
Appendix for Message Passing Stein Variational Gradient Descent

A. Detailed Derivation and Proof for Section 3
A.1. Derivation of Eq. (4)

By using the change of variable theorem, we have

∇εEz∼q[T ]
[log p(z)]|ε=0

= ∇εEx∼q[log p(x + εφ(x))]|ε=0

= Ex∼q[∇ε log p(x + εφ(x))|ε=0]

= Ex∼q[∇x log p(x)>φ(x)]

= Ex∼q

[
D∑
d=1

∇xd log p(x)φd(x)

]

=

D∑
d=1

Ex∼q [∇xd log p(x)〈k(x, ·), φd(·)〉H0
]

=

D∑
d=1

〈Ex∼q [∇xd log p(x)k(x, ·)] , φd(·)〉H0
.

The maximum is attained when φ = φ∗/‖φ∗‖HD
with φ∗(·) = Ex∼q[k(x, ·)∇x log p(x)], i.e., the kernel
smoothed gradient G(x; p, q). This relationship holds for
both q and the empirical distribution q̂M .

When converged, G(x; p, q) ≡ 0, which corresponds to∫
X
k(x,y)g(y)dy = 0, ∀x ∈ X

=⇒
∫
X
k(x,y)gd(y)dy = 0, ∀x ∈ X , d ∈ {1, ..., D}

=⇒
∫
X
k(x,y)gd(x)gd(y)dy = 0, ∀x ∈ X , d ∈ {1, ..., D}

=⇒
∫
X×X

k(x,y)gd(x)gd(y)dxdy = 0, ∀d ∈ {1, ..., D}

where g(y) = q(y)∇y log p(y) and gd(y) =
q(y)∇yd log p(y). Given k(x,y) is strictly positive def-
inite, i.e.,

∫
X×X k(x,y)f(x)f(y)dxdy = 0 if and only

if f(y) = 0, ∀y ∈ X , we have gd(y) ≡ 0, ∀d, which
corresponds to

g(y) = q(y)∇y log p(y) = 0, ∀y ∈ X .

In other words, for y such that q(y) 6= 0,∇y log q(y) = 0,
which reflects that q collapses to the modes of p.

A.2. Derivation of Eq. (5)

RBF Kernel Notice that

‖R(x; q)‖∞ ≤ Ey∼q
[
exp(−‖x− y‖22

2h
)
‖x− y‖∞

h

]
,

where the inequality holds according to Jensen’s in-
equality. For notation simplicity, let f(h,x,y) =

exp(−‖x−y‖
2
2

2h )‖x−y‖∞h , we have

‖R(x; q)‖∞ ≤ Ey∼q [f(h,x,y)]

≤ max
h

Ey∼q [f(h,x,y)]

≤ Ey∼q
[
max
h

f(h,x,y)

]
.

By taking gradient of f(h,x,y) over h we can show that
when h = ‖x − y‖22/2, f(h,x,y) attains its maximum,
which is fmax(x,y) = maxh f(h,x,y) = 2e−1 ‖x−y‖∞

‖x−y‖22
.

And we have

‖R(x; q)‖∞ ≤ Ey∼q
[

2

e
· ‖x− y‖∞
‖x− y‖22

]
.

In fact, we can bound ‖R(x; q)‖r with any r ≥ 1 by using
the norm inequality ‖z‖r ≤ D1/r‖z‖∞, i.e.,

‖R(x, q)‖r ≤ Ey∼q
[

2D1/r

e
· ‖x− y‖∞
‖x− y‖22

]
.

IMQ Kernel For the IMQ kernel, we have

‖R(x; q)‖∞ ≤ Ey∼q

 1

2
(

1 +
‖x−y‖22

2h

)3/2

‖x− y‖∞
h

 .
Let f(h,x,y) = 1

2

(
1+
‖x−y‖22

2h

)3/2

‖x−y‖∞
h and take the

maximum over h, we have h =
‖x−y‖22

4 , and corresponding

fmax(h,x,y) =
2

33/2

‖x− y‖∞
‖x− y‖22

,

where the only difference compared to the RBF kernel is
the constant 2

33/2 .
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A.3. Derivation of Proposition 1

Here we derive the kernel smoothed gradient G(x; p, q)
the repulsive force R(x; q) when q(y) = N (y|µ,Σ) is a
Gaussian distribution. This example will be useful for un-
derstanding the relationship between SVGD and dimension-
ality, and will be helpful for understanding the convergence
condition when p is also a Gaussian.

Since q(y) is Gaussian and k(x,y) is the RBF kernel,
q(y)k(x,y) can be regarded as a rescaled Gaussian dis-
tribution over y, i.e., q(y)k(x,y) =
√

det Σ−1

√
2π

exp

(
−1

2
(y − µ)>Σ−1(y − µ)− ||x− y||22

2h

)
=

√
det Σ−1

√
2π

exp

(
−||x||

2
2

2h
− 1

2
µ>Σ−1µ

)
· exp

(
−1

2
y>(Σ−1 +

1

h
I)y + (Σ−1µ+

x

h
)>y

)
=

√
det Σ−1√

det(Σ−1 + 1
hI)
N (y|µ̃, Σ̃)

· exp

(
1

2
µ̃>Σ̃−1µ̃− ||x||

2
2

2h
− 1

2
µ>Σ−1µ

)
=

√
det Σ−1√

det(Σ−1 + 1
hI)
N (y|µ̃, Σ̃)

· exp

(
−1

2
(x− µ)>(Σ + hI)−1(x− µ)

)
=

√
det Σ−1√

det(Σ−1 + 1
hI)

exp

(
−1

2
d(x,µ)

)
N (y|µ̃, Σ̃)

with µ̃ = (Σ−1+ 1
hI)−1(Σ−1µ+ 1

hx), Σ̃ = (Σ−1+ 1
hI)−1

and d(x,µ) = (x− µ)>(Σ + hI)−1(x− µ).

Given q(y)k(x,y), the repulsive force can be computed,
i.e.,

R(x; q) =

√
det Σ−1√

det(Σ−1 + 1
hI)

exp

(
−1

2
d(x,µ)

)
· x− µ̃

h

=
hD/2 exp

(
− 1

2d(x,µ)
)√

det(Σ + hI)
(Σ + hI)−1(x− µ)

and thus we have

‖R(x; q)‖2 ≤
hD/2√

det(Σ + hI)
‖(Σ + hI)−1(x− µ)‖2

by using the fact that exp
(
− 1

2d(x,µ)
)
≤ 1. Then, Assume

the eigenvalue decomposition for Σ is Σ = UΛU> with
Λ = diag(λ1, ..., λD) where λ1 ≥ · · · ≥ λD ≥ C, we have

det(Σ + hI) = det(Λ + hI) =

D∏
d=1

(λd + h) .

and ‖(Σ + hI)−1(x− µ)‖2 ≤ 1
h+λD

‖x− µ‖2.

So, we have

‖R(x; q)‖2 ≤
(1 + λD/h)−1

h
√∏D

d=1(1 + λd/h)
‖x− µ‖2

≤ 1

h(1 + λD/h)D/2+1
‖x− µ‖2

Let f(h) = h(1 + λD/h)D/2+1, and it is easy to show
that when h = DλD/2, f(h) attains its minimum, which
is fmin = DλD

2 (1 + 2/D)D/2+1 = (1 + D/2)λD(1 +

2/D)D/2. Let λmin(Σ) = λD denote the smallest eigen-
value, we have

‖R(x; q)‖2 ≤
1

(1 +D/2)λmin(Σ)(1 + 2/D)D/2
‖x− µ‖2.

By using the norm inequality that ‖z‖∞ ≤ ‖z‖2 ≤
D1/2‖z‖∞, we have

‖R(x; q)‖∞ ≤
√
D

(1 +D/2)λmin(Σ)(1 + 2/D)D/2
‖x−µ‖∞.

This can be further simplified by noting that limD→∞(1 +
2/D)D/2 = e, so for large D, we have the following in-
equality

‖R(x; q)‖2 ≤
1

(1 +D/2)λD(1 + 2/D)D/2
‖x− µ‖2

.
1

(1 +D/2)λmin(Σ)e
‖x− µ‖2

.
1

Dλmin(Σ)
‖x− µ‖2

and corresponding

‖R(x; q)‖∞ .
1√

Dλmin(Σ)
‖x− µ‖∞.

When q is Gaussian whose smallest eigenvalue of Σ is
greater than some constant C, corresponding R(x; q) de-
creases to zero vector as 1/D in ‖ · ‖2 or as 1/

√
D in ‖ · ‖∞.
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A.4. Proof of Proposition 2

The inequality can be decomposed as:

P

(
‖y − x‖∞
‖y − x‖22

≥ 1

Dα

)
= P

(
maxd |yd − xd|
‖y − x‖22

≥ 1

Dα

)
= P

(
maxd |yd − xd|
‖y − x‖22

≥ 1

Dα
, ‖y − x‖22 ≤ b

)
+ P

(
maxd |yd − xd|
‖y − x‖22

≥ 1

Dα
, ‖y − x‖22 > b

)
≤ P (‖y − x‖22 ≤ b) + P

(
max
d
|yd − xd| ≥

b

Dα

)
≤ P (‖y − x‖22 ≤ b) +

D∑
d=1

P

(
|yd − xd| ≥

b

Dα

)

= P (

D∑
d=1

(yd − xd)2 ≤ b) +

D∑
d=1

P

(
|yd − xd| ≥

b

Dα

)

holds for any b, even when b is a function of y, i.e. a random
variable.
We bound the first term by using the Azuma-Hoeffding
inequality(Azuma, 1967):

Theorem 1. Suppose ZD, D ≥ 1 is a martingale such that
Z0 = 0 and |Zd − Zd−1| ≤ cd, 1 ≤ d ≤ D almost surely
for some constants cd, 1 ≤ d ≤ D. Then, for every t > 0,

P (ZD > t) ≤ exp

(
− t2

2
∑D
d=1 c

2
d

)
,

and

P (ZD < −t) ≤ exp

(
− t2

2
∑D
d=1 c

2
d

)
.

To use it, we construct that ZD =
∑D
d=1(yd − xd)

2 −∑D
d=1 E[(yd − xd)2|y1:d−1],∀D ≥ 0 and Z0 = 0 is a mar-

tingale.

First we notice that ZD −ZD−1 = (yD −xD)2−E[(yD −
xD)2|y1:D−1], which satisfies E[ZD|Z1:D−1] − ZD−1 =
E[(yD − xD)2|y1:D−1]− E[(yD − xD)2|y1:D−1] = 0.

And then, since we assume q is with bounded support, we

have

E[|ZD|] = Ep(y1:D)[|ZD|]

=Ep(y1:D)

[∣∣∣∣∣
D∑
d=1

(
(yd − xd)2 − Ep(yd|y1:d−1)[(yd − xd)2]

)∣∣∣∣∣
]

≤
D∑
d=1

Ep(y1:d)

[∣∣(yd − xd)2 − Ep(yd|y1:d−1)[(yd − xd)2]
∣∣]

≤
D∑
d=1

Ep(y1:d)

[
(yd − xd)2 + Ep(yd|y1:d−1)[(yd − xd)2]

]
=2

D∑
d=1

Ep(y1:d−1)

[
Ep(yd|y1:d−1)[(yd − xd)2]

]
=2

D∑
d=1

Ep(yd)

[
(yd − xd)2

]
≤8DC2

≤∞.

So we show that ZD =
∑D
d=1(yd − xd)2 −

∑D
d=1 E[(yd −

xd)
2|y1:d−1] is a martingale.

Now we show that

|Zd − Zd−1| =|(yd − xd)2 − Ep(yd|y1:d−1)[(yd − xd)2]|
≤(yd − xd)2 + Ep(yd|y1:d−1)[(yd − xd)2]

≤8C2.

So, by choosing b =
∑D
d=1 E[(yd − xd)2|y1, ..., yd−1]− t

(notice that b here is indeed a random variable) and using
the inequality, we have

P (

D∑
d=1

(yd − xd)2 < b)

= P (

D∑
d=1

(yd − xd)2 −
D∑
d=1

E[(yd − xd)2|y1, ..., yd−1] < −t)

≤ exp

(
− t2

128DC4

)
When t = DC0/2, we have

P (

D∑
d=1

(yd − xd)2 < b) ≤ exp (−βD) ,

where β = C2
0/(256C4).

Now we bound the second term. Notice that b =∑D
d=1 E[(yd−xd)2|y1, ..., yd−1]− 1

2DC0 ≥ 1
2

∑D
d=1 C0 =

DC0/2 = b′ almost surely as the assumption (b is a random
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variable while b′ is a constant), we have

P

(
|yd − xd| ≥

b

Dα

)
≤ P

(
|yd − xd| ≥

b′

Dα

)
= P

(
yd ≥ xd +

b′

Dα

)
+ P

(
yd ≤ xd −

b′

Dα

)
= P

(
exp(t1yd) ≥ exp(t1(

b′

Dα
+ xd))

)
+ P

(
exp(−t2yd) ≥ exp(t2(

b′

Dα
− xd))

)
≤ E[exp(t1yd)]

exp
(
t1( b′

Dα + xd)
) +

E[exp(−t2yd)]
exp

(
t2( b′

Dα − xd)
)

≤
exp(t1µd + 1

2 t
2
1C

2)

exp
(
t1( b′

Dα + xd)
) +

exp(−t2µd + 1
2 t

2
2C

2)

exp
(
t2( b′

Dα − xd)
)

=
exp(t1µd + 1

2 t
2
1C

2)

exp
(
t1( 1

2D
1−αC2

0 + xd)
) +

exp(−t2µd + 1
2 t

2
2C

2)

exp
(
t2( 1

2D
1−αC2

0 − xd)
)

=
exp( 1

2 t
2
1C

2 + t1(µd − xd))
exp

(
1
2 t1D

1−αC2
0

) +
exp( 1

2 t
2
2C

2 − t2(µd − xd))
exp

(
1
2 t2D

1−αC2
0

)
holds for any t1, t2 > 0, where the first inequality holds
because of the Markov inequality, and the second inequality
holds according to the definition of the sub-Gaussian dis-
tribution. According to Hoeffding’s Lemma, any bounded
random variables |Z| ≤ C corresponds to C-sub-Gaussian
distribution, which satisfies E[et(Z−µ)] ≤ exp(t2C2/2) for
any t ∈ R.

Now let t = t1 = t2 and µ′d = µd − xd, we have

P

(
|yd − xd| ≥

b

Dα

)
≤ exp(t2C2/2 + tµ′d)

exp (tD1−αC2
0/2)

+
exp(t2C2/2− tµ′d)

exp (5tD1−ασ2)

= exp
(
−tD1−αC2

0/2 + t2C2/2
) (
etµ
′
d + e−tµ

′
d

)
≤ 2 exp

(
−tD1−αC2

0/2 + t2C2/2
)

cosh(tµ′d)

By choosing t = 2/C2
0 , we have

P

(
|yd − xd| ≥

b

Dα

)
≤ L exp(−D1−α)

where 2 exp
(
2C2/C2

0

)
cosh(2µzd/C

2
0 ) ≤

2 exp
(
2C2/C2

0

)
cosh(2‖µ − x‖∞/C2

0 ) ≤
2 exp

(
2C2/C2

0

)
cosh(4C/C2

0 ) = L.
Combining these two terms, we have

P

(
‖y − x‖∞
‖y − x‖22

≥ 1

Dα

)
≤ e−βD + LDe−D

1−α

for some β, L ≥ 0. Now, we’d like to give a clean (but
loose) bound by noticing that

e−βD + LDe−D
1−α
≤ (L+ 1)Dmax{e−D

1−α
, e−βD}.

By using some derivations, we can get another bound

De−D
1−α
≤ e−(1−1/e)D1−α

,

and
De−βD ≤ 1

β
e−

1
2βD.

Let δ′ ≥ (L+ 1) max{e−(1−1/e)D1−α
, 1
β e
− 1

2βD}, we have

D ≥ max{exp(
1

1− α
)

1

1− 1/e
log

L+ 1

δ′
,

2

β
log

L+ 1

βδ′
}.

As a result, for any δ′ ∈ (0, 1), there exists D0 =
max{exp( 1

1−α ) 1
1−1/e log L+1

δ′ ,
2
β log L+1

βδ′ }, such that for

any D > D0, we have ‖y−x‖∞‖y−x‖22
≤ 1

Dα with at least proba-
bility 1− δ′.

Now, we begin to prove our proposition. By using the
conclusion in section A.2, we can bound ‖R(x; q̂M )‖∞ as

‖R(x; q̂M )‖∞ ≤
2

Me

M∑
i=1

‖x− y‖∞
‖x− y‖22

.

According to the union bound, we have

P

(
max
i

‖x(i) − x‖∞
‖x(i) − x‖22

≥ D−α
)

≤
M∑
i=1

P

(
‖x(i) − x‖∞
‖x(i) − x‖22

≥ D−α
)

≤MP

(
‖y − x‖∞
‖y − x‖22

≥ D−α
)
,y ∼ q

where the last inequality holds since {x(i)}Mi=1 are samples
from q. Then, we can directly apply the conclusion with
δ = Mδ′. Then, we have, for any δ ∈ (0, 1), there exists
D0 = max{exp( 1

1−α ) 1
1−1/e log (L+1)M

δ , 2
β log (L+1)M

βδ },
such that for any D > D0, we have

‖R(x; q̂M )‖∞ ≤
2

eDα

with at least probability 1− δ.

B. Detailed Derivation and Proof for Section 4
B.1. Derivation of Sub-KL Divergence

Given the condition that

KL(q(xd|x−d)q(x−d)‖p(xd|xΓd)q(x−d))] = 0, ∀d,

we have q(xd|x−d) = p(xd|xΓd) = p(xd|x−d), ∀d.
When both p and q are differentiable, we have
∇xd log q(xd|x−d) = ∇xd log p(xd|x−d),∀d. In other
words, we have ∇x log q(x) = ∇x log p(x), and thus
q(x) = eCp(x). By using the normalization property of
distribution, we have C = 0 and thus q(x) = p(x).
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B.2. Derivation of q[T ](z¬d) = q(z¬d)

Recall the change of variable theorem, we have

q[T ](z) = q(T−1(z))
∣∣det(∇zT

−1)
∣∣ .

Since T¬d is an identity mapping from x¬d to x¬d,∇zT
−1

is a block-wise triangular matrix and the determinant
det(∇zT

−1) satisfies

det(∇zT
−1) = det(∇z¬dT

−1
¬d ) · det(∇zdT

−1
d )

= det(∇zdT
−1
d ).

As a result, we have

q[T ](z) = q(T−1(z))
∣∣det(∇zdT

−1
d )

∣∣ .
So q[T ](z¬d) =∫

q[T ](z)dzd
= q(z¬d)

∫
q(T−1

d (zd)|z¬d)
∣∣det(∇zdT

−1
d )

∣∣ dzd
= q(z¬d)

∫
q[Td](zd|z¬d)dzd = q(z¬d).

B.3. Proof of Proposition 3

First we prove that

∇εKL(q[T ]‖p) =

∇εKL
(
q[Td](zd|zΓd)q(zΓd)

∥∥p(zd|zΓd)q(zΓd)
)
.

Given z = T (x) = [x1, ..., Td(xd), ..., xD]>, as proved in
Section B.2, we have q[T ](z) = q(T−1(z))|det(∇zdT

−1
d )|

and thus

KL(q[T ]‖p) = KL
(
q[Td](zd|z¬d)q(z¬d)

∥∥p(zd|zΓd)q(z¬d)
)

+ KL
(
q(z¬d)‖p(z¬d)

)
.

(1)
When Td : xd → xd + εφd(xSd) where Sd = {d}∪Γd, we
can further decompose the right handside of Eq. (1), i.e.,
KL
(
q[Td](zd|z¬d)q(z¬d)

∥∥p(zd|zΓd)q(z¬d
)

=

KL
(
q[Td](zd|z¬d)q(z¬d)

∥∥q[Td](zd|zΓd)q(z¬d)
)

+ KL
(
q[Td](zd|zΓd)q(z¬d)

∥∥p(zd|zΓd)q(z¬d)
)
.

By using the change of variable, we can find out that

KL
(
q[Td](zd|z¬d)q(z¬d)

∥∥q(zd|zΓd)q(z¬d)
)

=

∫
q[T ](z) log

qTd(zd|z¬d)
qTd](zd|zΓd)

dz

=

∫
q(x) log

q(xd|x¬d)/|det(∇xdTd)|
q(xd|xΓd)/|det(∇xdTd)|

dx

=

∫
q(x) log

q(xd|x¬d)
q(xd|xΓd)

dx

= KL
(
q(xd|x¬d)q(x¬d)

∥∥q(xd|xΓd)q(x¬d)
)
,

which is unrelated with Td (and thus unrelated with ε). As a
result, we have

∇εKL(q[T ]‖p) =

∇εKL
(
q[Td](zd|zΓd)q(zΓd)

∥∥p(zd|zΓd)q(zΓd)
)
.

Now we derive the optimal φ∗d for
min‖φd‖Hd≤1∇εKL(q[T ]‖p)|ε=0. Notice that

KL
(
q[Td](zd|zΓd)q(z¬d)

∥∥p(zd|zΓd)q(z¬d)
)

=

∫
q[Td](zd|zΓd)q(zΓd) log

q[Td](zd|zΓd)

p(zd|zΓd)
dz

= Eq(zΓd
)

[
KL
(
q[Td](zd|zΓd)‖p(zd|zΓd)

)]
.

Following the proof of Theorem 3.1 in (Liu & Wang, 2016),
we have

∇εKL
(
q[Td](zd|zΓd)‖p(zd|zΓd)

)
|ε=0

= −Eq(yd|yΓd
)

[
φd(ySd)∇yd log p(yd|yΓd) +∇ydφd(ySd)

]
.

Combing the above three equations together, we have
∇εKL(q[T ]‖p)|ε=0 =

−Eq(yd|yΓd
)q(yΓd

)

[
φd(ySd)∇yd log p(yd|yΓd)+∇ydφd(ySd)

]
and min‖φd‖Hd≤1∇εKL(q[T ]‖p)|ε=0 corresponds to

max
‖φd‖Hd≤1

Eq(ySd )

[
φd(ySd)∇yd log p(yd|yΓd)+∇ydφd(ySd)

]
.

By using the reproducing property of the RKHS Hd, we
have φd(ySd) = 〈φd(·), kd(·,ySd)〉Hd , and thus

Eq(ySd )

[
φd(ySd)∇yd log p(yd|yΓd) +∇ydφd(ySd)

]
=
〈
φd(·),Eq(ySd )

[
kd(·,ySd)∇yd log p(yd|yΓd) +∇ydkd(·,ySd)

]〉
Hd
.

Following the derivation in (Liu et al., 2016) and
(Chwialkowski et al., 2016), we can show the optimal solu-
tion is φ∗d/‖φ∗d‖Hd where

φ∗d(xSd) =Eq(ySd )

[
kd(xSd ,ySd)∇yd log p(yd|yΓd)

+∇ydkd(xSd ,ySd)
]
.

C. More Experimental Results
C.1. Toy Example for SVGD with the IMQ Kernel

Fig. 1 shows the toy example for SVGD with the IMQ
kernel. We can find out that the behavior of the IMQ kernel
resembles that of the RBF kernel.

C.2. The Impact of Bandwidth

Bandwidth plays an important role in kernel methods. In
this section, we provide additional experimental results for
the impact of bandwidth over the performance of SVGD.
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Figure 1. Results for inferring p(x) = N (x|0, I) using
SVGD with the IMQ kernel, where particles are ini-
tialized by N (x|0, 25I). Top two figures show the
dimension-averaged marginal variance 1

D

∑D
d=1 Varq̂M (xd) and

mean 1
D

∑D
d=1 Eq̂M [xd] respectively, and bottom two figures

show the particle-averaged magnitude of the repulsive force
(PAMRF) 1

M

∑M
i=1 ‖R(x(i); q̂M )‖∞ and kernel smoothed gradi-

ent (PAKSG) 1
M

∑M
i=1 ‖G(x(i); p, q̂M )‖∞ respectively, at both

the beginning (dotted;B) and the end of iterations (solid;E) with
different number of particles M = 50, 100 and 200.

In this experiment, we set the target to be p(x) = N (0, I)
as a D dimensional isotropic Gaussian distribution, and
use M = 100 particles initialized as i.i.d examples from
q0(x) = N (x|0, 25I). We use the RBF kernel k(x, y) =

exp(
−‖x−y‖22

2h ), in which the bandwidth h = Dα−1 ·med2

with α = 1 the median heuristic, α > 1 the overesti-
mated bandwidth and α < 1 the underestimated band-
width. We evaluate the quality of particles in marginal
approximation by using the average marginal variance
1
D

∑D
d=1 Varq̂M (xd), which measures the extent to which

the particles are diverse to each other in marginals. The aver-
age marginal variance of p(x) is 1. For all experiments, we
use Adagrad (Duchi et al., 2011) for step size and execute
10000 iterations to get final particles.

Fig. 2 demonstrates the relationship among marginal par-
ticle diversity, bandwidth choices and dimensions. An in-
teresting observation is that there exists an inflection point
around D = 400 in the curve of overestimated bandwidth
(α = 1.5). The reason is that larger bandwidth leads to
smaller φ̂∗(x) and thus slower convergence, and this phe-
nomenon deteriorates as dimension increases. Thus, for the
bandwidth α = 1, 5 and D > 400, SVGD cannot converge
with 10000 iterations. Excluding this unconverged case, we
can find out that as dimension increases, the approximation
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Figure 2. The average marginal variance of particles generated by
SVGD with different bandwidth versus dimension.

deteriorates no matter which bandwidth is chosen.

Fig. 3 demonstrates the dynamic of SVGD with different
bandwidth. To highlight the difference, we use the log scale
in Y axis. As is shown, bandwidth plays an important role in
the convergence of SVGD: smaller bandwidth leads to faster
convergence. And the gap between different bandwidth be-
comes larger as dimension increases. Another observation
is, when converged, larger bandwidth corresponds to higher
marginal variance, which implies more diverse particles and
better marginal approximation. Among these bandwidth
choices, the median heuristic (α = 1) is somehow the best
one for two reasons: (1) It converges almost as fast as the
underestimated bandwidth (α < 1); (2) It achieves almost
the best marginal variance. Though overestimated band-
width (α > 1) achieves slightly better performance than the
median heuristic when converged, the gap is not as large
as that between the median heuristic and underestimated
bandwidth. For example, in the rightmost figure, the gap of
the average marginal variance between α = 1.25 and α = 1
is much smaller than that between α = 0.75 and α = 1.

C.3. Synthetic Markov Random Fields

Fig. 4 compares EP with other methods mentioned in the
main body. Due to the strong Gaussian assumption, EP
achieves the highest RMSE compared to other methods.

C.4. Image Denoising

Fig. 5 shows more denoising examples apart from Lena in
the main body.
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Figure 5. Extra denoising results on BSD dataset using 50 particles, 240× 160 pixels, σn = 10. The number in bracket is PSNR and
SSIM.


