Appendix for Message Passing Stein Variational Gradient Descent

A. Detailed Derivation and Proof for Section 3
A.1. Derivation of Eq. (4)

By using the change of variable theorem, we have
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The maximum is attained when ¢ = ¢@*/||¢*|no
with ¢*(-) = Ex4[k(x,-)Vxlogp(x)], ie., the kernel
smoothed gradient G(x;p, ¢). This relationship holds for
both ¢ and the empirical distribution §y;.

When converged, G(x;p, q) = 0, which corresponds to
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where g(y) = q¢(y)Vylogp(y) and ga(y) =
q(y)Vy,logp(y). Given k(x,y) is strictly positive def-

inite, i.e., [y, yk(x,¥)f(x)f(y)dxdy = 0 if and only
if fly) =0, Vy € X, we have g4(y) = 0, Vd, which
corresponds to

g(y) = q(y)Vylogp(y) =0, Vy € X.

In other words, for y such that ¢(y) # 0, Vy log¢(y) = 0,
which reflects that ¢ collapses to the modes of p.

A.2. Derivation of Eq. (5)
RBF Kernel Notice that
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where the inequality holds according to Jensen’s in-
equality.  For notation simplicity, let f(h,x,y) =
2
exp(— HX;].?HZ ) fog\loo . we have
IR(*;@)lloc < Eyng [f(h,%,y)]
< m]?XEqu [f(h,x,y)]

ngqfoﬂmxyﬂ.

By taking gradient of f(h,x,y) over h we can show that
when h = ||x — y||3/2, f(h,x,y) attains its maximum,
which is fiax(x,y) = maxy, f(h,x,y) = 2e? HH):;};'HHEO'
And we have
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In fact, we can bound || R(x; ¢)||- with any r > 1 by using
the norm inequality ||z||, < D" ||z c. i.e.,
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IMQ Kernel For the IMQ kernel, we have
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where the only difference compared to the RBF kernel is

the constant 5.
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A.3. Derivation of Proposition 1

Here we derive the kernel smoothed gradient G(x;p, q)
the repulsive force R(x;q) when ¢(y) = N (y|u, X) is a
Gaussian distribution. This example will be useful for un-
derstanding the relationship between SVGD and dimension-
ality, and will be helpful for understanding the convergence
condition when p is also a Gaussian.

Since ¢(y) is Gaussian and k(x,y) is the RBF kernel,
q(y)k(x,y) can be regarded as a rescaled Gaussian dis-
tribution over y, i.e., ¢(y)k(x,y) =
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and d(x, p) = (x — p) (2 + AI) " (x — p).

Given q(y)k(x,
i.e.,

y), the repulsive force can be computed,
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and thus we have
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by using the fact that exp (—1d(x, u)) < 1. Then, Assume
the eigenvalue decomposition for ¥ is 3 = UAU " with
A = diag(A1, ..., Ap) where A; > --- > A\p > C, we have

D
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Let f(h) = h(1 + Ap/h)P/?*1 and it is easy to show
that when h = DAp/2, f(h) attains its minimum, which
i fumin = 232(1 +2/D)P/>*1 = (1 + D/2)Ap(1
2/ D)D/ 2. Let Amin(E) = Ap denote the smallest eigen-
value, we have
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This can be further simplified by noting that limp_,o (1 +
2/D)P/? = ¢, so for large D, we have the following in-
equality

1
R(x; < _
1
< _
S (HD/Q)AM(Z)@IIX 2
1
< - _
and corresponding
IR Qlloe S =[x — ]
X; oS —V———|IX— U||co-
1 \/Ekmin(z) K

When ¢ is Gaussian whose smallest eigenvalue of 3 is
greater than some constant C, corresponding R(x;q) de-
creases to zero vectoras 1/Din || - ||z oras 1/vDin || - || oo-
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A 4. Proof of Proposition 2

The inequality can be decomposed as:
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holds for any b, even when b is a function of y, i.e. a random
variable.

We bound the first term by using the Azuma-Hoeffding
inequality(Azuma, 1967):

Theorem 1. Suppose Zp, D > 1 is a martingale such that
Zo=0and |Zy— Zg—1| < ¢cq,1 < d < D almost surely
for some constants cq,1 < d < D. Then, for every t > 0,
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To use it, we construct that Zp = Zle(yd —xq)? —
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First we notice that Zp — Zp_1 = (yp —zp)? —E[(yp —
2p)?|y1.p_1], which satisfies E[Zp|Z1.p_1] —
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So we show that Zp = Zgzl(yd —xq)% —
74)?|y1.a—1] is a martingale.

S El(ya —

Now we show that

1 Za = Za—1| =|(ya — 2a)* = Epyalyran)[(Wa — 7))
<(ya — xd)z + Ep(yalyra_r) [(ya — xd)z}
<8C2.

So, by choosing b = Y°7"; Bl(ya — 2a)?|y1, -+, ya—1] — ¢
(notice that b here is indeed a random variable) and using
the inequality, we have
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When t = DC\/2, we have

D
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where 3 = C2/(256C*1).

Now we bound the second term. Notice that b =
D D

>ic1 El(va—2a)?|y1s s ya—1]—3DCo = 255 Cp =

DCy/2 = ¥ almost surely as the assumption (b is a random
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variable while b’ is a constant), we have

P(lya—aa > -2 <P (lya—ad > 2L
Ya dl = Pa Yd d Do

b b
=P > — P <zg— —
(yd Zq + Do > + (yd Zq Da>
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+P (exp( toyq) > exp(tg(b—/ - xd))>
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holds for any ¢1,%2 > 0, where the first inequality holds
because of the Markov inequality, and the second inequality
holds according to the definition of the sub-Gaussian dis-
tribution. According to Hoeffding’s Lemma, any bounded
random variables | Z| < C' corresponds to C-sub-Gaussian
distribution, which satisfies E[e*(? ~#)] < exp(t2C?/2) for
any t € R.

Now let t = t1 =ty and p); = pg —

b
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By choosing t = 2/CZ, we have
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2exp (2C%/CE) cosh(4C/C3) =

Combining these two terms, we have
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for some B, L > 0. Now, we’d like to give a clean (but
loose) bound by noticing that
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By using some derivations, we can get another bound
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Now, we begin to prove our proposition. By using the

exp (ta(5D1=*C3 — 4)) conclusion in section A.2, we can bound IR(x; Gar)|loo as
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where the last inequality holds since {x("} | are samples
from g. Then, we can directly apply the conclusion with
d = M¢’. Then, we have, for any § € (0, 1), there exists

L+1)M L+1)M
(+6) ,%log( +1) I

Dy = max{exp(l% 75

« ) 1711/6 log
such that for any D > Dy, we have

2

IR ar) o < —

with at least probability 1 — 4.

B. Detailed Derivation and Proof for Section 4
B.1. Derivation of Sub-KL Divergence

Given the condition that

KL(q(wa|x—a)q(x—a)llp(xalxr,)q(x-a))] = 0, Vd,

we have q(zq4|x_q) = plaglxr,) = p(xqx_q), Vd.
When both p and ¢ are differentiable, we have
Vi logq(xglx—q) = Vau,logp(zi|x_4),¥d. In other
words, we have Vxloggq(x) = Vyxlogp(x), and thus
q(x) = e%p(x). By using the normalization property of
distribution, we have C' = 0 and thus ¢(x) = p(x).
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B.2. Derivation of q;7)(z-4) = q(2z-q)

Recall the change of variable theorem, we have

qir)(2) = (T~ (2)) |det(V,T71)|.

Since T4 is an identity mapping from x_4 to X—g, VT~ 1
is a block-wise triangular matrix and the determinant
det(V,T~1) satisfies
det(V,T71) = det(V,_,T7}) - det(V.,T; ")
=det(V,,T; ).

As aresult, we have

qr)(2) = ¢(T ™' (2)) |det(V., T, )|

So q(r)(z-a) =
fCI[T] dZd
q(z-q) [ q(T; Y(29)|2-a) ‘det Vszffl)’dzd

= q Z-q qud] (2d|2-a)dza = q(Z-a)-

B.3. Proof of Proposition 3

First we prove that

VKL(qmlp) =
VKL(q7,)(2dlzr,)q(zr,)||p(z4l2r,)a(zr,)).

Givenz = T(x) = |21, ..., T4(24q),...,xp] ", as proved in
Section B.2, we have q1)(z) = q(T~Y(z))|det(V., T, )|

and thus

KL(qllp) = KL(qi7,)(24|2-a)q(z-a) ||p(zal2zr, ) a(2-a))

+ KL(q(2-a)||p(2-a))-
(D
When Ty : 24 — T4+ €pq(xs,) where Sg = {d} UT4, we
can further decompose the right handside of Eq. (1), i.e.,

KL(qi7,)(2a|2-4)q(2-a) ||p(za|2r, ) q(2-a) =
KL (g1, (2d|2-4)4(2-a) || g1z, (2al 21, ) 4(2-4))
+ KL(gpz,) (24|21, )a(2-4)||p(2al 21, )4(2-4))

By using the change of variable, we can find out that

KL (g7, (24|2-4)q(2-4)||¢(zalzr, ) a(z-a))
_ / gz (2) log aZa/%2a) )

qr,)(zalzr,)

q(za|x-q)/|det(V,,Ty)|
1 d
/q(x) %8 Y(walxr,)/|det(V,, Ta)]

)
)
Q(xd|xﬁd)
/ 'Td‘XFd) d(zaxr,) ™
KL 2

(¢(zalx-a)q(x-a)||a(zalxr,)q(x-a)),

which is unrelated with T; (and thus unrelated with ¢). As a
result, we have

VKL(qrllp) =
VKL(q7,) (2dlzr,)q(zr,)||p(z4l2r,)a(zr,)).

Now we derive the optimal oy for

minwd”,{dgl VEKL(q[T] |lp)|e=0- Notice that

KL (qr,) (24|2r,)q(z-a) ||p(2alzr, )a(z-a))

qrry) (zalzr,)
= /Q[Td](2d|de)Q(ZF4)10g AT 2 g

pladlar,)
= E,(ar,) [KL(arr (2al2r,)Ip(zalzr,)) )

Following the proof of Theorem 3.1 in (Liu & Wang, 2016),
we have

VKL (g1, (zd|zr,)[p(2al2r,)) =0
= _Eq(yd|ypd) [Qsd(ysd)vyd Ing(ydb’Fd) + vyd ¢d(ysd)] :

Combing the above three equations together, we have
VEKL(Q[T] ||p)|6:0 =

“Eqyalyr,atyr,) [2a(¥50) Vs 108 D(Yalyr,)+Vy,¢a(ys,)]

and minys,||,,, <1 VeKL(g[ry|[p)|e=0 corresponds to

max
l¢allrey <1

By using the reproducing property of the RKHS H,4, we
have ¢4(ys,) = (#a(-), ka(-,¥s,)) 2, and thus

Ey(ys,) [0a(¥5:)Vya 108 p(yalyr,) + Vi, 0a(ys.)]

= (40 Eqtya, [kal¥5,) Vs o8 p(yalyry) + Viukavs,)])

Following the derivation in (Liu et al., 2016) and
(Chwialkowski et al., 2016), we can show the optimal solu-

tion s 6/ |5 1+, where

ba(xs,) =Eq(ys,) [ka(x5,,¥5.)Vya logp(yalyr,)
+ vyd kd(xsd’ ySd)} .

C. More Experimental Results
C.1. Toy Example for SVGD with the IMQ Kernel

Fig. 1 shows the toy example for SVGD with the IMQ
kernel. We can find out that the behavior of the IMQ kernel
resembles that of the RBF kernel.

C.2. The Impact of Bandwidth

Bandwidth plays an important role in kernel methods. In
this section, we provide additional experimental results for
the impact of bandwidth over the performance of SVGD.

Eq(ys,) [#d(¥5.)Vya10g p(yalyr,)+Vy, 0a(ys,)]-

d
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Figure 1. Results for inferring p(x) = N (x]0,I) using
SVGD with the IMQ kernel, where particles are ini-
tialized by N (x|0,25I). Top two figures show the
dimension-averaged marginal variance 3 P Varg,, (zq) and
mean & >0 Eg,, [x4] respectively, and bottom two figures
show the particle-averaged magnitude of the repulsive force
(PAMRF) & 5™ ||R(x"; Gar)|| o and kernel smoothed gradi-
ent (PAKSG) 7 Zfil |G (x;p, Gar) || respectively, at both
the beginning (dotted;B) and the end of iterations (solid;E) with
different number of particles M = 50, 100 and 200.

In this experiment, we set the target to be p(x) = N (0,1)
as a D dimensional isotropic Gaussian distribution, and
use M = 100 particles initialized as i.i.d examples from
qo(x) = N (x|0,25I). We use the RBF kernel k(z,y) =
exp(%;y“g), in which the bandwidth h = D~ - med?
with @« = 1 the median heuristic, « > 1 the overesti-
mated bandwidth and o < 1 the underestimated band-
width. We evaluate the quality of particles in marginal
approximation by using the average marginal variance
5 Zle Varg,, (z4), which measures the extent to which
the particles are diverse to each other in marginals. The aver-
age marginal variance of p(x) is 1. For all experiments, we
use Adagrad (Duchi et al., 2011) for step size and execute
10000 iterations to get final particles.

Fig. 2 demonstrates the relationship among marginal par-
ticle diversity, bandwidth choices and dimensions. An in-
teresting observation is that there exists an inflection point
around D = 400 in the curve of overestimated bandwidth
(v = 1.5). The reason is that larger bandwidth leads to
smaller q?)* (x) and thus slower convergence, and this phe-
nomenon deteriorates as dimension increases. Thus, for the
bandwidth &« = 1,5 and D > 400, SVGD cannot converge
with 10000 iterations. Excluding this unconverged case, we
can find out that as dimension increases, the approximation

1.0

= «

©

> 08 — 0.00

2 — 0.25

> 0.6 '

g — 0.50

= 04 — 0.75

2 — 1.00

z — 1.50
0.0

300 600
Dimension (D)

1000

Figure 2. The average marginal variance of particles generated by
SVGD with different bandwidth versus dimension.

deteriorates no matter which bandwidth is chosen.

Fig. 3 demonstrates the dynamic of SVGD with different
bandwidth. To highlight the difference, we use the log scale
in'Y axis. As is shown, bandwidth plays an important role in
the convergence of SVGD: smaller bandwidth leads to faster
convergence. And the gap between different bandwidth be-
comes larger as dimension increases. Another observation
is, when converged, larger bandwidth corresponds to higher
marginal variance, which implies more diverse particles and
better marginal approximation. Among these bandwidth
choices, the median heuristic (a« = 1) is somehow the best
one for two reasons: (1) It converges almost as fast as the
underestimated bandwidth (a < 1); (2) It achieves almost
the best marginal variance. Though overestimated band-
width (o > 1) achieves slightly better performance than the
median heuristic when converged, the gap is not as large
as that between the median heuristic and underestimated
bandwidth. For example, in the rightmost figure, the gap of
the average marginal variance between « = 1.25and v = 1
is much smaller than that between o = 0.75 and o« = 1.

C.3. Synthetic Markov Random Fields

Fig. 4 compares EP with other methods mentioned in the
main body. Due to the strong Gaussian assumption, EP
achieves the highest RMSE compared to other methods.

C.4. Image Denoising

Fig. 5 shows more denoising examples apart from Lena in
the main body.
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Appendix for Message Passing SVGD
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Figure 5. Extra denoising results on BSD dataset using 50 particles, 240 x 160 pixels, 0, = 10. The number in bracket is PSNR and
SSIM.



