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Inducing Points
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(Titsias, 09; Hensman et al., 13)

inducing 
points

We need approximations for big data.

Solution: Summarize f with a small number of 
inducing variables u.



Inducing Points

inducing 
pointstraining data prediction

(Titsias, 09; Hensman et al., 13)

We need approximations for big data.

Solution: Summarize f with a small number of 
inducing variables u.

The augmented joint distribution is



Inducing Points

inducing 
pointstraining data prediction

Sparse variational GP methods (SVGP)

● Augmented joint distribution:

(Titsias, 09; Hensman et al., 13)



Inducing Points

inducing 
pointstraining data prediction

Sparse variational GP methods (SVGP)

● Augmented joint distribution:

● Variational distribution: 

(Titsias, 09; Hensman et al., 13)



Inducing Points

inducing 
pointstraining data prediction

Sparse variational GP methods (SVGP)

● Augmented joint distribution:

● Variational distribution: 

(Titsias, 09; Hensman et al., 13)



Inducing Points

inducing 
pointstraining data prediction

Sparse variational GP methods (SVGP)

● Augmented joint distribution:

● Variational distribution: 

complexity per update

(Titsias, 09; Hensman et al., 13)



Challenge: Inducing Points Are Expensive

SVGP, M=5 inducing points SVGP, 10 inducing points

Cholesky: cM3 Cholesky: 8cM3

Inducing points 
Can we do better?
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Reinterpreting SVGP

Reparameterization

The variational posterior distribution over         is simply chosen to be the prior distribution.



Reinterpreting SVGP

Reparameterization

● Can we improve the variational approximation for       ?

● Full Gaussian parameterization of            has              cost.



Orthogonal Decomposition
Inducing points 



Reinterpreting SVGP

Variational PosteriorPrior

THE SAME

Inducing points 
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Idea: introducing an additional set of inducing 
variables        to summarize 
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SOLVE-GP lower bound



SOLVE-GP: Orthogonal Inducing Points Are Cheaper

SVGP, M=5 inducing points SOLVE-GP, 5 inducing points + 5 orthogonal

Cholesky: cM3 Cholesky: 2cM3

Inducing points          Orthogonal inducing points
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Understanding SOLVE-GP - Structured Covariance

We can express our variational approximation 
w.r.t. the original GP.

  

The covariance of               induced by the orthogonal 
parameterization                    is

Applying change-of-variable:

Decoupled inducing points (Salimbeni et al., 18) is 
equivalent to enforcing prior covariance in 



Understanding SOLVE-GP - Computational Benefits

N: mini-batch size; M: number of inducing points



Experiments - Large-scale Regression 

HouseElectric (N=1,311,539, D=9)

● SOLVE-GP (1024+1024) has no performance loss compared to SVGP (2048). 

● Both outperforms SVGP (1024).



Experiments - CIFAR 10 Classification

Convolutional Gaussian Processes         

Previous SOTA: 64.6% -> 68.2%

Methods SVGP SOLVE-GP SVGP
M 1K 1.6K 1K+1K 2K*

Test LL -1.59 -1.54 -1.51 -1.48

Test Acc 66.07% 67.18% 68.19% 68.06%

Time /iter 0.241 0.380 0.370 0.474 

Methods SVGP SOLVE-GP SVGP
M 384, 384, 

1K
384+384, 384 

+384, 1K+1K
768,768,2

K*
Test LL -0.88 -0.79 -0.82

Test Acc 78.76% 80.3% 80.33%

Time /iter 0.418 0.752 1.246

(Van der Wilk et al., 2017)

Deep Convolutional Gaussian Processes
(Blomqvist et al., 2018)



Experiments - CIFAR 10 Classification

● No neural networks; no data augmentation.

● Better results compared to exact GPs derived from infinite-width neural networks: 
CNN-GP 67.1% (Novak et al., 2019); CNTK 77.4% (Arora et al., 2019).

Convolutional Gaussian Processes         
(Van der Wilk et al., 2017)

Deep Convolutional Gaussian Processes

Previous SOTA: 76.2% -> 80.3%

(Blomqvist et al., 2018)

Methods SVGP SOLVE-GP SVGP
M 1K 1.6K 1K+1K 2K*

Test LL -1.59 -1.54 -1.51 -1.48

Test Acc 66.07% 67.18% 68.19% 68.06%

Time /iter 0.241 0.380 0.370 0.474 

Previous SOTA: 64.6% -> 68.2%



Takeaways

● We introduce the idea of orthogonal inducing points to efficiently parameterize 

Gaussian process approximations.

● This leads to more scalable variational inference algorithms for GPs (SOLVE-GP).

● We report state-of-the-art results in training large, hierarchical GP models 

such as deep convolutional Gaussian processes.

Code: github.com/thjashin/solvegp
Paper, slides & video: jiaxins.io

https://github.com/thjashin/solvegp
http://jiaxins.io
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