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An Intuitive Example 

 

[Courtesy of E. Keogh] 



With more data … 

Build a histogram, e.g., for “Antenna length” 

[Courtesy of E. Keogh] 



Empirical distribution 

Histogram (or empirical distribution) 

 

 

 

 

Smooth with kernel density estimation (KDE): 

[Courtesy of E. Keogh] 



Classification? 

Classify another insect we find. Its antennae are 3 units long 

Is it more probable that the insect is a Grasshopper or a 

Katydid? 

[Courtesy of E. Keogh] 



Classification Probability 
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[Courtesy of E. Keogh] 



Classification Probability 

 

[Courtesy of E. Keogh] 



Classification Probability 

 

[Courtesy of E. Keogh] 



Naïve Bayes Classifier 

The simplest “category-feature” generative model: 

 Category: “bird”, “Mammal” 

 Features:  “has beak”, “can fly” … 



Naïve Bayes Classifier 

A mathematic model: 

 Naive Bayes assumption: features                         are 

conditionally independent given the class label 

Y

A joint distribution： 

p(x; y) = p(y)p(xjy)

{bird, mammal} 

has beak? can fly? has fur? has four legs? 

prior likelihood 



Naïve Bayes Classifier 

A mathematic model: 

p(yjx) =
p(x; y)

p(x)
=

p(y)p(xjy)

p(x)

Bayes’ decision rule： 
y
¤

= argmax
y2Y

p(yjx)

Y {bird, mammal} 

has beak? can fly? has fur? has four legs? 

Inference via Bayes rule： 



Bayes Error 

Theorem: Bayes classifier is optimal! 

p(errorjx) =
p(y = 1jx) if we decide y = 0

p(y = 0jx) if we decide y = 1

p(error) =
1

¡1

p(errorjx)p(x)dx



Naïve Bayes Classifier 

How to learn model parameters? 

 Assume X are d binary features, Y has 2 possible labels 

 

 

 

 

 

 

 

 

 

 How many parameters to estimate? 

p(yj¼) =
¼ if y = 1 (i:e:; bird)

1¡ ¼ otherwise
Y {bird, mammal} 

has beak? can fly? has fur? has four legs? 



Naïve Bayes Classifier 

How to learn model parameters? 

A set of training data: 

 (1, 1, 0, 0; 1) 

 (1, 0, 0, 0; 1) 

 (0, 1, 1, 0; 0) 

 (0, 0, 1, 1; 0) 

Maximum likelihood estimation (N: # of training data) 



Naïve Bayes Classifier 

Maximum likelihood estimation (N: # of training data) 

 

 

 

 

 

Results (count frequency! Exercise?): 



Naïve Bayes Classifier 

Data scarcity issue (zero-counts problem): 

 

 

 How about if some features do not appear? 

 

Laplace smoothing (Additive smoothing): 



A Bayesian Treatment 

Put a prior on the parameters 



A Bayesian Treatment 

Maximum a Posterior Estimate (MAP): 

 

 

 

 

Results (Exercise?): 



A Bayesian Treatment 

Maximum a Posterior Estimate (MAP): 
 

 

If                       (non-informative prior), no effect 

 MLE is a special case of Bayesian estimate 

Increase           , lead to heavier influence from prior  

 

 

 



Bayesian Regression 

Goal: learn a function from noisy observed data 
 

 Linear 

 

 Polynomial 

 … 



Bayesian Regression 
Noisy observations 
 
 
Gaussian likelihood function for linear regression 
 
 
 
Gaussian prior (Conjugate) 
 
 
Inference with Bayes’ rule 
 Posterior 

 
 Marginal likelihood 
 Prediction 



Extensions of NB 

We covered the case with binary features and binary class 
labels 

 

NB is applicable to the cases: 

 Discrete features + discrete class labels 

 Continuous features + discrete class labels 

 … 

 

More dependency between features can be considered 

 Tree augmented NB 

 … 



Gaussian Naive Bayes (GNB) 

E.g.: character recognition: feature Xi is intensity at pixel i: 

 

The generative process is 

 

 

 Different mean and variance for each class k and each feature i 

 

Sometimes assume variance is: 

 independent of Y (i.e.,      ) 

 or independent of  X (i.e.,      ) 

 or both (i.e.,     ) 

 

Y



Estimating Parameters & Prediction 

MLE estimates 

 

 

 

 

 

 

Prediction: 

pixel i in 

training image n 



What you need to know about NB classifier 

 

What’s the assumption 

Why we use it 

How do we learn it 

Why is Bayesian estimation (MAP) important 

 

 



Linear regression and linear classification 

 
wTx + b = 0 

wTx + b < 0 wTx + b > 0 

Linear fit Linear decision boundary 



What’s the decision boundary of NB? 

Is it linear or non-linear? 

 

There are several distributions that lead to a linear decision 

boundary, e.g., GNB with equal variance 
 

 

 Decision boundary (??): 

 



Gaussian Naive Bayes (GNB) 

Decision boundary (the general multivariate Gaussian case): 



The predictive distribution of GNB 

Understanding the predictive distribution 

 

 

Under naive Bayes assumption: 

 

 

 

 

 

 

Note: For multi-class, the predictive distribution is softmax! 



Generative vs. Discriminative Classifiers 

Generative classifiers (e.g., Naive Bayes) 

 Assume some functional form for P(X,Y) (or P(Y) and P(X|Y)) 

 Estimate parameters of P(X,Y) directly from training data 

 Make prediction  

 

 But, we note that 

 
 

Why not learn P(Y|X) directly? Or, why not learn the decision 
boundary directly? 

 

Discriminative classifiers (e.g., Logistic regression) 

 Assume some functional form for P(Y|X)  

 Estimate parameters of P(Y|X) directly from training data 

 

Y

Y



Logistic Regression 

Recall the predictive distribution of GNB! 
 

Assume the following functional form for P(Y|X) 

 

 

 Logistic function (or Sigmoid) applied to a linear function of the 

data (for              ): 

 
Ã®(v) =

1

1 + exp(¡®v)

: step function 

use a large      can be good for some neural networks 



Logistic Regression 

What’s the decision boundary of logistic regression? (linear 

or nonlinear?) 

 

 

 

Logistic regression is a linear classifier! 



Representation 

Logistic regression 

 

 

For notation simplicity, we use the augmented vector: 

 

 

 

 Then, we have 



Multiclass Logistic Regression 

For more than 2 classes, where                           , logistic 

regression classifier is defined as 

 

 

 

 

 

 Well normalized distribution! No weights for class K! 

 

Is the decision boundary still linear? 



Training Logistic Regression 

We consider the binary classification 

 

 

Training data 

 

How to learn the parameters? 

Can we do MLE? 

 

 

 No! Don’t have a model for P(X) or P(X|Y) 

Can we do large-margin learning?  



Maximum Conditional Likelihood Estimate 

We learn the parameters by solving 

 

 

 

 

Discriminative philosophy – don’t waste effort on 

learning P(X), focus on P(Y|X) – that’s all that matters for 

classification! 



Maximum Conditional Likelihood Estimate 

 

 

 

 

 

We have: 



Maximum Conditional Likelihood Estimate 

 

 

 

 

Bad news: no closed-form solution! 

Good news:             is a concave function of w! 

 Is the original logistic function concave?  

Read [S. Boyd, Convex Optimization, Chap. 1] for an introduction to convex optimization. 



Optimizing concave/convex function 

Conditional likelihood for logistic regression is concave 

Maximum of a concave function = minimum of a convex 

function  

 Gradient ascent (concave) / Gradient descent (convex) 

Gradient: 

Update rule: 



Gradient Ascent for Logistic Regression 

Property of sigmoid function 

 

 

Gradient ascent algorithm iteratively does: 

 

 

 

 where                                             is the prediction made by the 
current model 

 

Until the change (of objective or gradient) falls below some 
threshold 

 

 

Ã ( v ) =
1

1 + e x p ( ¡ v )



Issues 

 

Gradient descent is the simplest optimization methods, faster 

convergence can be obtained by using 

 E.g., Newton method, conjugate gradient ascent, IRLS 

(iterative reweighted least squares) 

 

The vanilla logistic regression often over-fits; using a 

regularization can help a lot! 



Effects of step-size  

 

 

 

 

 

 

 

Large     => fast convergence but larger residual error; Also 
possible oscillations 

Small      => slow convergence but small residual error 



The Newton’s Method 

AKA: Newton-Raphson method 

A method that finds the root of: 

For Wikipedia 



The Newton’s Method 

To maximize the conditional likelihood 

 

 

 We need to find        such that 

 

 

So we can perform the following iteration: 

 

 

 where H is known as the Hessian matrix: 



Newton’s Method for LR 

The update equation 

 

 where the gradient is: 

 

 

 

 The Hessian matrix is: 



Iterative reweighted least squares (IRLS) 

In least square estimate of linear regression, we have 

 

 

Now, for logistic regression 



Convergence curves 

 

 

 

 

 

 

 

 

 Legend:  X-axis: Iteration #; Y-axis: classification error 

 In each figure, red for IRLS and blue for gradient descent 

 

rec.autos 

vs. 

rec.sports.baseball 

comp.windows.x 

vs. 

rec.motorcycles 



LR: Practical Issues 

IRLS takes                       per iteration, where N is # training 
points and d is feature dimension, but converges in fewer 
iterations 

 

Quasi-Newton methods, that approximate the Hessian, work 
faster 

 

Conjugate gradient takes                per iteration, and usually works 
best in practice 

 

Stochastic gradient descent can also be used if N is large c.f. 
perceptron rule 



Gaussian NB vs. Logistic Regression 

 

 

 

 

Representation equivalence 

 But only in some special case! (GNB with class independent 

variances) 

What’s the differences? 

 LR makes no assumption about P(X|Y) in learning 

 They optimize different functions, obtain different solutions 

GNB 

Gaussian parameters 

LR 

Regression parameters VS 



Generative vs. Discriminative 

Given infinite data (asymptotically) 

 (1) If conditional independence assumption holds, 

discriminative and generative NB perform similar 

 

 

 (2) If conditional independence assumption does NOT hold, 

discriminative outperform generative NB 

[Ng & Jordan, NIPS 2001] 



Generative vs. Discriminative 

Given finite data (N data points, d features) 

 

 

 

 

 

 Naive Bayes (generative) requires                            to converge 
to its asymptotic error, whereas logistic regression 
(discriminative) requires                      . 

Why?  

 “Independent class conditional densities” – parameter estimates 
are not coupled, each parameter is learnt independently, not 
jointly, from training data 



Experimental Comparison 

UCI Machine Learning Repository 15 datasets, 8 continuous 

features, 7 discrete features  

Naive Bayes Logistic Regression 



What you need to know 

LR is a linear classifier 
 Decision boundary is a hyperplane 

LR is learnt by maximizing conditional likelihood 
 No closed-form solution 
 Concave! Global optimum by gradient ascent methods 

GNB with class-independent variances representationally 
equivalent to LR 
 Solutions differ because of objective (loss) functions 

In general, NB and LR make different assumptions 
 NB: features independent given class, assumption on P(X|Y) 
 LR: functional form of P(Y|X), no assumption on P(X|Y) 

Convergence rates: 
 GNB (usually) needs less data 
 LR (usually) gets to better solutions in the limit 



Exponential family 

For a numeric random variable X 
 

 

 

 

is an exponential family distribution with natural (canonical) 
parameter h 

 

Function T(x) is a sufficient statistic. 

Function A(h) = log Z(h) is the log normalizer. 

Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,... 

Xn 

N 



Recall Linear Regression 

Let us assume that the target variable and the inputs are 

related by the equation: 

 

 

where ε is an error term of unmodeled effects or random noise 
 

Now assume that ε follows a Gaussian N(0,σ), then we have: 

 

 

 

 



Recall: Logistic Regression (sigmoid 

classifier) 

The condition distribution: a Bernoulli 

 

 
 where m is a logistic function 
 
 

 

We can used the brute-force gradient method as in LR 
 
 
But we can also apply generic laws by observing the p(y|x) is an 
exponential family function, more specifically, a generalized linear 
model! 



Example: Multivariate Gaussian 

Distribution 

For a continuous vector random variable              : 

 

 

 
 

Exponential family representation 

 

 

 

 

 

 
 Note: a d-dimensional Gaussian is a                      -parameter distribution with a                    -element 

vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained and 
have lower degree of freedom) 

Moment parameter 

Natural parameter 



Example: Multinomial distribution 

For a binary vector random variable                            :  

 

 

 

 

 

Exponential family representation 

  



Why exponential family? 

Moment generating property (proof?) 



Moment estimation 

We can easily compute moments of any exponential family 

distribution by taking the derivatives of the log normalizer 

A(h). 

The qth derivative gives the qth centered moment. 

 

 

 

 

 

 

 



Moment vs canonical parameters 

The moment parameter µ can be derived from the natural 
(canonical) parameter 

 

 
A(h) is convex since 

 

 

Hence we can invert the relationship and infer the canonical 
parameter from the moment parameter (1-to-1): 

 
 

 A distribution in the exponential family can be parameterized not only by h - the canonical 
parameterization, but also by m - the moment parameterization.  

4

8

-2 -1 0 1 2

4

8

-2 -1 0 1 2

A 

h 
h 



Sufficiency 

For p(x|q), T(x) is sufficient for q if there is no information in 
X regarding q beyond that in T(x). 

 We can throw away X for the purpose of inference w.r.t. q .  

 

 Bayesian view 

 

 Frequentist view 

 

 The Neyman factorization theorem 

 

 
 T(x) is sufficient for q if   

T(x)  q  X ))(|()),(|( xTpxxTp qq 

T(x)  q  X ))(|()),(|( xTxpxTxp q

T(x)  q  X 

))(,()),(()),(,( xTxxTxTxp 21 qq 

))(,()),(()|( xTxhxTgxp qq 



IID Sampling for Exponential Family 

For exponential family distribution, we can obtain the sufficient 
statistics by inspection once represented in the standard form 

 

 
 Sufficient statistics: 

 

For IID sampling, the joint distribution is also an exponential 
family 

 

 
 
 
 

 Sufficient statistics: 



MLE for Exponential Family 

For iid data, the log-likelihood is 

 

 

 

Take derivatives and set to zero: 

 

 

 

 

 

This amounts to moment matching. 

We can infer the canonical parameters using 

Only involve sufficient stiatistics! 



Examples 

Gaussian: 

 

 

 

Multinomial: 

 

 

 

Poisson: 

 



Generalized Linear Models (GLIMs) 
The graphical model 
 Linear regression 
 Discriminative linear classification 
 Commonality:  
  model  

 
 What is p()? the cond. dist. of Y. 
 What is f()? the response function. 

 

GLIM 
 The observed input x is assumed to enter into the model via a linear 

combination of its elements 

 The conditional mean m is represented as a function f(x) of x, where f is 
known as the response function 

 The observed output y is assumed to be characterized by an exponential 
family distribution with conditional mean m.  

Xn 

Yn 

N 

xTqx 



GLIM, cont. 

The choice of exp family is constrained by the nature of the data Y 
 Example:  y is a continuous vector  multivariate Gaussian 

   y is a class label  Bernoulli or multinomial   

The choice of the response function 
 Following some mild constrains, e.g., [0,1]. Positivity … 

 Canonical response function:                  

 In this case qTx directly corresponds to canonical parameter h. 

 

  )()(exp),(),|( 1 hhh


Ayxyhyp T -

 )()(exp)()|( hhh Ayxyhyp T -

h
fq

x
mx yEXP

EXP

)( -1f



MLE for GLIMs 

Log-likelihood 

 
 

 

 

 

Derivative of Log-likelihood 

 

 

 

 
This is a fixed point function 

because m is a function of q 



MLE for GLIMs with canonical response 

Log-likelihood 

 
 

Derivative of Log-likelihood 

 

 

 

 

Online learning for canonical GLIMs 

 Stochastic gradient ascent = least mean squares (LMS) 
algorithm: 

 

This is a fixed point function 

because m is a function of q 



MLE for GLIMs with canonical response 

Log-likelihood 

 
 

Derivative of Log-likelihood 

 

 

 

 

Batch learning applies  

 E.g., the Newton’s method leads to an Iteratively Reweighted 
Least Square (IRLS) algorithm 

 

This is a fixed point function 

because m is a function of q 



What you need to know 

 

Exponential family distribution 

Moment estimation 

Generalized linear models 

Parameter estimation of GLIMs 


