Sparse Orthogonal Variational Inference for Gaussian Processes

Jiaxin Shi (Tsinghua University)

Michalis K. Titsias, Andriy Mnih (DeepMind)

Gaussian Processes (GP)

$$\mathbf{f} = f(\mathbf{X}) := [f(\mathbf{x}_1), \dots, f(\mathbf{x}_N)]^\top$$

Definition

$$f(\mathbf{x}) \sim \mathcal{GP}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')\right)$$

$$p(\mathbf{f}, \mathbf{f}^*) := \mathcal{N} \left(\begin{array}{c} \mathbf{f} \\ \mathbf{f}^* \end{array} \middle| \left[\begin{array}{c} m(\mathbf{X}) \\ m(\mathbf{x}^*) \end{array} \right], \left[\begin{array}{c} \mathbf{K}_{\mathbf{f}\mathbf{f}} & \mathbf{K}_{\mathbf{f}*} \\ \mathbf{K}_{*\mathbf{f}} & \mathbf{K}_{**} \end{array} \right] \right)$$

Exact Inference

 $p(\mathbf{f}, \mathbf{f}^* | \mathbf{y}) \propto p(\mathbf{f}, \mathbf{f}^*) p(\mathbf{y} | \mathbf{f})$ $\mathcal{O}(N^3)$ complexity

We need approximations for big data.

Solution: Summarize f with a small number of inducing variables u.

 $\mathbf{u} = f(\mathbf{Z}) := [f(\mathbf{z}_1), \dots, f(\mathbf{z}_M)]^{\top}$

We need approximations for big data.

Solution: Summarize f with a small number of inducing variables u.

 $\mathbf{u} = f(\mathbf{Z}) := [f(\mathbf{z}_1), \dots, f(\mathbf{z}_M)]^{\top}$

The augmented joint distribution is

$$\begin{split} p(\mathbf{f},\mathbf{u}) &= \mathcal{N} \left(\begin{array}{c|c} \mathbf{f} \\ \mathbf{u} \end{array} \middle| \ \mathbf{0}, \left[\begin{array}{c|c} \mathbf{K}_{\mathbf{ff}} & \mathbf{K}_{\mathbf{fu}} \\ \mathbf{K}_{\mathbf{uf}} & \mathbf{K}_{\mathbf{uu}} \end{array} \right] \right) \\ p(\mathbf{y},\mathbf{f},\mathbf{u}) &= p(\mathbf{y}|\mathbf{f}) p(\mathbf{f},\mathbf{u}) \end{split}$$

(Titsias, 09; Hensman et al., 13)

Sparse variational GP methods (SVGP)

• Augmented joint distribution:

 $p(\mathbf{y}, \mathbf{f}, \mathbf{u}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, \mathbf{u})$

 $\mathbf{u} = f(\mathbf{Z}) := [f(\mathbf{z}_1), \dots, f(\mathbf{z}_M)]^{\top}$

(Titsias, 09; Hensman et al., 13)

$\mathbf{u} = f(\mathbf{Z}) := [f(\mathbf{z}_1), \dots, f(\mathbf{z}_M)]^\top$

Sparse variational GP methods (SVGP)

• Augmented joint distribution:

 $p(\mathbf{y}, \mathbf{f}, \mathbf{u}) = p(\mathbf{y} | \mathbf{f}) p(\mathbf{f}, \mathbf{u})$

• Variational distribution:

 $q(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u}) q(\mathbf{u})$

 $\mathrm{KL}\left[q(\mathbf{f},\mathbf{u})\|p(\mathbf{f},\mathbf{u}|\mathbf{y})\right]$

Sparse variational GP methods (SVGP)

• Augmented joint distribution:

 $p(\mathbf{y}, \mathbf{f}, \mathbf{u}) = p(\mathbf{y} | \mathbf{f}) p(\mathbf{f}, \mathbf{u})$

• Variational distribution:

 $q(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u}) q(\mathbf{u})$

KL
$$[q(\mathbf{f}, \mathbf{u}) || p(\mathbf{f}, \mathbf{u} | \mathbf{y})] = \mathbb{E}_q \log \frac{p(\mathbf{f} | \mathbf{u}) q(\mathbf{u}) \cdot p(\mathbf{y})}{p(\mathbf{y} | \mathbf{f}) \cdot p(\mathbf{f} | \mathbf{u}) p(\mathbf{u})}$$

 $\mathbf{u} = f(\mathbf{Z}) := [f(\mathbf{z}_1), \dots, f(\mathbf{z}_M)]^{\top}$

(Titsias, 09; Hensman et al., 13)

$$\mathbf{u} = f(\mathbf{Z}) := [f(\mathbf{z}_1), \dots, f(\mathbf{z}_M)]^\top$$

Sparse variational GP methods (SVGP)

• Augmented joint distribution:

 $p(\mathbf{y}, \mathbf{f}, \mathbf{u}) = p(\mathbf{y} | \mathbf{f}) p(\mathbf{f}, \mathbf{u})$

• Variational distribution: $q(\mathbf{f}, \mathbf{u}) = p(\mathbf{f}|\mathbf{u})q(\mathbf{u})$

 $\operatorname{KL}\left[q(\mathbf{f}, \mathbf{u}) \| p(\mathbf{f}, \mathbf{u} | \mathbf{y})\right] = \mathbb{E}_q \log \frac{p(\mathbf{f} | \mathbf{u}) q(\mathbf{u}) \cdot p(\mathbf{y})}{p(\mathbf{y} | \mathbf{f}) \cdot p(\mathbf{f} | \mathbf{u}) p(\mathbf{u})}$

 $\mathbb{E}_{q(\mathbf{u})p(\mathbf{f}|\mathbf{u})} \left[\log p(\mathbf{y}|\mathbf{f})\right] - \mathrm{KL}[q(\mathbf{u})||p(\mathbf{u})]$

 $\mathcal{O}(M^3)$ complexity per update

(Titsias, 09; Hensman et al., 13)

Challenge: Inducing Points Are Expensive

+ Inducing points

 $\mathbb{E}_{q(\mathbf{u})p(\mathbf{f}|\mathbf{u})}\left[\log p(\mathbf{y}|\mathbf{f})\right] - \mathrm{KL}[q(\mathbf{u})||p(\mathbf{u})]$

$$\Rightarrow \quad \mathbb{E}_{q(\mathbf{u})\boldsymbol{p}_{\perp}(\mathbf{f}_{\perp})} \left[\log p(\mathbf{y}|\mathbf{f}_{\perp} + \mathbf{K}_{\mathbf{fu}}\mathbf{K}_{\mathbf{uu}}^{-1}\mathbf{u}) \right] - \mathrm{KL}\left[q(\mathbf{u})\|p(\mathbf{u})\right]$$

The variational posterior distribution over ${f f}_{ot}$ is simply chosen to be the prior distribution.

 $\mathbf{u} \qquad (\mathbf{f}_{\perp}) \\ \mathbf{f}$

 $\mathbb{E}_{q(\mathbf{u})p(\mathbf{f}|\mathbf{u})} \left[\log p(\mathbf{y}|\mathbf{f}) \right] - \mathrm{KL}[q(\mathbf{u}) \| p(\mathbf{u})]$

- $\ge \mathbb{E}_{q(\mathbf{u})\boldsymbol{p}_{\perp}(\mathbf{f}_{\perp})} \left[\log p(\mathbf{y}|\mathbf{f}_{\perp} + \mathbf{K}_{\mathbf{fu}}\mathbf{K}_{\mathbf{uu}}^{-1}\mathbf{u}) \right] \mathrm{KL}\left[q(\mathbf{u})\|p(\mathbf{u})\right]$
- Can we improve the variational approximation for $\, {f f}_{\perp}$?
- Full Gaussian parameterization of $q(\mathbf{f}_{\perp})$ has $\mathcal{O}(N^3)$ cost.

Orthogonal Decomposition

$$V = \left\{ \sum_{i=1}^{M} a_i k(\mathbf{z}_i, \cdot) \; \middle| \; \mathbf{a} \in \mathbb{R}^M \right\}$$

$$p: f = f_{\perp} + f_{\parallel} \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$
$$p_{\parallel}: f_{\parallel} = \mathbf{k}_{\mathbf{u}}(\mathbf{x})^{\top} \mathbf{K}_{\mathbf{uu}}^{-1} \mathbf{u} \sim \mathcal{GP}(0, \mathbf{k}_{\mathbf{u}}(\mathbf{x})^{\top} \mathbf{K}_{\mathbf{uu}}^{-1} \mathbf{k}_{\mathbf{u}}(\mathbf{x}'))$$
$$p_{\perp}: f_{\perp} \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}') - \mathbf{k}_{\mathbf{u}}(\mathbf{x})^{\top} \mathbf{K}_{\mathbf{uu}}^{-1} \mathbf{k}_{\mathbf{u}}(\mathbf{x}'))$$

+ Inducing points

Orthogonal Inducing Points

Orthogonal Inducing Points

Orthogonal Inducing Points

O: orthogonal inducing points

Idea: introducing an additional set of inducing variables \mathbf{v}_{\perp} to summarize $~p_{\perp}$

Sparse Orthogonal Variational Inference for Gaussian Processes

O: orthogonal inducing points

SOLVE-GP: Orthogonal Inducing Points Are Cheaper

-7

-4

-2

0

2

Cholesky: cM³

4 SOLVE-GP, 5 inducing points + 5 orthogonal

Cholesky: <mark>2</mark>cM³

4

6

8

+ Inducing points **▲** Orthogonal inducing points

SOLVE-GP lower bound

SOLVE-GP lower bound

SOLVE-GP lower bound

SOLVE-GP lower bound

SOLVE-GP lower bound

SOLVE-GP lower bound

SOLVE-GP lower bound

SOLVE-GP lower bound

SOLVE-GP lower bound

Understanding SOLVE-GP - Structured Covariance

We can express our variational approximation w.r.t. the original GP.

Applying change-of-variable:

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{K}_{\mathbf{v}\mathbf{u}}\mathbf{K}_{\mathbf{u}\mathbf{u}}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v}_{\perp} \end{bmatrix}$$

The covariance of $q({f u},{f v})$ induced by the orthogonal parameterization $q({f u})q({f v}_\perp)$ is

$$\mathbf{S}_{u,v} = \begin{bmatrix} \mathbf{S}_u & \mathbf{S}_u \mathbf{K}_{\mathbf{u}\mathbf{u}}^{-1} \mathbf{K}_{\mathbf{u}\mathbf{v}} \\ \mathbf{K}_{\mathbf{v}\mathbf{u}} \mathbf{K}_{\mathbf{u}\mathbf{u}}^{-1} \mathbf{S}_u & \mathbf{S}_v + \mathbf{K}_{\mathbf{v}\mathbf{u}} \mathbf{K}_{\mathbf{u}\mathbf{u}}^{-1} \mathbf{S}_u \mathbf{K}_{\mathbf{v}\mathbf{u}}^{-1} \mathbf{K}_{\mathbf{u}\mathbf{v}} \end{bmatrix}$$

Decoupled inducing points (Salimbeni et al., 18) is equivalent to enforcing prior covariance in $q(\mathbf{v}_{\perp})$

Understanding SOLVE-GP - Computational Benefits

N: mini-batch size; M: number of inducing points

Experiments - Large-scale Regression

HouseElectric (N=1,311,539, D=9)

- SOLVE-GP (1024+1024) has no performance loss compared to SVGP (2048).
- Both outperforms SVGP (1024).

Experiments - CIFAR 10 Classification

Convolutional Gaussian Processes

(Van der Wilk et al., 2017)

Deep Convolutional Gaussian Processes

(Blomqvist et al., 2018)

Previous SOTA: 64.6% -> 68.2%

Methods	SVGP		SOLVE-GP	SVGP
Μ	1K	1.6K	1K+1K	2K *
Test LL	-1.59	-1.54	-1.51	-1.48
Test Acc	66.07%	67.18%	68.19%	68.06%
Time /iter	0.241	0.380	0.370	0.474

Methods	SVGP	SOLVE-GP	SVGP
Μ	384, 384, 1K	384+384, 384 +384, 1K+1K	768,768,2 K*
Test LL	-0.88	-0.79	-0.82
Test Acc	78.76%	80.3%	80.33%
Time /iter	0.418	0.752	1.246

Experiments - CIFAR 10 Classification

Convolutional Gaussian Processes

(Van der Wilk et al., 2017)

Previous SOTA: 64.6% -> 68.2%

Methods	SVGP		SOLVE-GP	SVGP
Μ	1K	1.6K	1K+1K	2K *
Test LL	-1.59	-1.54	-1.51	-1.48
Test Acc	66.07%	67.18%	68.19%	68.06%
Time /iter	0.241	0.380	0.370	0.474

Deep Convolutional Gaussian Processes

(Blomqvist et al., 2018)

Previous SOTA: 76.2% -> 80.3%

- No neural networks; no data augmentation.
- Better results compared to exact GPs derived from infinite-width neural networks: CNN-GP 67.1% (Novak et al., 2019); CNTK 77.4% (Arora et al., 2019).

- We introduce the idea of **orthogonal inducing points** to efficiently parameterize Gaussian process approximations.
- This leads to more **scalable** variational inference algorithms for GPs (SOLVE-GP).
- We report **state-of-the-art results** in training **large**, **hierarchical** GP models such as deep convolutional Gaussian processes.

Code: github.com/thjashin/solvegp Paper, slides & video: jiaxins.io

References

- Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. AISTATS 2009.
- James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. AISTATS 2013.
- Ching-An Cheng and Byron Boots. Variational inference for Gaussian process models with linear complexity. NIPS 2017.
- Hugh Salimbeni, Ching-An Cheng, Byron Boots, and Marc Deisenroth. Orthogonally decoupled variational Gaussian processes. NeurIPS 2018.
- Mark van der Wilk, Carl Edward Rasmussen, and James Hensman. Convolutional Gaussian processes. NIPS 2017.
- Kenneth Blomqvist, Samuel Kaski, and Markus Heinonen. Deep convolutional Gaussian processes. arXiv:1810.03052, 2018.