (w;µt,Σt).
Indeed, the optimal solution of q(w) to problem (34) is

q∗(w) = N (w;µ∗,Σ∗), (35)

where the posterior paramters are computed as

Σ∗=

(Σt)−1 + c2
∑
d∈Bt

Eq(zd,λd)

[
λ−1
d z̄dz̄

>
d

]−1

,

µ∗= Σ∗

(Σt)−1µt + c
∑
d∈Bt

Eq(zd,λd)

[
yd
(
1 + cελ−1

d

)
z̄d
] .
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For the sequential update rule, we simply set µt+1 = µ∗ and Σt+1 = Σ∗.

2. Local Update: Given the distribution of global variables, q(Φ,w), the mean-field update
equation for (Zt,λt) is

q(Zt,λt) ∝ p0(Zt)
∏
d∈Bt

1√
2πλd

exp

∑
i∈[nd]

Λzdi,xdi − Eq(Φ,w)

[
(λd + cζd)

2

2λd

] ,

where Λ admits the same definition as in (32). But it is impossible to evaluate the expec-
tation in the global update using q(Zt,λt) because of the huge number of configurations
for (Zt,λt). As a result, we turn to Gibbs sampling and estimate the required expectations
using multiple empirical samples. This hybrid strategy has shown promising performance
for LDA (Mimno et al., 2012). Specifically, the conditional distributions used in the Gibbs
sampling are as follows:

• For Zt: By canceling out common factors, the conditional distribution of one variable
zdi given Z¬dit and λt is

q(zdi=k|Z¬dit ,λt)∝(α+C¬didk )exp
(
cyd(cε+λd)µ∗k

ndλd

+Λk,xdi −
c2(µ∗2k +Σ∗kk+2(µ∗kµ

∗+Σ∗·,k)>C¬did )

2n2
dλd

)
,

(36)

where Σ∗·,k is the k-th column of Σ∗.

• For λt: Let ζ̄d = ε − ydz̄>d µ∗. The conditional distribution of each variable λd given
Zt is

q(λd|Zt)∝
1√

2πλd
exp

(
−
c2z̄>d Σ∗z̄d + (λd + cζ̄d)

2

2λd

)
=GIG

(
λd;

1

2
, 1, c2

(
ζ̄2
d + z̄>d Σ∗z̄d

))
, (37)

a generalized inverse gaussian distribution (Devroye, 1986). Therefore, λ−1
d follows an

inverse gaussian distribution, that is,

q(λ−1
d |Zt) = IG

λ−1
d ;

1

c
√
ζ̄2
d + z̄>d Σ∗z̄d

, 1

 ,

from which we can draw a sample in constant time (Michael et al., 1976).

For training, we run the global and local updates alternately until convergence at each round
of PA optimization, as outlined in Alg. 2. To make predictions on testing data, we then draw one
sample of ŵ as the classification weight and apply the prediction rule. The inference of z̄ for testing
documents is the same as online MedLDA.
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Algorithm 2 Online Gibbs MedLDA

1: Let q0(w) = N (0;σ2I), q0(φk) = Dir(γ), ∀ k.
2: for t = 0→∞ do
3: Set q(Φ,w) = qt(Φ)qt(w). Initialize Zt.
4: for i = 1→ I do
5: Draw samples {Z(j)

t ,λ
(j)
t }Jj=1 from Eq.s (36, 37).

6: Discard the first β burn-in samples (β < J ).
7: Use the rest J − β samples to update q(Φ,w) following Eq.s (26, 35).
8: end for
9: Set qt+1(Φ,w) = q(Φ,w).

10: end for

7. Extensions

In the above topic models, we assume that the number of topics (i.e., K) is pre-specified. We now
present extensions of online MedLDA to automatically determine the unknown K values. We also
present an extension of these models for multi-task learning.

7.1 Online Nonparametric MedLDA

We first present online nonparametric MedLDA for resolving the unknown number of topics, based
on the theory of hierarchical Dirichlet process (HDP) (Teh et al., 2006a).

7.1.1 BATCH MEDHDP

A two-level HDP provides an extension to LDA that allows for a nonparametric inference of the
unknown topic numbers. The generative process of HDP can be summarized using a stick-breaking
construction (Wang and Blei, 2012b), where the stick lengths π = {πk}∞k=1 are generated as:

πk = π̄k
∏
i<k

(1− π̄i), π̄k ∼ Beta(1, η), for k = 1, ...,∞,

and the topic mixing proportions are generated as θd ∼ Dir(απ), for d = 1, ..., D. Each topic φk
is a sample from a Dirichlet base distribution, i.e., φk ∼ Dir(γ). After we get the topic mixing
proportions θd, the generation of words is the same as in the standard LDA.

To extend the HDP topic model for predictive tasks, we introduce a classifier w that is drawn
from a Gaussian process, GP(0,Σ), where the covariance function is Σ(w,w′) = σ2I[w = w′].
We still define the linear discriminant function in the same form as Eq. (21). Since the number of
words in a document is finite, the average topic assignment vector z̄d has only a finite number of
non-zero elements, and the dot product in Eq. (21) is in fact finite. Therefore, given the latent topic
assignments, the conditoinal posterior of w is in fact a multivariate Gaussian distribution.

Let π̄ = {π̄k}∞k=1. We define maximum entropy discrimination HDP (MedHDP) topic model as
solving the following RegBayes problem to infer the joint post-data posterior q(w, π̄,Φ,Θ,Z):4

min
q∈P
L
(
q(w, π̄,Φ,Θ,Z)

)
+ 2c

D∑
d=1

`ε

(
q(w, zd);xd,yd

)
, (38)

4. Given π̄, π can be computed via the stick breaking process.
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where L(q(w, π̄,Φ,Θ,Z)) = KL[q(w, π̄,Φ,Θ,Z)||p(w, π̄,Φ,Θ,Z|X)] is the objective cor-
responding to the standard Bayesian inference under the variational formulation of Bayes’ rule. The
loss function could be either (22) or (23). We call the resulting model with averaging classifier
MedHDPave and that with Gibbs classifier MedHDPgibbs .

Since MedHDP is a new model, we would briefly discuss the corresponding inference problem.
For the inference of MedLDAgibbs , we can use Gibbs sampling based on Chinese Restaurant Fran-
chise (Teh et al., 2006a; Wang and Blei, 2012a) with modifications similar to the techniques intro-
duced in Zhu et al. (2014a). For MedHDPave , the current state-of-the-art for inferring max-margin
Bayesian models with averaging loss resorts to mean-field assumptions and variational inference.
Notice that classical mean-field derivation would fail due to the potentially unbounded space of
variables. However, it is possible to incorporate Gibbs sampling into mean-field update equations
to explore the unbounded space (Welling et al., 2008; Wang and Blei, 2012b) and therefore bypass
the difficulty. In this paper, we would not focus on developing inference algorithms for MedHDP,
but instead attain batch MedHDP algorithms from the BayesPA counterparts.

7.1.2 ONLINE MEDHDP

To apply the ideas of BayesPA to develop online MedHDP algorithms, we have the global variables
M = (π̄,Φ), and the local variables Ht = (Θt,Zt). As in online MedLDA, we marginalize
out Θt by conjugacy. Furthermore, to simplify the sampling scheme, we introduce another set of
auxiliary latent variables St = {sd}d∈Bt , where sd = {sdk}∞k=1 and each element sdk represents
the number of occupied tables serving dish k in a Chinese restaurant process (CRP) (Teh et al.,
2006a; Wang and Blei, 2012b). By definition, we have p(Zt,St|π̄) =

∏
d∈Bt p(sd, zd|π̄) and

p(sd, zd|π̄) ∝
∞∏
k=1

S(ndz̄dk, sdk)(απk)
sdk , (39)

where S(a, b) are unsigned Stirling numbers of the first kind (Antoniak, 1974). It is not hard to
verify that p(zd|π̄) =

∑
sd
p(sd, zd|π̄). After this “collapse-and-augment” procedure, we now

have the local variables Ht = (Zt,St). The global variables remain intact. The new BayesPA
problem is now:

min
q∈Ft

L
(
q(w, π̄,Φ,Ht)

)
+ 2c

∑
d∈Bt

`ε

(
w;xt, yt

)
, (40)

where L(q(w, π̄,Φ,Ht)) = KL[q(w, π̄,Φ,Ht)||qt(w, π̄,Φ)p(Zt,St|π̄)p(Xt|Zt,Φ)] . As in
online MedLDA, we adopt the mild mean field assumption q(w, π̄,Φ,Ht) = q(w)q(π̄)q(Φ)q(Ht)
and solve problem (40) via an iterative procedure detailed below.

1. Global Update: By fixing the distribution of local variables, q(Ht), and ignoring the irrel-
evant terms, we have same mean-field update equations (26) for Φ and (28) for w with the
averaging loss. For global variable π̄, we have

q∗(π̄k) ∝ qt(π̄k)
∏
d∈Bt

exp
(
Eq(hd)

[
log p(sd, zd|π̄)

])
. (41)

By induction, we can show that qt(π̄k) = Beta(utk, v
t
k) is a Beta distribution at each step, and

the update equation is
q∗(π̄k) = Beta(u∗k, v

∗
k), (42)
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where u∗k = utk +
∑

d∈Bt Eq(sd)[sdk] and v∗k = vtk +
∑

d∈Bt Eq(sd)[
∑

j>k sdj ] for k =

{1, 2, ...} and u0
k = 1, v0

k = η.

Since Zt contains only a finite number of discrete variables, we only need to maintain and
update the above global distributions for a finite number of topics.

2. Local Update: Fixing the global distribution q(w, π̄,Φ), we get the mean-field update equa-
tion for (Zt,St):

q∗(Zt,St) ∝ q̃(Zt,St)q̂(Zt) (43)

where

q̃(Zt,St) = exp
(
Eq∗(Φ)q∗(π̄)[log p(X|Φ,Zt) + log p(Zt,St|π̄)]

)
,

q̂(Zt) = exp

∑
d∈Bt

τdydE[w]>z̄d

 ,

and τd(d ∈ Bt) are the dual variables computed in the global update. The most cumbersome
point to tackle is the potentially unbounded sample space of Zt and St. We take the ideas
from (Wang and Blei, 2012b) and adopt an approximation for q̃(Zt,St):

q̃(Zt,St) ≈ Eq∗(Φ)q∗(π̄) [p(X|Φ,Zt)p(Zt,St|π̄)] . (44)

Computing the expectation regarding π̄ in (44) turns out to be difficult. However, imagine
that the expectation operator is essentially collapsing π̄ out from the joint distribution

q̃(π̄,Zt,St) ≈ Eq∗(Φ)) [q∗(π̄)p(X|Φ,Zt)p(Zt,St|π̄)] . (45)

Now we propose to uncollapse π̄ and sample the local variables from

q∗(π̄,Zt,St) ∝ q̃(π̄,Zt,St)q̂(Zt). (46)

Notice in the local updates, π̄ is only an auxilary variable. Putting all the pieces together, we
have the following sampling scheme.

• For Zt: Let K be the current inferred number of topics. The conditional distribution
of one variable zdi given all other local variables can be derived from (43) with sd
marginalized out for convenience.

q(zdi = k|Z¬dit , π̄) ∝
(απk + C¬didk )(C¬dikxdi

+ ∆t
kxdi

)∑
w (C¬dikw + ∆t

kw)
exp

∑
d∈Bt

n−1
d ydτdµ

∗
k

 . (47)

Besides, for k > K and symmetric Dirichlet prior γ, (47) converge to a single rule
q(zdi = k|Z¬dit , π̄) ∝ απk/W , and therefore the total probability of assigning a new
topic is

q(zdi > K|Z¬dit , π̄) ∝ α

(
1−

K∑
k=1

πk

)
/W.
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• For St: The conditional distribution of sdk given (Zt, π̄,λt) can be derived from the
joint distribution (39):

q(sdk|Zt, π̄) ∝ S(ndz̄dk, sdk)(απk)
sdk (48)

• For π̄: It can be derived from (43) that given (Zt,St), each π̄k follows the beta distri-
bution,

π̄k ∼ Beta(ak, bk), (49)

where ak = u∗k +
∑

d∈Bt sdk and bk = v∗k +
∑

d∈Bt
∑

j>k sdj .

Similar to online MedLDA, we iterate the above steps till convergence for training. For testing,
the learned model is essentially a finite MedLDA, and we use the same scheme as that of online
MedLDA.

Notice that if we run online MedHDP for only one round (T = 1) and use the entire data set
as mini-batch (|B| = D), iterating the above steps till converge in fact solves the batch MedHDP
problem Eq. (38). We call this batch version MedHDPave , and will use it as a baseline algorithm.

7.1.3 ONLINE GIBBS MEDHDP

For Gibbs MedHDP, the only difference is the loss functional `ε, which is reflected in the sampling of
local variables. As in online Gibbs MedLDA, we can facilitate more efficient inference by adopting
the same data augmentation technique with the augmented variables λt. Then the local variables
are (Zt,St,λt) and the global variables are unchanged. We then use the mean field assumption
q(w, π̄,Φ,Ht) = q(w)q(π̄)q(Φ)q(Ht) and compute the iterative steps as follows.

1. Global Update: The same as online MedHDP, except that the update rule forw is now (35)
for the Gibbs classifier.

2. Local Update: This step involves drawing samples of the local variables. We develop a
Gibbs sampler, which iteratively draws St from the local conditional in (48), draws π̄ from
the conditional in (49), and draws the augmented variables λt from the conditional in (37).
For Zt, we explain the sampling procedure in detail. Specifically, we infer Zt through

q∗(Zt,St,λt, π̄) ∝ q̃(π̄,Zt,St)q̂(Zt,λt) (50)

where

q̂(Zt,λt) =
∏
d∈Bt

1√
2πλd

exp

∑
i∈[nd]

Λzdi,xdi − Eq(Φ,w)

[
(λd + cζd)

2

2λd

] ,

The Gibbs sampling for each variable zdi is

q(zdi = k|Z¬dit ,λt, π̄) ∝
(απk + C¬didk )(C¬dikxdi

+ ∆t
kxdi

)∑
w (C¬dikw + ∆t

kw)

exp

(
cyd(cε+ λd)µ

∗
k

ndλd
−
c2(µ∗2k + Σ∗kk + 2(µ∗kµ

∗ + Σ∗·,k)
>C¬did )

2n2
dλd

)
, (51)
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while the probability of sampling a new topic is

q(zdi > K|Z¬dit , π̄) ∝ α

(
1−

K∑
k=1

πk

)
/W.

Again, we iterate the above steps till convergence for training and the testing is the same as
online MedHDP. A batch version algorithm can be attained by setting T = 1 and |B| = D, which
we denote as MedHDPgibbs .

7.2 Multi-task Learning

The above models have been presented for classification. The basic ideas can be applied to solve
other learning tasks, such as regression and multi-task learning (MTL). We use multi-task learn-
ing an one example. The primary assumption of multi-task learning is that by sharing statistical
strength in a joint learning procedure, multiple related tasks can be mutually enhanced or some
main tasks can be improved. MTL has many applications. We consider one scenario for multi-label
classification. In this task, a set of binary classifiers are trained, each of which identifies whether a
document xd belongs to a specific category yτd ∈ {+1,−1}. These binary classifiers are allowed to
share common latent representations and therefore could be attained via a modified BayesPA update
equation:

min
q∈Ft

L
(
q(w,M,Ht)

)
+ 2c

T∑
τ=1

`ε

(
q(w,M,Ht);Xt,Y

τ
t

)
where T is the total number of tasks. We can then derive the multi-task version of Passive-
Aggressive topic models, denoted by paMedLDAmtave and paMedLDAmtgibbs , in a way similar
as in Section 6. We can further develop the nonparametric multi-task MedLDA topic models in a
way similar as in Section 7.1 and the online PA learning algorithms. We denote the nonparamet-
ric online models by paMedHDPave and paMedHDPgibbs , according to whether the task-specific
classifier is averaging or Gibbs.

8. Experiments

We demonstrate the efficiency and prediction accuracy of online MedLDA, online Gibbs MedLDA
and their extensions on the 20Newsgroup (20NG) and a large Wikipedia data set. A sensitivity
analysis of the key parameters is also provided. Following the same setting in Zhu et al. (2012), we
remove a standard list of stop words. All of the experiments are done on a normal computer with
single-core clock rate up to 2.4 GHz.

8.1 Classification on 20Newsgroup

We perform multi-class classification on the entire 20NG data set with all the 20 categories. The
training set contains 11,269 documents, with the smallest category having 376 documents and the
biggest category having 599 documents. The testing set contains 7,505 documents, with the smallest
and biggest categories having 259 and 399 documents respectively. We adopt the “one-vs-all”
strategy (Rifkin and Klautau, 2004) to combine binary classifiers for multi-class prediction tasks.

We use shorthand notations paMedLDAave and paMedLDAgibbs for online MedLDA and online
Gibbs MedLDA respectively. The batch counterparts are MedLDA (Zhu et al., 2012) and Gibbs
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Figure 3: Test errors of different models with respect to the number of passes through the 20NG
training data set.

MedLDA (MedLDAgibbs ) (Zhu et al., 2014a), which is a MedLDA model with Gibbs classifiers.
We use collapsed Gibbs sampling to solve MedLDA, which is exactly the gMedLDA model pro-
posed by Jiang et al. (2012). We also choose a state-of-the-art online unsupervised topic model as
the baseline, the sparse inference for LDA (spLDA) (Mimno et al., 2012), which has been demon-
strated to be superior than the stochastic variational LDA (Hoffman et al., 2013) in prediction per-
formance. To perform the supervised tasks, we learn a linear SVM with the topic representations
using LIBSVM (Chang and Lin, 2011). The performances of the other batch-learning-based super-
vised topic models, such as sLDA (Blei and McAuliffe, 2010) and DiscLDA (Lacoste-Julien et al.,
2008), were reported in Zhu et al. (2012). For all the LDA-based topic models, we use symmetric
Dirichlet priors α = 1/K · 1 and γ = 0.45 · 1. For BayesPA with Gibbs classifiers, the parameters
were set at ε = 164, c = 1, and σ2 = 1. The models’ performance is not sensitive to the choice
of these parameters in wide ranges as shown in Zhu et al. (2014a). For BayesPA with averaging
classifiers, the parameters determined by cross validation are ε = 16, c = 500, and σ2 = 10−3. For
reasons explained in section 8.3, we set the mini-batch size |B| = 1 for the averaging classifier and
|B| = 512 for the Gibbs classifier.

We first analyze how many processed documents are sufficient for each model to converge.
Figure 3 shows the test errors with respect to the number of passes through the 20NG training
set, where the number of topics is set at K = 80 and the other parameters of BayesPA are set at
(I,J , β) = (1, 2, 0). As we can observe, by solving a series of latent BayesPA problems, both
paMedLDAave and paMedLDAgibbs fully explore the redundancy of documents and converge in less
than one pass, while their batch counterparts (i.e., MedLDA and MedLDAgibbs ) need many passes
as burn-in steps. Besides, compared with the online learning algorithms for unsupervised topic
models (i.e., spLDA+SVM), BayesPA topic models use supervising side information from each
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Figure 4: Classification accuracy and running time of various models with respect to the number of
topics on the 20NG data set.

mini-batch, and therefore exhibit a faster convergence rate in discrimination ability. The conver-
gence performance of BayesPA models is significantly better than that of the unsupervised spLDA.

Next, we study each model’s best performance possible and the corresponding training time.
To allow for a fair comparison, we train each model until the relative change of its objective is
less than 10−4. Figure 4 shows the prediction accuracy and training time of LDA-based models on
the whole data set with varying numbers of topics. As we can see, BayesPA topic models, at the
power of online learning, are more than order of magnitude faster than their batch counterparts in
training time. paMedLDAave is faster than paMedLDAgibbs , because it does not need to update the
covariance matrix of classifier weights w. But the tradeoff is that for averaging models, they are
more sensitive to the initial choice of σ2, and therefore we need to use cross validation to determine
the best choice of variance beforehand. Furthermore, thanks to the merits of structured mean-
field inference, which does not impose strict assumptions on the independence of latent variables,
BayesPA topic models parallel their batch alternatives in accuracy. Moreover, all the supervised
models are significantly better than the unsupervised spLDA in classification.

Table 2 visualizes the learnt topic representation by paMedLDAave and paMedLDAgibbs . For the
displayed categories, we plot the corresponding classifier’s topic distribution averaged over the pos-
itive examples and top words from the topic matrix. As we can see, the average topic distributions
become increasingly sparse as more and more data are observed. Eventually, the averaged topic dis-
tribution for each category contains only 1∼2 non-zero entries and meanwhile different categories
have quite diverse average topic distributions, therefore showing strong discriminative ability of the
topic representations in distinguishing different categories. Such sparse and discriminatrive patterns
are similar to what have been shown in batch settings (Zhu et al., 2012, 2014a).
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Table 2: Visualization of the learnt topics by paMedLDAave and paMedLDAgibbs . See text for
details.
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Figure 5: Test errors of different nonparametric models with respect to the number of passes
through the 20NG training data set.

8.2 Extensions

We now present the experimental results on the extensions of BayesPA topic models. We first
present the results of nonparametric topic modeling on the same 20NG data set. Then we demon-
strate multi-task learning on a large Wikipedia data set with more than 1 million documents and
about 1 million unique terms.

8.2.1 NONPARAMETRIC TOPIC MODELING

Recall the nonparametric extensions of BayesPA topic models paMedHDPave and paMedHDPgibbs .
To validate the advantage of online learning, we test them against their batch counterparts (i.e., the
models MedHDPave and MedHDPgibbs ) on the 20NG corpus. We also include an unsupervised base-
line as comparison model, the truncation-free HDP topic model (tfHDP) (Wang and Blei, 2012b),
which is first used to discover the latent topic representations, and then combined with a linear SVM
classifier for document categorization. For all HDP-based models, the following parameter setting
is used: α = 5 · 1,γ = 0.5 · 1 and η = 1. As an initial number of topic numbers for HDP to start
with, we choose K = 20. We observed that the training time and the prediction accuracy do not
depend heavily on the initial number of topics. The other parameters of BayesPA are the same.

Figure 5 shows the convergence of paMedHDPave and paMedHDPgibbs , and Figure 6 plots the
accuracy and time together with the inferred topic numbers, where the length of the horizontal bars
represents the variance of the inferred topic numbers. The results are summarized from five differ-
ent runs. As we can see, the nonparametric extensions of BayesPA topic models also dramatically
improve time efficiency and converge to their batch counterparts in prediction performance. Fur-
thermore, the averaging models are again faster to train because they do not need to update the
covariance matrix of classifier weights.
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Figure 6: Classification accuracy and running time of the nonparametric paMedHDP and its batch
counterpart models on the 20NG data set.

8.2.2 MULTI-TASK CLASSIFICATION

We test paMedLDAmtave , paMedLDAmtgibbs and their nonparametric exentions on a large Wiki
data set. The Wiki data set is built from the Wikipedia set used in PASCAL LSHC challenge
2012 5. The Wiki data set is a collection of documents with labels up to 20 different kinds, while
the data distribution among the labels is balanced. The training set consists of 1.1 millions of
wikipedia documents and the testing test consists of 5,000 documents. The vocabulary contains
917,683 unique terms. To measure performance, we use F1 score, the harmonic mean of precision
and recall.

As baseline batch algorithms, we include MedLDAmt, a recent multi-task extention of Gibbs
MedLDA (Zhu et al., 2013). Since MedHDP is a new model, there is no exising implementation
of multi-task batch versions. So we instead extended MedHDP to support multi-task inference. We
call this model MedHDPmt.

We use the same validation scheme as previous to select batchsize |B| = 1, c = 5000, σ2 =
10−6 for paMedLDAmtave ; We choose |B| = 512, c = 1, σ2 = 1 for paMedLDAmtgibbs . For
both models, the Dirichlet parameters are α = 0.8 · 1,γ = 0.5 · 1, and ε = 1. The nonparametric
extensions use exactly the same parameter settings except that α = 5 · 1, η = 1 and we do not need
to specify the topic number K.

Figure 7 shows the F1 scores of various models as a function of training time. We find that
BayesPA topic models produce comparable results with their batch counterparts, but the training
time is significantly less. With either Gibbs or averaging classifiers, BayesPA is about two orders of

5. See http://lshtc.iit.demokritos.gr/.
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Figure 7: F1 scores of various multi-task topic models with respect to the running time on the 1.1M
wikipedia data set.

magnitude faster than their batch counterparts. Therefore, BayesPA topic models could potentially
be applied to large-scale multi-class settings.

8.3 Sensitivity Analysis

We provide further discussions on BayesPA learning for topic models. We analyze the models’
sensitivity to some key parameters.

Batch Size |B|: Figure 8 presents the test errors of BayesPA topic models (paMedLDAave ,
paMedLDAgibbs ) as a function of training time on the entire 20NG data set with various batch
sizes. The number of topics is fixed at K = 40. We can see that the convergence speeds of dif-
ferent algorithms vary. First of all, the batch algorithms suffer from multiple passes through the
data set and therefore are much slower than the online alternatives. Second, we could observe that
algorithms with medium batch sizes (|B| = 64 or 256) converge faster. If we choose a batch size
too small, for example, |B| = 1, each iteration would not provide sufficient evidence for the up-
date of global variables; if the batch size is too large, each mini-batch becomes redundant and the
convergence rate also decreases. By comparing the two figures, we find that paMedLDAave runs
faster than paMedLDAgibbs . This is because for averaging classifers, we do not update the co-
varaince of the classifier weights, which requires frequent matrix inverse operations. Furthermore,
paMedLDAave appears to be more robust against change in batchsize. Similarly, Figure 9 shows the
sensitivity experiment of the batchsize parameter in paMedHDP models. The results are similar to
paMedLDA models, that is, a moderate batchsize leads to faster convergence.

Number of iterations I and samples J : Since the time complexity of Algorithm 2 is linear
in both I and J , we would like to know how these parameters influence the quality of the trained
models. First, we analyze which setting of (I,J ) guarantees good performance. Fix β = 0,K =
40. Figure 10 presents the results. First, the number of samples J does not have a large effect on
the accuracy. Second, the peformance of paMedLDAgibbs and paMedHDPgibbs is not sensitive the
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Figure 8: Test errors of paMedLDAave (left) and paMedLDAgibbs (right) with different batch sizes
on the 20NG data set.
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Figure 9: Test errors of paMedHDPave (left) and paMedHDPgibbs (right) with different batch sizes
on the 20NG data set.

number of optimization round, but paMedLDAave and paMedHDPave suffers largely if I = 1. This
is because with averaging classifiers, the sampling of latent variable Z relies not only on global
parameters, but also on a local variable τ , so more optimization rounds are needed. The training
time of all models scale linearly in terms of I and J .
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Figure 10: Classification accuracies and training time of (a): paMedLDAgibbs , (b):
paMedHDPgibbs , (c): paMedLDAave , and (d): paMedHDPave , with different com-
binations of (I,J ) on the 20NG data set.

J
β

0 2 4

1 0.802
3 0.803 0.803
5 0.805 0.805 0.803

J
β

0 2 4

1 0.783
3 0.803 0.799
5 0.808 0.803 0.792

(a) (b)

Table 3: Effect of the number of local samples and burn-in steps for (a). paMedLDAave ; and (b).
paMedLDAgibbs .

Notice that the first β samples are discarded as burn-in steps. To understand how large β is suf-
ficient, we consider the settings of the pairs (J , β) and check the prediction accuracy of Algorithm
2 for K = 40. Based on the sensitivity analysis of I and J , we fix I = 1 for paMedLDAgibbs ,
paMedHDPgibbs and I = 2 for paMedLDAave , paMedHDPave . The results are shown in Table
3. We can see that accuracy scores closer to the diagonal of the table are relatively lower, while
settings with the same number of kept samples, e.g. (J , β) = (3, 0), (5, 2), (9, 6), yield similar
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results. Therefore, the number of kept samples exhibits a more significant role in the performance
of BayesPA topic models than the number of burn-in steps.

9. Conclusions and Future Work

We present online Bayesian Passive-Aggressive (BayesPA) learning as a new framework for max-
margin Bayesian inference on streaming data. For fixed but large-scale data sets, online BayesPA
effectively explores the statistical redundancy by repeatedly drawing samples and leads to faster
convergence. We show that BayesPA subsumes the online PA, and more significantly generalizes
naturally to incorporate latent variables and to perform nonparametric Bayesian inference, there-
fore providing great flexibility for explorative analysis. We provide provable regret bounds for the
BayesPA models using either an averaging classifier or a Gibbs classifier. Based on the ideas of
BayesPA, we develop efficient online learning algorithms for max-margin topic models as well as
their nonparametric extensions which can automatically infer the unknown topic numbers. Em-
pirical experiments on 20newsgroups and a large-scale Wikipedia multi-label data set demonstrate
significant improvements on time efficiency, while maintaining comparable results.

As for future work, we are interested in developing highly scalable, distributed (Broderick et al.,
2013) BayesPA learning paradigms, which will better meet the demand of processing massive real
data available today. We are also interested in applying BayesPA to develop efficient algorithms for
more sophisticated max-margin Bayesian models, such as the latent feature relational models (Zhu,
2012).
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Appendix A.

We show the objective in (34) is an upper bound of that in (12), that is,

L
(
q(w,Φ,Zt,λt)

)
− Eq

[
log(ψ(Yt,λt|Zt,w))

]
≥ L

(
q(w,Φ,Zt)

)
+ 2c

∑
d∈Bt

Eq
[
(ξd)+

]
,

(52)

where L(q) = KL[q||qt(w,Φ)q0(Zt)].
Proof We first have

L
(
q(w,Φ,Zt,λt)

)
= Eq

[
log

q(λt | w,Φ,Zt)q(w,Φ,Zt)
qt(w,Φ,Zt)

]
,

and

L
(
q(w,Φ,Zt)

)
= Eq

[
log

q(w,Φ,Zt)

qt(w,Φ,Zt)

]
.
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Comparing these two equations and canceling out common factors, we know that in order for (52)
to make sense, it suffices to prove

H[q′]− Eq′ [log(ψ(Yt,λt|Zt,w)] ≥ 2c
∑
d∈Bt

Eq′ [(ξd)+] (53)

is uniformly true for any given (w,Φ,Zt), where H(·) is the entropy operator and q′ = q(λt |w,Φ,Zt).
The inequality (53) can be reformulated as

Eq′
[
log

q′

ψ(Yt,λt|Zt,w)

]
≥ 2c

∑
d∈Bt

Eq′ [(ξd)+] (54)

Exploiting the convexity of the function log(·), i.e.

−Eq′

[
log

ψ(Yt,λt|Zt,w)

q′

]
≥ − log

∫
λt

ψ(Yt,λt|Zt,w) dλt,

and utilizing the equality (33), we then have (54) and therefore prove (52).
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