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Outline

# Probabilistic methods for supervised learning
# Naive Bayes classifier

# Logistic regression

4 Exponential family distributions

# Generalized linear models




An Intuitive Example

Grasshoppers Katydids
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With more data ...

# Build a histogram, e.g., for “Antenna length”
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Empirical distribution

@ Histogram (or empirical distribution)

# Smooth with kernel density estimation (KDE):

[Courtesy of E. Keogh] /




Classification?

& Classify another insect we find. Its antennae are 3 units long

# Is it more probable that the insect is a Grasshopper or a
Katydid?

Antennae length 1s 3

[Courtesy of E. Keogh] /




Classification Probability

P(Grasshopper | 3)=10/(10 + 2) = 0.833
P(Katydid | 3 ) =2/(10 + 2) =0.166

Sty H ,u Antennae length 1s 3

[Courtesy of E. Keogh] /




Classification Probability

P(Grasshopper |7 )=3/(3 +9) =0.250
P(Katydid | 7 ) =9/(3+9) =0.750

7”7 N

Antennae length is 7 e e

[Courtesy of E. Keogh] /




Classification Probability

P(Grasshopper |5 ) =6/ (6 + 6) =0.500
P(Katydid | 5 ) =6/(6+6) = 0.500
66

Antennae length 1s §

[Courtesy of E. Keogh] /




Naive Bayes Classifier

# The simplest “Category—feature” generative model:

Legs

o Category: “bird”, “Mammal”

o Features: “has beak”, “can fly” ...

.




Naive Bayes Classifier

# A mathematic model:

o Naive Bayes assumption: features X1,...,X4 are

conditionally independent given the class label Y

{bird, mammal}

has beak? can fly? has fur? has four legs?

A joint distribution: prior likelihood
/

p(%, ) = p(y)p(x]y)




Naive Bayes Classifier

# A mathematic model:

{bird, mammal}

has beak? can fly? has fur? has four legs?

Inference via Bayes rule:

p(y|x)

Bayes’ decision rule:

y" = arg ryneaagcp(yIX)




Bayes Error

# Theorem: Bayes classifier is optimal!

[ ply=1}x) if we decide y =0
plerrorfx) = { p(y = 0|x) if we decide y =1

p(error) = /OO p(error|x)p(x)dx




Naive Bayes Classifier

# How to learn model parameters?

o Assume X are d binary features, Y has 2 possible labels

{bird, mammal}

s if y=1 (z.e., bird
p(y|m) = { v )

1 —m7 otherwise

has beak? can ﬂy? has fur? has four legs?

: if o, =1
p(zjly=0,q) = { 103 !

1 —qp; otherwise plz;ly=1,q) = {

1 —¢q; otherwise

o How many parameters to estimate’

- /




Naive Bayes Classifier

# How to learn model parameters?
# A set of training data:

0 (1,1,0,0; 1)

5 (1,0,0,0; 1)

1 (0,1, 1,0;0)

5 (0,0,1, 1;0)

# Maximum likelihood estimation (N: # of training data)

N
p({xi,yilm,q}) = | [ p(xi, wilm, q)
1=1




Naive Bayes Classifier

# Maximum likelihood estimation (N: # of training data)

(7,q) = arg Ir;raqxp({xi, yi Hm, q)

(7,q) = arg max log p({x;, y: }|7, q)

# Results (Count frequency! Exercise?):

. M N? . NY
T=—— 5 0

N e A

N
Ny, = ZI(yZ = k) : # of data in category k
i=1

N
N,z = Zl(yi =k, z;; =1): # of data in category k that has feature j /




Naive Bayes Classifier

# Data scarcity issue (zero-counts problem):

LM NN

N QOj:FO Chj:ﬁl

A

o How about ifsomefeatures do not appear?

# Laplace smoothing (Additive smoothing):

. Ng—l—oz
qo]—NO—FZOJ
a >0
) N*lj—l—oz
d1; —

N1+204




A Bayesian Treatment

# Put a prior on the parameters

po(qojla1, as) = Beta(ay, ag)

351
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A Bayesian Treatment

# Maximum a Posterior Estimate (MAP):
¢ = argmaxlog p(ql{xi,yi})

— arg mqax log po(q) + log p({xi, v: }|q)

# Results (Exercise?):

A Ng—|—041—1
qu_N0+oz1+oz2—2
R Ni?-|—0é1—1
q1;

:N1+041+042—2




A Bayesian Treatment

# Maximum a Posterior Estimate (MAP):

qo;

Ng—|—051—1
—NO-I—Oél—I—OéQ—Z

# It a1 =a2=1 (non-informative prior), no ettect

o MLE is a special case of Bayesian estimate

# Increase @1, a2 , lead to heavier influence from prior

35r

3k

25+

o =1.0, o,=0.
o =1.0, o, =1,
o =1.0, 0,=5.
o,=10, @,=
o, =90, o=




Bayesian Regression
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# Goal: learn a function from noisy observed data
o Linear Jrl?lnea,r — {f . f = wx + ba w, b e R}

o Polynomial fpolynomial = {f : f = Zwkxk, Wi € R}
. k

a ...




Bayesian Regression

# Noisy observations

y = f(x) + ¢, where e ~ N(0,02)

. R . . . T
# Gaussian likelihood function for linear regression f(xi) =w x;

Y|X W Hp yz‘xu — ( TW,U%I)

# Gaussian prior (Conjugate)

W ~v N (0, Ed)
# Inference with Bayes’ rule

- 1
o Posterior p(w|X,y) :N(O__QA_lXY7A_1)7 where A — UTIQXXT —I—Z;l

Q Marginal likelihood
o Prediction p(y|X) :/p(y|X,w)p(W)dW

1
e Xoy) = [ 7 e wlp(wl Xy )i = A7 (ol A7y A7, )

n




Extensions of NB

# We covered the case with binary features and binary class

labels

# NB is applicable to the cases:
o Discrete features + discrete class labels
o Continuous features + discrete class labels

D e o o

# More dependency between features can be considered
o Tree augmented NB

D e o o




Gaussian Naive Bayes (GNB)

# E.g.: character recognition: feature X is intensity at pixel i:

# The generative process 1S

Y ~ Bernoulli()
P(Xi[Y = y) = N(piy, o7,

o Different mean and variance for each class k and each feature i

# Sometimes assume variance is: @
a independent ofY (i.e., 0; )
a or independent of X (i.e., 0y)

o or both (i.e., 0) @@

/




Estimating Parameters & Prediction
# MLE estimates

o 1 T

pixel iin

training image n

k= — ) Y (@i — frir)* Iy = k)

n

# Prediction:

h(x) = argmaXP HP z;|y)




™~

What you need to know about NB classifier

# What’s the assumption
& Why we use it
# How do we learn it

# Why is Bayesian estimation (MAP) important




Linear regression and linear classification

Linear fit

Linear decision boundary




What’s the decision boundary of NB?

# Is it linear or non-linear?

# There are several distributions that lead to a linear decision

boundary, e.g., GNB with equal variance
P(Xi|Y =y) = N(My;U?)

a Decision boundary (77):

=0

d
- P(X;|lY =0)P(Y =0
og Ll PLSLY = 0P =0

[T, POGIY = )P(Y = 1)

L —m i — Hio Hio — M1

= w0+2wixi:0




Gaussian Naive Bayes (GNB)

# Decision boundary (the general multivariate Gaussian case):

X1 —— —3- X 4

P = P(Y =0), P,=P(Y =1)
pi(X) = p(X|Y = 0) = N(My, 1)
pa(X) = p(X|Y = 1) = N(My, %)




The predictive distribution of GNB

& Understanding the predictive distribution

ply = 1,x|p, 2, m)
p(x|p, X, )

p(y: ]“X?/’L?E?ﬂ-) —

# Under naive Bayes assumption:

1

=0,x|p,%,m)
1 p(y 3 3y
_l_ p(y:1,x|ﬂ,2,ﬁ)

1

(1—m) TT; N (| pio,07)
L+ T V@ned

1
1+ exp(—wTx — wp)

p(y: ]‘|X7u9277‘-) —

# Note: For multi-class, the predictive distribution is softmax!




Generative vs. Discriminative Classifiers

# Generative classifiers (e.g., Naive Bayes)
a Assume some functional form for P(X,Y) (or P(Y) and P(X|Y))
o Estimate parameters of P(X,Y) directly from training data

o Make prediction
y = argmax P(x,Y = y)
o But, we note that y
y = argmax P(Y = y|x)
Y

@ Why not learn P(Y | X) directly? Or, why not learn the decision

boundary directly?
# Discriminative classifiers (e.g., Logistic regression)
a Assume some functional form for P(Y | X)

o Estimate parameters of P(Y | X)) directly from training data




Logistic Regression
# Recall the predictive distribution of GNB!

# Assume the following functional form for P(Y | X)
Py =1|x) =

1 + exp(—(wo + w'x))

a Logistic function (or Sigmoid) applied to a linear function of the

data (for @ = 1): 12 |
4

1L

1 08 F L) W ]

wOé (U) - 1 _|_ eXp ( —OZ’U) Ej : % Incre:sing :
02}

a — 00 : step function 0 - J
10 8 -6 -4 -2 0 2 4 6 g 10

t

use a large v can be good for some neural networks

/




Logistic Regression

# What's the decision boundary of logistic regression? (linear

or nonlinear?)

1
P J— 1 p—
v =1x) 1 + exp(—(wo + w'x))
w'x + woy =0
PY =1
log ( ) =0
P(y = 0[x)

wa—l—won

Logistic regression 1s a linear classifier!

-




Representation
& Logistic regression

1
1 + exp(—(wp + w'x))

# For notation simplicity, we use the augmented vector:

Py =1[x) =

input features : ( : ) model weights : ( o )

X W

o Then, we have

1
1 + exp(—w'x)

Py =1[x) =




Multiclass Logistic Regression

# For more than 2 classes, where ¥ € {1,..., K}, logistic

regression classifier is defined as

exp(w,;rx)
Vk < K : P(Y =klx) =
1+Zg 1 eXp( ;I_ )
1
PlY = K|x) =

1+ ZJKZ_ll exp(w X)

o Well normalized distribution! No Weights for class K!

@ Is the decision boundary still linear?




Training Logistic Regression

# We consider the binary classification

1

P = 1 =
y = 1x) 1 4+ exp(—w'x)

& Training data D = {(x;, y;) N

# How to learn the parameters?

# Can we do MLE? N

Wirp = argmaxH P(x;,y;|w)

o =1
a No! Don’t have a model for P(X) or P(X|Y)

# Can we do large—margin learning?




Maximum Conditional Likelihood Estimate

# We learn the parameters by solving

N
W = argmaxH P(y;|x;, W)
R

# Discriminative philosophy — don’t waste effort on
learning P(X), focus on P(Y | X) — that’s all that matters for

classification!




Maximum Conditional Likelihood Estimate

N
W = argmaXH P(y;|x;, W)
o=l
1

_P pu— 1 p—
= 1x) 1 4 exp(—w'x)

# We have: N
L(w) = IOQH P(yi|xi, w)
=1

1=

=3 [~ log(1 + explo’ )]

™~




4 N

Maximum Conditional Likelihood Estimate

w = argmax L(w)

L(w) = Z [insz- — log(1 + exp(WTxi))]
# Bad news: no closed-form solution!

# Good news: L£(W) is a concave function of w!

o Is the original logistic function concave?

K Read [S. Boyd, Convex Optimization, Chap. 1] for an introduction to convex optimization. /




Optimizing concave/convex function

# Conditional likelihood for logistic regression is concave

# Maximum of a concave function = minimum of a convex

function

o Gradient ascent (concave) / Gradient descent (convex)

Gradient: DL (w)
owo
Vwl(w) = :
OL(w)
8wd

2 Update rule:
Wit1 = Wy =+ ﬁvwﬁ(wﬂm

/




Gradient Ascent for Logistic Regression

4 Property of sigmoid function

B -0

# QGradient ascent algorithm iteratively does:

N
Wiyl < Wi + ﬁzxz‘ (?Jz‘ — Mﬁ)
1=1
o where ug = Py = 1|X,L-, W, ) is the prediction made by the

current model

4 Until the change (of objective or gradient) falls below some
threshold




Issues

# Gradient descent is the simplest optimization methods, faster

convergence can be obtained by using

o E.g., Newton method, conjugate gradient ascent, IRLS

(iterative reweighted least squares)

# The vanilla logistic regression often over-fits; using a

regularization can help a lot!




Effects of step-size

# Large 77 => fast convergence but larger residual error; Also
possible oscillations

# Small 7 => slow convergence but small residual error




The Newton’s Method

# AKA: Newton-Raphson method
# A method that finds the root of: f(x) =0

f(zy)
/()

L1 = Ty —

/

Funktion
Tangente

For Wikipedia

/




The Newton’s Method

# To maximize the conditional likelihood

L(w) = Z [yzw x; — log(1 + exp(w XZ))]

o We need to find w™ such that
VL(w*) =0
# So we can perform the following iteration:
Wipl — Wi+ H 'V £L(W)]w,
o where H is known as the Hessian matrix:

H = v%vﬁ(w)‘vvt




Newton’s Method for LR

# The update equation
Wt—l—l < W, + H_lvwﬁ(W)‘wt
o where the gradient is:

Vwl(W)|w, = Z(yz — )% = X(y — )

7

i = ZD(WJ X;)
o The Hessian matrix is:
H=V2L(W)|w = Z“@ — )xx] = XRX'

where Ry = p;(1 — 1)




Iterative reweighted least squares (IRLS)

# In least square estimate of linear regression, we have
w=(XX")"Xy
# Now, for logistic regression
Wi = Wy + H 'V L(w,)
=w; — (XRX ") ™' X (pn —y)
= (XRX")""™{XRX'w, — X(p—y)}
= (XRX'")"'XRz

where z = X 'w, — R (u — y)




Convergence curves
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a In each figure, red for IRLS and blue for gradient descent




LR: Practical Issues
# IRLS takes O( N + d3) per iteration, where N is # training

points and d is teature dimension, but converges in fewer
iterations

# Quasi-Newton methods, that approximate the Hessian, work
faster

# Conjugate gradient takes O( N d) per iteration, and usually works

best in practice

# Stochastic gradient descent can also be used if N is large c.f.
perceptron rule




Gaussian NB vs. Logistic Regression

GNB LR
VS

Gaussian parameters Regression parameters

& Representation equivalence

o But only in some special case! (GNB with class independent

variances)

# What’s the differences?
o LR makes no assumption about P(X|Y) in 1earning

o They optimize different functions, obtain ditferent solutions




Generative vs. Discriminative

# Given infinite data (asymptotically)

a (1) If conditional independence assumption holds,

discriminative and generative NB perform similar

€Dis,co ™~ €Gen,oco

a (2) If conditional independence assumption does NOT hold,

discriminative outperform generative NB

€EDis,co0 < €Gen,oco

[Ng & Jordan, NIPS 2001]




Generative vs. Discriminative

# Given finite data (N data points, d features)

d
€Dis,N < €Dis, 00 + O ( ﬁ)

log d
€Gen,N § €Gen,oc0 + O ( OJ%[ )

o Naive Bayes (generative) requires [V = O(logd) to converge
to its asymptotic error, whereas logistic regression
(discriminative) requires N = O(d) -

@ Why?
0 “Independent class conditional densities” — parameter estimates

are not coupled, each parameter is learnt independently, not
jointly, from training data




Experimental Comparison

# UCI Machine Learning Repository 15 datasets, 8 continuous

features, 7 discrete features

pirna |sartinuous) adult jcanfinuous) basten (pradict f = median price, conbifous)
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ED II bl:l 'I:II 3
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A 1I “"..\‘_
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What you need to know

# LR is a linear classifier
a Decision boundary is a hyperplane
# LR is learnt by maximizing conditional likelihood
a No closed-form solution
o Concave! Global optimum by gradient ascent methods
4 GNB with class-independent variances representationally
equivalent to LR
a Solutions differ because of objective (loss) functions
# In general, NB and LR make different assumptions
o NB: features independent given class, assumption on P(X|Y)

o LR: functional form of P(Y | X), no assumption on P(X|Y)

# Convergence rates:
o GNB (usually) needs less data
o LR (usually) gets to better solutions in the limit




Exponential family

# For a numeric random variable X

p(x|n) = h(x)exp (0 T(x) — A(n)) (%,)

1 N

= mh(x) exp (T]TT(X))

is an exponential family distribution with natural (canonical)
parameter 77

# Function T(x) is a sufficient statistic.
4 Function A(7)) = log Z(7) is the log normalizer.

# Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma, ...




Recall Linear Regression

# Let us assume that the target variable and the inputs are

related by the equation: v

yi =0'x; + ¢

where € is an error term of unmodeled effects or \——

# Now assume that ¢ follows a Gaussian N(0,0), then we have:

1 Y; — BTXi 2
p(yilxi, 0) = N CXp (—( 952 ) )




Recall: Logistic Regression (sigmoid
classifier)

# The condition distribution: a Bernoulli

p(yx) = p(x)"(1 — p(x)) "™
where ¢ is a logistic function

1

X)) =
M() 1—'—6_9TX

# We can used the brute-force gradient method as in LR

# But we can also apply generic laws by observing the p(Y|X) is an
exponential family function, more specifically, a generalized linear

model!




Example: Multivariate Gaussian
Distribution

# For a continuous vector random variable x € R%

i) = s e (—y x-S - ) )

\Moment param

ter
— (273)(1/2 exp (—%tr(E_lxxT) +p' Y x - %MTE_lu — log ED
4 Exponential family representation Natural parameter
n= [E‘lu;—%veC(E‘l)] = [ vec(n,)] nf{ndﬁz:/—%ﬂ‘l
T(x) = [x; vec(xx')]
Alm) = 55 - log 8] = — S tr(mamyn] ) — 5 log(~20n.)

h(x) = (21)"?

2
a Note: a d-dimensional Gaussian is a (d + d ) -parameter distribution with a (d -+ d2)—clcmcnt

vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained and

have lower degree of freedom)

/




Example: Multinomial distribution

# For a binary vector random variable x ~ multi(X|7T) :

p(x|m) = Hﬂ' = exp (Z X; lnm)

— oxp (;mmﬁ (1 Z;x) In (1 dz;lvr))

d—1 d—1
= exp (Z.ibih’l W’&d_l + In (127@))
i=1 -2 i=1

T 2ui=1 T

& Exponential family representation

n = [In(m;/7q); 0]




Why exponential family?

# Moment generating property (proof?)
VaAn) = Vylog Z(n) = -+ = Eyxim)[T(x)]

VZA(n) =--- = Var[T(x)]




Moment estimation

# We can easily compute moments of any exponential family

distribution by taking the derivatives of the log normalizer
A(m).

# The qth derivative gives the qth centered moment.

V,A(n) = mean

2 .
Vv, A(n) = variance




Moment vs canonical parameters

4 The moment parameter u can be derived from the natural
(canonical) parameter

Vi An) = Eppn [T(x)] = p

® A(7) is convex since

A\B .

, e
V,A(n) = Var|T'(x)] > 0 LS

# Hence we can invert the relationship and infer the canonical
parameter from the moment parameter (1-to-1):

n £ (p)

o A distribution in the exponential family can be parameterixed not Onl}' by 1) — the canonical
parameterization, but also by ¢ —the moment parameterization.




Sufficiency

& For p(X| 6), T(x) is sufficient for @if there is no information in
X regarding &beyond that in T(x).

2 We can throw away X for the purpose of inference w.r.t. 0.

P(O1T (0, %)= P(O1 T ()
P(X|T(,0) = p(X|T ()

o The Neyman factorization theorem

T(X)is sufficient for @if
PO T (%), 6) =y (T(X), O)y, (X, T (X))
= p(x]6) = g(T (x), O)h(x, T (x)) J

0 Bayesian view

| Frequentist view




-

11D Sampling for Exponential Family

4 For exponential family distribution, we can obtain the sufficient
statistics by inspection once represented in the standard form

p(x|n) = h(x)exp(n'T(x) — A(n)

o Sufficient statistics:
T'(x)

# For IID sampling, the joint distribution is also an exponential
famlly

p(D|n) = Hh Jexp (0" T(x;) — A(n))

= (H h(Xi)) exp (ﬂT ZT(Xz') - NA("?))

o Sufficient statistics:
E T(x




MLE for Exponential Family

4 For iid data, the log—likelihood is

Zloghxn ( TZTXn) A(n)

# Take derivatives and set to zero:

Vo L(n; D ZT (xn) — NV, A(n) =

ﬁ’M LE — N Z T(Xn) Only involve sufficient stiatistics!

mn
# This amounts to moment matching.

# We can infer the canonical parameters using NyiLE = w(ﬂ’M LE)




Examples

T(x
1
Am) =5
h(x) = (2m)~4/?
# Multinomial:
n = [ln(m—/ﬂd
T(x)=x
Aln) = —In (1 -
h(x)=1
# Poisson: 71 =1log\
T(x)==x
Aln) = =e¢"
h(z) = L

n' S+ log 3]




Generalized Linear Models (GLIMs)

& The graphical model

o Linear regression
o Discriminative linear classification

o Commonality:
del T
el B 1) = 1= (67x)
What is p()? the cond. dist. of V.

What is f()? the response function.

& GLIM
o The observed input X is assumed to enter into the model via a linear
o . T
combination of its elements 5 =0 X

o The conditional mean /£ is represented as a function f(&) of & where fis
known as the response function

o The observed output Y is assumed to be characterized by an exponential
family distribution with conditional mean /1.




GLIM, cont. EXP

69\\\\‘ f ///;;//—\\;;;:\\

pU— 1=y
X /(’K
p(y|7) =h(y)expir" ()y - A@)}
= p(y|7,4)=h(y,9)exp it (7" (X)y - A) )|

# The choice of exp family is constrained by the nature of the data Y

a Example: y is a continuous vector = multivariate Gaussian

yisa class label = Bernoulli or multinomial
# The choice of the response function
o Following some mild constrains, e.g., [0,1]. Positivity ...
o Canonical response function:

In this case @'X directly corresponds to canonical parameter 77.
y P P

f=y"()




MLE for GLIMSs
& Log—likelihood

. Z log h(yn) + Z (Myn — A1)

where 1, = (1), fin = f(6) and €, = 67x,
# Derivative of Log—likelihood

dA(n,

dny,

- Z = in) Ve This is a fixed point function
because u is a function of ¢




MLE for GLIMs with canonical response

& Log likelihood
Z log h(yn) + z Xnyn - 7771))

# Derivative of Log- hkehhood

dA(n,
VoL =) (Xnyn - dq(: )Venn)

=) (Yo — pn)X
" This is a fixed point function

= X(y — p) because u is a function of
# Online learning for canonical GLIMs

o Stochastic gradient ascent = least mean squares (LMS)

algorithm:
5 0111 =0+ p(yn — M;)Xn

where ! = f(0,)x,) and p is a step size




MLE for GLIMs with canonical response

& Log likelihood
Z log h(yn) + z Xnyn — 7771))

# Derivative of Log- hkehhood

dA(n,
VoL =) (Xnyn - dq(: )Venn)

=) (Yo — pn)X
" This is a fixed point function

= X(y — p) because u is a function of 6
# Batch learning applies

a E.g., the Newton’s method leads to an Iteratively Reweighted
Least Square (IRLS) algorithm




What you need to know

& Exponential family distribution
# Moment estimation
# Generalized linear models

# Parameter estimation of GLIMs




