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Probabilistic Inference over Functions
Why care?

● Learning is about fitting functions

● A compact way to represent experience - understanding of the world

● Neural networks or nearest neighbors?

● Real-world experience is sparse, costly

● Optimal decision making under this case



Probabilistic Inference over Functions
Few-shot learning: Matching Networks

[Vinyals et al., 16]

Soft nearest neighbors:



Probabilistic Inference over Functions
Natural scene representation: Generative Query Network (GQN)

[Eslami et al., 2018]

http://www.youtube.com/watch?v=G-kWNQJ4idw


Probabilistic Inference over Functions
Uncertainty in neural networks

[Kendall et al., 17]

Posterior inference: 

Prediction with uncertainty:

[Neal, 95]● Bayesian learning of neural networks



[Leibig et al., 17]



Probabilistic Inference over Functions
Bayesian decision making

Given the predictive distribution, how to predict?

● Define risk/-utility/-reward:

● Minimize expected risk:

● Application-dependent risk

○ Healthcare

○ Automated driving

○ Quantitative investment

● Sequential decision making

○ Thompson sampling

[Cobb et al., 18]



Probabilistic Inference over Functions

[Vinyals et al., 16]

[Kendall et al., 17]

[Eslami et al., 2018]



Gaussian Processes
Definition

mean function

covariance function / kernel

[GPML, Rasmussen & Williams]

● For any finite number of input locations, the marginal distribution is a 
multivariate Gaussian 

● Likelihood

○ Regression:      

○ Nonconjugate: classification, ordinal regression, multi-output, etc.



Gaussian Processes
Definition

[GPML, Rasmussen & Williams]



Gaussian Processes
Weight-space view

weight space function space

Bayesian (generalized) linear regression

deep counterpart: BNN



Gaussian Processes
Exact inference

● For Gaussian likelihoods: 
Gaussian

field

● O(N3) complexity

● intractable with non-conjugate likelihoods

[GPML, Rasmussen & Williams]



Gaussian Processes
Sparse variational approximations

Sparse variational GP

● non-conjugate likelihood

● O(M2N) time, minibatch training

● joint hyperparameter learning

● Key idea: variational learning of inducing points

● Tighten the lower bound by optimizing    , 

[Titsias, 09; Hensman et al., 13]
Gaussian 

field

inducing 
points

● Variational inference



Scalable Training of Inference Networks for
Gaussian-Process Models

Jun ZhuEmtiyaz Khan

Joint work with



Scalable Training of Inference Networks for GP Models 
Inference networks: remove sparse assumption
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Scalable Training of Inference Networks for GP Models 
Inference networks

Gaussian field



Bayesian Neural Nets as Inference Networks
Functional Variational Bayesian Neural Networks (Sun et al., ICLR 19)

https://docs.google.com/file/d/1sCTRdRe2qNuBdKn6wndah_T5UnQt1Jn8/preview
https://docs.google.com/file/d/1QdY_BR_foO7mvtFiQaD3kHc7LLK-Q7iH/preview


● Consider matching variational and true posterior processes at arbitrary

● This objective is doing improper minibatch for the KL divergence term

Functional Variational Bayesian Neural Networks (Sun et al., 19)
Algorithm

● Full batch fELBO

● Practical fELBO



Scalable Training of Inference Networks for GP Models 
Stochastic mirror descent

[Wainwright & Jordan, 08]



Scalable Training of Inference Networks for GP Models 
Stochastic mirror descent

natural gradient 
mirror descent

[Raskutti & Mukherjee, 13; Amari, 16; Khan & Lin, 17]



Scalable Training of Inference Networks for GP Models
Gaussian processes as Gaussian measures*

RKHS, or 
Gramer-Martin space

● Abstract Wiener space                  : a way to define “decent” measure in function 

space.

●       is dense in  

● Canonical Gaussian cylinder set measure on      : not a proper measure, but useful.

○ identity map to      transforms it to a proper measure.



Scalable Training of Inference Networks for GP Models 
Stochastic, functional mirror descent

● an equivalent, but simpler derivation

○ work with the functional density directly

○ minibatch approximation with stochastic functional gradient

● closed-form solution as an adaptive Bayesian filter

[Dai et al., 16]

seeing next data point adapted prior

● sequentially applying Bayes’ rule is the most natural gradient



Scalable Training of Inference Networks for GP Models 
Minibatch training of inference networks 

● the stochastic, functional mirror descent update is still intractable

● an idea from filtering: bootstrap

○ use a surrogate to pass on the information
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Scalable Training of Inference Networks for GP Models 
Minibatch training of inference networks 

● the stochastic, functional mirror descent update is still intractable

● an idea from filtering: bootstrap

○ similar idea: temporal difference (TD) learning with function approximation
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Gaussian
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Inputs
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                                                       is an attractive equation because 

●             is a GP

● if likelihood is Gaussian, all marginal distributions of              in closed-form

Scalable Training of Inference Networks for GP Models 
Minibatch training of inference networks

● compute the marginals of               at locations  

○ equivalent to GP regression



Scalable Training of Inference Networks for GP Models 
Minibatch training of inference networks

student teacher



Scalable Training of Inference Networks for GP Models 
Minibatch training of inference networks

For non-conjugate likelihoods



Scalable Training of Inference Networks for GP Models
Examples of inference networks

weight space function space

● Inference network architecture can be derived from the weight-space posterior 

Bayesian (generalized) linear regression

deep counterpart: BNN



● Bayesian neural networks (BNN)

○ intractable output density

○ current solutions: costly, even infeasible with large models

● Random feature expansions (RFE)

● Deep neural networks

Scalable Training of Inference Networks for GP Models
Examples of inference networks

[Sun et al., 19]

[Cutajar, et al., 18]

[Snoek et al., 15]



Scalable Training of Inference Networks for GP Models 
Random feature expansion (RFE)

Random Fourier features

● Bocher’s theorem

● construct explicit (approximate) feature 

map for any translation-invariant kernel 

● BNNs as RF features of its infinite-width 

counterparts

[Rahimi & Recht,16]
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Two choices

● Directly parameterizing \phi(x) as neural networks with general nonlinearies

such as tanh and ReLU.

● inject randomness into first-order expansion of neural networks 

Scalable Training of Inference Networks for GP Models 
Deep neural networks
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Scalable Training of Inference Networks for GP Models 
Experiments: Regression

If

If

● The simplest case of Bayesian decision making

● The general principle behind still applies to diverse scenarios

○ Risk matters



Scalable Training of Inference Networks for GP Models 
Experiments: Regression

Regression Benchmarks

Airline Delay (700K)



Conclusion & Future work

● function space / weight space

● natural gradient / mirror descent / Bayesian filter

● inference networks (tractable, flexible & scalable)

● what’s next? multi-output GP, latent variable models (GP-LVM), deep GPs



Thanks
Code: https://github.com/thjashin/gp-infer-net


