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Functions in Probabilistic Learning

● Probability/Cumulative density functions

● Score functions

● Critic/Test functions

● Distributions of functions, e.g., Gaussian Processes



Motivation: Orthogonal Basis in Function Spaces

● How to characterize functions in probabilistic computations?

● Goal: Build an orthogonal basis in the function space.



where

Motivation: Orthogonal Basis in Function Spaces

● Recap: PCA

● Eigenvectors form a new orthogonal basis

○ u1: the direction with the largest data variance

○ u2: the direction orthogonal to u1 with the second largest data variance 

○ ...
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Motivation: Orthogonal Basis in Function Spaces

● Kernel: p.s.d. matrix in infinite-dimensional spaces

● Mercer’s Theorem

● Eigenvectors > Eigenfunctions



Motivation: Orthogonal Basis in Function Spaces

● Eigenfunctions as an orthonormal basis

(Williams & Seeger, 2000)



Outline

● Orthogonal Series Estimators for Score Functions

Shi, Shengyang Sun, Jun Zhu, ICML 18

● Sparse Orthogonal Variational Inference for Gaussian Processes

Shi, Michalis K. Titsias, Andriy Mnih, AISTATS 20



Score Estimation

(Strathmann et al., 15; Li & Turner, 18; Sutherland et al., 18)



Orthogonal Series Expansion
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Main Result

Proof: 

○ Coefficients of the orthogonal series expansion of                       :

Theorem: Under mild assumptions

(Shi, Sun, Zhu, 18)



(Generalized) Stein’s Lemma

(Stein, 1972; Gorham & Mackey, 2015)

where                                        holds when 

by divergence theorem
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Main Result

Proof: 

○ Coefficients of the orthogonal series expansion of                       :

where we replace the Stein test function with eigenfunctions.

Theorem: Under mild assumptions

(Shi, Sun, Zhu, 18)



Spectral Stein Gradient Estimator (SSGE)

Final Step: Estimate        and         .

Theorem: Under mild assumptions

(Shi, Sun, Zhu, 18)
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Spectral Stein Gradient Estimator (SSGE)

Estimate        and           with Nyström methods

Theorem: Under mild assumptions

(Shi, Sun, Zhu, 18)



Error Analysis

Theorem: Under mild assumptions

is bounded by

where 

Sample error Approximation error

Our estimator True gradient
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Related Work

● Sample Stein Gradient Estimator (Li & Turner, ICLR 18)

○ No guarantee for out-of-sample predictions.

● Nonparametric Score Estimators (coming)

○ A unified view of SSGE, Li & Turner, Score Matching.

○ Vector-valued extensions: Enforce conservative properties of gradient 

fields

● Score Matching (Strathmann et al., 15; Sutherland et al., 18)

○ Fisher divergence is computationally expensive: Hessian trace.

○ A scalable variant: Sliced Score Matching (Song, Garg, Shi, Ermon, UAI 19).



Spiral Data
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Entropy/KL-divergence Gradient Estimation



Entropy/KL-divergence Gradient Estimation

Similarly for cross-entropy (out-of-sample) and KL-divergence.



Applications

Mutual Information Gradient Estimation for Representation Learning
(Wen et al., ICLR 20)



Applications

Mutual Information Gradient Estimation for Representation Learning
(Wen et al., ICLR 20)



Applications

Functional Bayesian Neural Networks 
(Sun, Zhang, Shi, Grosse, ICLR 19)

Weight Space

Function Space



Summary

● Eigenfunction expansions of the score has a simple form.

● Eigenfunctions can be approximated with Nyström Methods.

● Score estimation is useful when samples are easier to obtain 

than densities.

Main Ref:
A Spectral Approach to Gradient Estimation for Implicit Distributions. Shi, Sun, Zhu, 2018



From Eigenfunctions to Distributions of Functions
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Eigenfunction Representations of GPs

● GP samples can be represented as series of eigenfunctions

● We can check the mean and covariance:

Mercer’s theorem



Gaussian Processes (GP)

mean function

covariance function / kernel
Gaussian 

field

training 
data prediction

complexity



Gaussian Processes (GP)

(Hensman et al., 13) (Srinivas et al., 09)

(Deisenroth & Rasmussen, 11) (Titsias & Lawrence, 10)



prediction

Scalable GPs via Approximate Inference

training 
data



prediction

Scalable GPs via Approximate Inference

Sparse variational GP methods (SVGP)

● Augmented joint distribution:

● Variational distribution: 

inducing 
points

training 
data

(Titsias, 09; Hensman et al., 13 & 15)



prediction

Scalable GPs via Approximate Inference

Sparse variational GP methods (SVGP)

● Augmented joint distribution:

● Variational distribution: 

complexity per update

inducing 
points

training 
data

(Titsias, 09; Hensman et al., 13 & 15)



Cholesky: cM3

Inducing Points Are Expensive

Cholesky: 8cM3

SVGP, M=5 inducing points SVGP, 10 inducing points



Cholesky: cM3

Inducing Points Are Expensive

Cholesky: 8cM3

SVGP, M=5 inducing points SVGP, 10 inducing points

Can we do better?
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Reinterpreting SVGP
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Reinterpreting SVGP

The variational posterior distribution over        is simply chosen to be the 
prior distribution.

(Shi, Titsias, Mnih, 20)



Reinterpreting SVGP

● Can we improve the variational approximation for      ?

● Full Gaussian parameterization of            has              cost.

(Shi, Titsias, Mnih, 20)



Orthogonal Decomposition

(Shi, Titsias, Mnih, 20)



Orthogonal Inducing Points

Z: inducing points

(Shi, Titsias, Mnih, 20)
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Orthogonal Inducing Points

 

Z: inducing points

 

O: orthogonal inducing points

(Shi, Titsias, Mnih, 20)

Idea

● After reparameterization, posterior inference for f 

is equivalent to posterior inference for        , u

● introducing inducing variables         in the 

orthogonal process to summarize       .



Sparse Orthogonal Variational Inference for
Gaussian Processes

SOLVE-GP lower bound

(Shi, Titsias, Mnih, 20)

 

Z: inducing points

 

O: orthogonal inducing points



Cholesky: cM3

Orthogonal Inducing Points Are Cheaper

Cholesky: 2cM3

SVGP, M=5 inducing points SOLVE-GP, 5 inducing points + 5 orthogonal

Inducing points          Orthogonal inducing points
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Posterior Approximation during Training

Inducing points          Orthogonal inducing points

N=100, M=5+5, Minibatch Size 20
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Orthogonal Decomposition: Details

● Define

● Solve the projections to the subspace:



Regression

HouseElectric (N=1,311,539, D=9)



Classification - CIFAR 10

Convolutional GPs1         

Deep Convolutional GPs2

new SOTA: 64.6% -> 68.2%

new SOTA: 76.2% -> 80.3%

Methods SVGP SOLVE-GP SVGP
M 1K 1.6K 1K+1K 2K*

Test LL -1.59 -1.54 -1.51 -1.48

Test Acc 66.07% 67.18% 68.19% 68.06%

Time /iter 0.241 0.380 0.370 0.474 

1,2 Neither neural network components nor data augmentation is used.

Methods SVGP SOLVE-GP SVGP
M 384, 384, 

1K
384+384, 384 
+384, 1K+1K

768,768,
2K*

Test LL -0.88 -0.79 -0.82

Test Acc 78.76% 80.3% 80.33%

Time /iter 0.418 0.752 1.246



Why is 80% interesting?

Radford Neal’s NN-as-GP kernel
CNN-GP vs. CNN 

(Novak et al., 2019)

Neural Tangent Kernel
CNTK vs. CNN 

(Arora et al., 2019)



Conclusion

● Eigenfunctions are powerful tools. They can be used for

○ nonparametric estimation of score functions.

○ analyzing orthogonal decomposition of GPs.

● Functionally “orthogonal” learning

○ Inducing points are feature detectors.

○ Feature detectors need to be functionally “orthogonal” to be efficient.

○ Implications for ML methods in general?

Main Refs:
A Spectral Approach to Gradient Estimation for Implicit Distributions. Shi, Sun, Zhu, ICML 18
Sparse Orthogonal Variational Inference for Gaussian Processes. Shi, Titsias, Mnih, AISTATS 20



Thanks to you and my coauthors

Shengyang Sun Jun Zhu Michalis K. Titsias Andriy Mnih


