Inference Networks for Gaussian Process Models

Jiaxin Shi

Tsinghua University

Probabilistic Inference over Functions Why care?

- Learning is about fitting functions
- A compact way to represent experience understanding of the world
- Neural networks or nearest neighbors?
- Real-world experience is sparse, costly
- Optimal decision making under this case

Few-shot learning: Matching Networks

Madal	Matching Fn	Fine Tune	5-way Acc		20-way Acc	
Widder			1-shot	5-shot	1-shot	5-shot
PIXELS	Cosine	Ν	41.7%	63.2%	26.7%	42.6%
BASELINE CLASSIFIER	Cosine	Ν	80.0%	95.0%	69.5%	89.1%
BASELINE CLASSIFIER	Cosine	Y	82.3%	98.4%	70.6%	92.0%
BASELINE CLASSIFIER	Softmax	Y	86.0%	97.6%	72.9%	92.3%
MATCHING NETS (OURS) MATCHING NETS (OURS)	Cosine Cosine	N Y	98.1% 97.9%	98.9% 98.7%	93.8% 93.5%	98.5% 98.7%

Table 1: Results on the Omniglot dataset.

Natural scene representation: Generative Query Network (GQN)

observations

[Eslami et al., 2018]

Uncertainty in neural networks

[Kendall et al., 17]

• Bayesian learning of neural networks ^[Neal, 95]

Posterior inference:
$$p(\mathbf{w}|\mathcal{D}) \propto p(\mathbf{w}) \prod_{n=1}^{N} p(y_n | \mathbf{x}_n, \mathbf{w})$$

Prediction with uncertainty: $p(y^* | \mathbf{x}^*, \mathcal{D}) = \int p(y^* | \mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathcal{D}) d\mathbf{w}$

5

[Leibig et al., 17]

OPEN Leveraging uncertainty information from deep neural networks for disease detection

Received: 24 July 2017

Christian Leibig¹, Vaneeda Allken¹, Murat Seçkin Ayhan¹, Philipp Berens^{1,2} & Siegfried Wahl^{1,3}

Bayesian decision making

Given the predictive distribution, how to predict?

- Define risk/-utility/-reward: $R(\hat{y}^*, y^* | \mathbf{x}^*)$
- Minimize expected risk: $\mathbb{E}_{y^*|\mathbf{x}^*,\mathcal{D}}R(\hat{y}^*,y^*|\mathbf{x}^*)$
- Application-dependent risk

 Healthcare 	Cost of Incorrect Diagnosis	Prediction	True	Utility Function
 Automated driving 	$\pounds 0$	Healthy	Healthy	2.0
	$\pounds 0$	Mild	Mild	2.0
\bigcirc Ouantitative investment	$\pounds 0$	Severe	Severe	2.0
	£30	Severe	Mild	1.4
Sequential decision making	£35	Mild	Severe	1.3
Sequential decision making	$\pounds 40$	Mild	Healthy	1.2
	$\pounds 45$	Severe	Healthy	1.1
• I nompson sampling	$\pounds 50$	Healthy	Mild	1.0
	£100	Healthy	Severe	0.0

[Cobb et al., 18]

Gaussian Processes Definition

• For any finite number of input locations, the marginal distribution is a multivariate Gaussian

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]^{\top} \quad \mathbf{f} = [f(\mathbf{x}_1), \dots, f(\mathbf{x}_N)]^{\top} \quad \mathbf{f} \sim \mathcal{N}(\mathbf{m}_{\mathcal{D}}, \mathbf{K}_{\mathcal{D}, \mathcal{D}})$$

- Likelihood
 - $\circ~$ Regression: $\mathbf{y}\sim\mathcal{N}(\mathbf{f},\sigma^{2}\mathbf{I})$
 - Nonconjugate: classification, ordinal regression, multi-output, etc.

Gaussian Processes Definition

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

Gaussian Processes Weight-space view

deep counterpart: BNN

Gaussian Processes Exact inference

 $p(f(\mathbf{x}^*), \mathbf{f}|\mathbf{y}) \propto p(f(\mathbf{x}^*), \mathbf{f})p(\mathbf{y}|\mathbf{f})$

• For Gaussian likelihoods:

$$f(\mathbf{x}^*)|\mathbf{y} \sim \mathcal{GP}\left(m_{|\mathbf{y}}(\mathbf{x}^*), k_{|\mathbf{y}}(\mathbf{x}^*, \mathbf{x}^{*\prime})\right)$$
$$m_{|\mathbf{y}}(\mathbf{x}^*) = \mathbf{k}_{*,\mathcal{D}}^{\top}(\mathbf{K}_{\mathcal{D},\mathcal{D}} + \sigma^2 \mathbf{I})^{-1}(\mathbf{y} - \mathbf{m}_{\mathcal{D}})$$
$$k_{|\mathbf{y}}(\mathbf{x}^*, \mathbf{x}^*) = k_{**} - \mathbf{k}_{*,\mathcal{D}}^{\top}(\mathbf{K}_{\mathcal{D},\mathcal{D}} + \sigma^2 \mathbf{I})^{-1}\mathbf{k}_{\mathcal{D},*}$$

- O(N³) complexity
- intractable with non-conjugate likelihoods

[GPML, Rasmussen & Williams]

Gaussian Processes

Sparse variational approximations

• Variational inference $\mathbb{E}_{q(\mathbf{f})} \log p(\mathbf{y}|\mathbf{f}) - \mathrm{KL} \left[q(\mathbf{f}) || p(\mathbf{f})\right]$

Sparse variational GP [Titsias, 09; Hensman et al., 13]

- non-conjugate likelihood
- O(M²N) time, minibatch training
- joint hyperparameter learning
- Key idea: variational learning of inducing points

 $q(\mathbf{f}, \mathbf{u}) := q(\mathbf{u})p(\mathbf{f}|\mathbf{u})$ $\mathcal{L}(q, \mathbf{Z}) := \mathbb{E}_{q(\mathbf{u})p(\mathbf{f}|\mathbf{u})} \left[\log p(\mathbf{y}|\mathbf{f})\right] - \mathrm{KL}[q(\mathbf{u})||p(\mathbf{u})]$

• Tighten the lower bound by optimizing ${\bf Z}$, $q({\bf u})$

Scalable Training of Inference Networks for Gaussian-Process Models

Joint work with

Emtiyaz Khan

Jun Zhu

Scalable Training of Inference Networks for GP Models

Inference networks: remove sparse assumption

Scalable Training of Inference Networks for GP Models Inference networks

 $q(\mathbf{f}_{\mathcal{M}}) = \mathcal{N}(\mathbf{f}_{\mathcal{M}} | \mu_{\mathcal{M}}, \Sigma_{\mathcal{M}})$

Bayesian Neural Nets as Inference Networks

Functional Variational Bayesian Neural Networks (Sun et al., ICLR 19)

Functional Variational Bayesian Neural Networks (Sun et al., 19) Algorithm

- Consider matching variational and true posterior processes at arbitrary $\mathbf{X}^{\mathcal{M}}$ $\mathrm{KL}[q(\mathbf{f}^{\mathcal{M}}) || p(\mathbf{f}^{\mathcal{M}} | \mathbf{y})] \leq \mathrm{KL}[q_{\phi}(\mathbf{f}^{\mathcal{M}}, \mathbf{f}) || p(\mathbf{f}^{\mathcal{M}}, \mathbf{f} | \mathbf{y})]$
- Full batch fELBO

$$\mathcal{L}_{\mathbf{X}^{\mathcal{M}},\mathbf{X}}(q) = \log p(\mathcal{D}) - \mathrm{KL}[q(\mathbf{f}^{\mathcal{M}},\mathbf{f}) \| p(\mathbf{f}^{\mathcal{M}},\mathbf{f}|\mathbf{y})].$$
$$= \sum_{(\mathbf{x},y)\in\mathcal{D}} \mathbb{E}_{q_{\phi}} \left[\log p(y|f(\mathbf{x})) \right] - \mathrm{KL}[q(\mathbf{f}^{\mathcal{M}},\mathbf{f}) \| p(\mathbf{f}^{\mathcal{M}},\mathbf{f})]$$

Practical fELBO

$$\frac{1}{|\mathcal{D}_s|} \sum_{(\mathbf{x},y)\in\mathcal{D}_s} \mathrm{E}_{q_{\phi}} \left[\log p(y|f(\mathbf{x})) \right] - \lambda \mathrm{KL}[q(\mathbf{f}^{\mathcal{D}_s}, \mathbf{f}^M) \| p(\mathbf{f}^{\mathcal{D}_s}, \mathbf{f}^M)].$$

• This objective is doing improper minibatch for the KL divergence term

Scalable Training of Inference Networks for GP Models Stochastic mirror descent

 $p(x) \propto \exp\{\theta^{\top} t(x) - A(\theta)\}$

[Wainwright & Jordan, 08]

Scalable Training of Inference Networks for GP Models Stochastic mirror descent

mirror descent

$$\mu_{t+1} = \underset{\mu}{\operatorname{argmax}} \mu^{\top} \nabla_{\mu} \mathcal{L}^{*}(\mu) - \frac{1}{\beta_{t}} \mathbb{B}_{A^{*}} \left[\mu \| \mu_{t} \right] \qquad \mathcal{L}(\theta) := \mathcal{L}^{*}(\mu)$$
$$\mu_{t+1} = \nabla A (\nabla A^{*}(\mu_{t}) - \beta_{t} \nabla_{\mu} \mathcal{L}^{*}(\mu_{t}))$$

[Raskutti & Mukherjee, 13; Amari, 16; Khan & Lin, 17]

Scalable Training of Inference Networks for GP Models

Gaussian processes as Gaussian measures*

- Abstract Wiener space $(\mathcal{H}, \mathcal{B}, q)$: a way to define "decent" measure in function space.
- ${\mathcal H}$ is dense in ${\mathcal B}$
- Canonical Gaussian cylinder set measure on \mathcal{H} : not a proper measure, but useful.
 - \circ identity map to ${\cal B}$ transforms it to a proper measure.

Scalable Training of Inference Networks for GP Models Stochastic, functional mirror descent

- an equivalent, but simpler derivation [Dai et al., 16]
 - work with the functional density directly
 - minibatch approximation with stochastic functional gradient

$$q_{t+1} = \underset{q}{\operatorname{argmax}} \int \hat{\partial} \mathcal{L}(q_t) q(f) df - \frac{1}{\beta_t} \operatorname{KL}\left[q \| q_t\right]$$

• closed-form solution as an adaptive Bayesian filter

• sequentially applying Bayes' rule is the most natural gradient

- the stochastic, functional mirror descent update is still intractable
- an idea from filtering: bootstrap
 - use a surrogate to pass on the information

- the stochastic, functional mirror descent update is still intractable
- an idea from filtering: bootstrap
 - similar idea: temporal difference (TD) learning with function approximation

 $\hat{q}_{t+1}(f) \propto p(y_n|f)^{N\beta_t} p(f)^{\beta_t} q_{\gamma_t}(f)^{1-\beta_t}$ is an attractive equation because

- $\hat{q}_{t+1}(f)$ is a GP
- if likelihood is Gaussian, all marginal distributions of $\hat{q}_{t+1}(f)$ in closed-form
- compute the marginals of $\hat{q}_{t+1}(f)$ at locations $\mathbf{X}_{\mathcal{M}}$
 - equivalent to GP regression

$$p(\mathbf{f}_{\mathcal{M}}, f_{n})^{\beta_{t}} q_{\gamma_{t}}(\mathbf{f}_{\mathcal{M}}, f_{n})^{1-\beta_{t}} \coloneqq \mathcal{N}\left(\left[\begin{array}{c}\widetilde{\mathbf{m}}_{\mathcal{M}}\\\widetilde{\mathbf{m}}_{n}\end{array}\right], \left[\begin{array}{c}\widetilde{\mathbf{K}}_{\mathcal{M},\mathcal{M}} & \widetilde{\mathbf{K}}_{\mathcal{M},n}\\\widetilde{\mathbf{K}}_{n,\mathcal{M}} & \widetilde{\mathbf{K}}_{n,n}\end{array}\right]\right)$$

$$\propto \quad \mathcal{N}\left(\left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{c}\mathbf{K}_{\mathcal{M},\mathcal{M}} & \mathbf{K}_{\mathcal{M},n}\\\mathbf{K}_{n,\mathcal{M}} & \mathbf{K}_{n,n}\end{array}\right]\right)^{\beta_{t}} \times \mathcal{N}\left(\left[\begin{array}{c}\mu_{\mathcal{M}}\\\mu_{n}\end{array}\right], \left[\begin{array}{c}\Sigma_{\mathcal{M},\mathcal{M}} & \Sigma_{\mathcal{M},n}\\\Sigma_{n,\mathcal{M}} & \Sigma_{n,n}\end{array}\right]\right)^{(1-\beta_{t})}$$

$$\hat{q}_{t+1}(\mathbf{f}_{\mathcal{M}}, f_{n}) \propto \mathcal{N}(y_{n}|f_{n}, \sigma^{2}/(N\beta_{t})) \times \mathcal{N}\left(\left[\begin{array}{c}\widetilde{\mathbf{m}}_{\mathcal{M}}\\\widetilde{\mathbf{m}}_{n}\end{array}\right], \left[\begin{array}{c}\widetilde{\mathbf{K}}_{\mathcal{M},\mathcal{M}} & \widetilde{\mathbf{K}}_{\mathcal{M},n}\\\widetilde{\mathbf{K}}_{n,\mathcal{M}} & \widetilde{\mathbf{K}}_{n,n}\end{array}\right]\right)$$

Scalable Training of Inference Networks for GP Models

Minibatch training of inference networks

Algorithm 1 GPNet for supervised learning **Input:** $\{(\mathbf{x}_n, y_n)\}_{n=1}^N, c(\mathbf{x}), M, T, \beta, \eta$. 1: Initialize the inference network q_{γ} . 2: for t = 1, ..., T do 3: Randomly sample a training data (\mathbf{x}_n, y_n) . Sample $\mathbf{X}_{\mathcal{M}} = (\mathbf{x}_1, \dots, \mathbf{x}_M)$ from $c(\mathbf{x})$. 4: if the likelihood is Gaussian then 5: Compute $\hat{q}_{t+1}(\mathbf{f}_{\mathcal{M}})$ using (10). 6: $\gamma_{t+1} \leftarrow \gamma_t - \eta \nabla_{\gamma} \mathrm{KL} \left[q_{\gamma}(\mathbf{f}_{\mathcal{M}}) \| \hat{q}_{t+1}(\mathbf{f}_{\mathcal{M}}) \right].$ 7: 8: else $\gamma_{t+1} \leftarrow \gamma_t + \eta \nabla_{\gamma} \mathcal{L}_t(q_{\gamma}; q_{\gamma_t}, \mathbf{X}_{\mathcal{M}}).$ 9: end if 10: 11: end for For non-conjugate likelihoods 12: return q_{γ_t} .

 $\mathcal{L}_t(q_{\gamma}; q_{\gamma_t}, \mathbf{X}_{\mathcal{M}}) = \mathbb{E}_{q_{\gamma}(\mathbf{f}_{\mathcal{M}}, f_n)} \left[N\beta_t \log p(y_n | f_n) + \beta_t \log p(\mathbf{f}_{\mathcal{M}}, f_n) + (1 - \beta_t) \log q_{\gamma_t}(\mathbf{f}_{\mathcal{M}}, f_n) - \log q_{\gamma}(\mathbf{f}_{\mathcal{M}}, f_n) \right]$

Scalable Training of Inference Networks for GP Models Examples of inference networks

weight space

function space

$$f(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}), \quad \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \quad \bigstar \quad f(\mathbf{x}) \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

Bayesian (generalized) linear regression

deep counterpart: BNN

• Inference network architecture can be derived from the weight-space posterior

$$q(f): f(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) + \xi_{\theta}(\mathbf{x}), \quad \mathbf{w} \sim \mathcal{N}(\mathbf{m}, \mathbf{V})$$

Scalable Training of Inference Networks for GP Models Examples of inference networks

- Bayesian neural networks (BNN) [Sun et al., 19]
 - intractable output density
 - current solutions: costly, even infeasible with large models
- Random feature expansions (RFE)

[Cutajar, et al., 18]

• Deep neural networks

[Snoek et al., 15]

Scalable Training of Inference Networks for GP Models Random feature expansion (RFE)

counterparts

Scalable Training of Inference Networks for GP Models Deep neural networks

Two choices $q(f): f(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) + \xi_{\theta}(\mathbf{x}), \quad \mathbf{w} \sim \mathcal{N}(\mathbf{m}, \mathbf{V})$

- Directly parameterizing \phi(x) as neural networks with general nonlinearies such as tanh and ReLU.
- inject randomness into first-order expansion of neural networks

FBNN, M=20

Scalable Training of Inference Networks for GP Models Experiments: Regression

If
$$R(\hat{y}^*, y^* | \mathbf{x}^*) = \frac{1}{2} ||\hat{y}^* - y^*||^2$$

 $\min_{\hat{y}^*} \mathbb{E}_{\hat{y}^* | \mathbf{x}^*, \mathcal{D}} R(\hat{y}^*, y^* | \mathbf{x}^*) \implies \hat{y}^* = \mathbb{E}_{y^* | \mathbf{x}^*, \mathcal{D}} [y^*]$
If $R(\hat{y}^*, y^* | \mathbf{x}^*) = |\hat{y}^* - y^*|$

$$\min_{\hat{y}^*} \mathbb{E}_{\hat{y}^* | \mathbf{x}^*, \mathcal{D}} R(\hat{y}^*, y^* | \mathbf{x}^*) \implies \hat{y}^* = \text{MED}_{y^* | \mathbf{x}^*, \mathcal{D}}[y^*]$$

- The simplest case of Bayesian decision making
- The general principle behind still applies to diverse scenarios
 - \circ Risk matters

Scalable Training of Inference Networks for GP Models Experiments: Regression

Regression Benchmarks

METRIC	M=100			M=500			
	SVGP	GPNET	FBNN	SVGP	GPNET	FBNN	
RMSE Test LL	24.261 -4.618	24.055 -4.616	23.801 -4.586	23.698 -4.594	23.675 -4.601	24.114 -4.582	

Airline Delay (700K)

Conclusion & Future work

- function space / weight space
- natural gradient / mirror descent / Bayesian filter
- inference networks (tractable, flexible & scalable)
- what's next? multi-output GP, latent variable models (GP-LVM), deep GPs

Thanks

Code: https://github.com/thjashin/gp-infer-net