Function-Space Orthogonality in Probabilistic Learning

Jiaxin Shi Tsinghua University

Functions in Probabilistic Learning

- Probability/Cumulative density functions
- Score functions
- Critic/Test functions
- Distributions of functions, e.g., Gaussian Processes

- How to characterize functions in probabilistic computations?
- <u>Goal</u>: Build an orthogonal basis in the function space.

• Recap: PCA

 $\mathbf{X}^{ op}\mathbf{X} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{ op}$

where $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]^\top$

- Eigenvectors form a new orthogonal basis
 - \circ u₁: the direction with the largest data variance
 - u₂: the direction orthogonal to u₁ with the second largest data variance
 ...

• Kernel: p.s.d. matrix in infinite-dimensional spaces

• Kernel: p.s.d. matrix in infinite-dimensional spaces

- Mercer's Theorem $k(\mathbf{x}, \mathbf{x}') = \sum_{i} \mu_i \varphi_i(\mathbf{x}) \varphi_i(\mathbf{x}')$
- Eigenvectors > Eigenfunctions

$$\int k(\mathbf{x}, \mathbf{x}')\varphi_i(\mathbf{x}')p(\mathbf{x}')d\mathbf{x}' = \mu_i\varphi_i(\mathbf{x})$$

• Eigenfunctions as an orthonormal basis

Outline

• Orthogonal Series Estimators for Score Functions

Shi, Shengyang Sun, Jun Zhu, ICML 18

• Sparse Orthogonal Variational Inference for Gaussian Processes

Shi, Michalis K. Titsias, Andriy Mnih, AISTATS 20

Score Estimation

(Strathmann et al., 15; Li & Turner, 18; Sutherland et al., 18)

Orthogonal Series Expansion

$$\frac{\partial}{\partial x_i} \log q(\mathbf{x}) = \sum_j \beta_{ij} \varphi_j(\mathbf{x})$$

Main Result

<u>Theorem</u>: Under mild assumptions

$$\frac{\partial}{\partial x_i} \log q(\mathbf{x}) = -\sum_j \mathbb{E}_q \left[\frac{\partial}{\partial x_i} \varphi_j(\mathbf{x}) \right] \varphi_j(\mathbf{x})$$

Main Result

<u>Theorem</u>: Under mild assumptions

$$\frac{\partial}{\partial x_i} \log q(\mathbf{x}) = -\sum_j \mathbb{E}_q \left[\frac{\partial}{\partial x_i} \varphi_j(\mathbf{x}) \right] \varphi_j(\mathbf{x})$$

Proof:

• Coefficients of the orthogonal series expansion of $\frac{\partial}{\partial x_i} \log q(\mathbf{x})$:

$$\beta_{ij} = \mathbb{E}_q \left[\varphi_j(\mathbf{x}) \frac{\partial}{\partial x_i} \log q(\mathbf{x}) \right]$$

(Shi, Sun, Zhu, 18)

(Generalized) Stein's Lemma

$$\begin{split} \mathbb{E}_{q}\left[h(\mathbf{x})\nabla_{\mathbf{x}}\log q(\mathbf{x})\right] &= \int h(\mathbf{x})\nabla_{\mathbf{x}}q(\mathbf{x})d\mathbf{x} \\ &= \int \nabla_{\mathbf{x}}\left[h(\mathbf{x})q(\mathbf{x})\right]d\mathbf{x} - \int \nabla_{\mathbf{x}}h(\mathbf{x})q(\mathbf{x})d\mathbf{x} \\ &= -\mathbb{E}_{q}\left[\nabla_{\mathbf{x}}h(\mathbf{x})\right] \end{split}$$

where $\int \nabla_{\mathbf{x}} [h(\mathbf{x})q(\mathbf{x})] d\mathbf{x} = 0$ holds when $\lim_{\|\mathbf{x}\| \to \infty} h(\mathbf{x})q(\mathbf{x}) = 0$ by divergence theorem

(Stein, 1972; Gorham & Mackey, 2015)

Main Result

<u>Theorem</u>: Under mild assumptions

$$\frac{\partial}{\partial x_i} \log q(\mathbf{x}) = -\sum_j \mathbb{E}_q \left[\frac{\partial}{\partial x_i} \varphi_j(\mathbf{x}) \right] \varphi_j(\mathbf{x})$$

Proof:

• Coefficients of the orthogonal series expansion of $\frac{\partial}{\partial x_i} \log q(\mathbf{x})$:

$$\beta_{ij} = \mathbb{E}_q \left[\varphi_j(\mathbf{x}) \frac{\partial}{\partial x_i} \log q(\mathbf{x}) \right]$$

(Shi, Sun, Zhu, 18)

Main Result

<u>Theorem</u>: Under mild assumptions

$$\frac{\partial}{\partial x_i} \log q(\mathbf{x}) = -\sum_j \mathbb{E}_q \left[\frac{\partial}{\partial x_i} \varphi_j(\mathbf{x}) \right] \varphi_j(\mathbf{x})$$

Proof:

• Coefficients of the orthogonal series expansion of $\frac{\partial}{\partial x_i} \log q(\mathbf{x})$:

$$\beta_{ij} = \mathbb{E}_q \left[\varphi_j(\mathbf{x}) \frac{\partial}{\partial x_i} \log q(\mathbf{x}) \right] = -\mathbb{E}_q \left[\frac{\partial}{\partial x_i} \varphi_j(\mathbf{x}) \right]$$

where we replace the Stein test function with eigenfunctions.

(Shi, Sun, Zhu, 18)

Spectral Stein Gradient Estimator (SSGE)

<u>Theorem</u>: Under mild assumptions

$$\frac{\partial}{\partial x_i} \log q(\mathbf{x}) = -\sum_j \mathbb{E}_q \left[\frac{\partial}{\partial x_i} \varphi_j(\mathbf{x}) \right] \varphi_j(\mathbf{x})$$

Final Step: Estimate φ_i and $\nabla \varphi_i$.

Nyström Methods

$$\int k(\mathbf{x}, \mathbf{x}')\varphi_i(\mathbf{x}')p(\mathbf{x}')d\mathbf{x}' = \mu_i\varphi_i(\mathbf{x})$$

<u>Goal</u>: Estimate φ_i with $\mathbf{x}^{1:M} \sim p$

(Nyström, 1930; Williams & Seeger, 2001)

Nyström Methods

$$\int k(\mathbf{x}, \mathbf{x}')\varphi_i(\mathbf{x}')p(\mathbf{x}')d\mathbf{x}' = \mu_i\varphi_i(\mathbf{x})$$

<u>Goal</u>: Estimate φ_i with $\mathbf{x}^{1:M} \sim p$

(Nyström, 1930; Williams & Seeger, 2001)

Nyström Methods

$$\int k(\mathbf{x}, \mathbf{x}')\varphi_i(\mathbf{x}')p(\mathbf{x}')d\mathbf{x}' = \mu_i\varphi_i(\mathbf{x})$$

<u>Goal</u>: Estimate φ_i with $\mathbf{x}^{1:M} \sim p$

$$\varphi_i(\cdot) = \frac{1}{\mu_i} \int k(\mathbf{x}, \cdot) \varphi_i(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} \approx \frac{\sqrt{M}}{\hat{\lambda}_i} \sum_{m=1}^M u_{im} k(\mathbf{x}^m, \cdot)$$

(Nyström, 1930; Williams & Seeger, 2001)

Spectral Stein Gradient Estimator (SSGE)

<u>Theorem</u>: Under mild assumptions

$$\frac{\partial}{\partial x_i} \log q(\mathbf{x}) = -\sum_j \mathbb{E}_q \left[\frac{\partial}{\partial x_i} \varphi_j(\mathbf{x}) \right] \varphi_j(\mathbf{x})$$

Estimate φ_i and $\nabla \varphi_i$ with Nyström methods

$$\varphi_i(\cdot) = \frac{1}{\mu_i} \int k(\mathbf{x}, \cdot) \varphi_i(\mathbf{x}) q(\mathbf{x}) d\mathbf{x} \approx \frac{\sqrt{M}}{\hat{\lambda}_i} \sum_{m=1}^M u_{im} k(\mathbf{x}^m, \cdot)$$

(Shi, Sun, Zhu, 18)

Spectral Stein Gradient Estimator (SSGE)

<u>Theorem</u>: Under mild assumptions

$$\frac{\partial}{\partial x_i} \log q(\mathbf{x}) = -\sum_j \mathbb{E}_q \left[\frac{\partial}{\partial x_i} \varphi_j(\mathbf{x}) \right] \varphi_j(\mathbf{x})$$

Estimate φ_i and $\nabla \varphi_i$ with Nyström methods

$$\varphi_i(\cdot) = \frac{1}{\mu_i} \int k(\mathbf{x}, \cdot) \varphi_i(\mathbf{x}) q(\mathbf{x}) d\mathbf{x} \approx \frac{\sqrt{M}}{\hat{\lambda}_i} \sum_{m=1}^M u_{im} k(\mathbf{x}^m, \cdot)$$

$$\nabla \varphi_i(\cdot) = \frac{1}{\mu_i} \int \nabla k(\mathbf{x}, \cdot) \varphi_i(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

(Shi, Sun, Zhu, 18)

Error Analysis

<u>Theorem</u>: Under mild assumptions

$$\int |\hat{g}_i(\mathbf{x}) - g_i(\mathbf{x})|^2 q(\mathbf{x}) \ d\mathbf{x}$$

Our estimator True gradient

is bounded by

$$J^{2}\left(O_{p}\left(\frac{1}{M}\right)+O_{p}\left(\frac{1}{\mu_{J}\Delta_{J}^{2}M}\right)\right)+JO_{p}\left(\frac{1}{\mu_{J}\Delta_{J}^{2}M}\right)+\mu_{J}\|g_{i}\|_{\mathcal{H}}^{2}$$

Sample error

Approximation error

where $\Delta_J = \min_{1 \le j \le J} |\mu_j - \mu_{j+1}|$

Related Work

- Sample Stein Gradient Estimator (Li & Turner, ICLR 18)
 - No guarantee for out-of-sample predictions.

Related Work

- Sample Stein Gradient Estimator (Li & Turner, ICLR 18)
 - No guarantee for out-of-sample predictions.
- Score Matching (Strathmann et al., 15; Sutherland et al., 18)
 - Fisher divergence is computationally expensive: Hessian trace.
 - A scalable variant: Sliced Score Matching (Song, Garg, Shi, Ermon, UAI 19).

Related Work

- Sample Stein Gradient Estimator (Li & Turner, ICLR 18)
 - No guarantee for out-of-sample predictions.
- Score Matching (Strathmann et al., 15; Sutherland et al., 18)
 - Fisher divergence is computationally expensive: Hessian trace.
 - A scalable variant: Sliced Score Matching (Song, Garg, Shi, Ermon, UAI 19).
- Nonparametric Score Estimators (coming)
 - A unified view of SSGE, Li & Turner, Score Matching.
 - Vector-valued extensions: Enforce conservative properties of gradient fields

Spiral Data

 $\nabla_{\phi} \mathbb{H}(q) = -\nabla_{\phi} \mathbb{E}_q \log q_{\phi}(\mathbf{x}) - \nabla_{\phi} \mathbb{E}_{q_{\phi}} \log q(\mathbf{x})$

$$\nabla_{\phi} \mathbb{H}(q) = -\nabla_{\phi} \mathbb{E}_q \log q_{\phi}(\mathbf{x}) - \nabla_{\phi} \mathbb{E}_{q_{\phi}} \log q(\mathbf{x})$$

$$\nabla_{\phi} \mathbb{H}(q) = -\nabla_{\phi} \mathbb{E}_{q} \log q_{\phi}(\mathbf{x}) - \nabla_{\phi} \mathbb{E}_{q_{\phi}} \log q(\mathbf{x})$$
$$= -\nabla_{\phi} \mathbb{E}_{\epsilon \sim \nu(\epsilon)} \log q(f(\epsilon; \phi))$$

$$\nabla_{\phi} \mathbb{H}(q) = -\nabla_{\phi} \mathbb{E}_{q} \log q_{\phi}(\mathbf{x}) - \nabla_{\phi} \mathbb{E}_{q_{\phi}} \log q(\mathbf{x})$$
$$= -\nabla_{\phi} \mathbb{E}_{\epsilon \sim \nu(\epsilon)} \log q(f(\epsilon; \phi))$$
$$= -\mathbb{E}_{\epsilon \sim \nu(\epsilon)} \nabla_{\mathbf{x}} \log q(f(\epsilon; \phi)) \nabla_{\phi} f(\epsilon; \phi)$$

$$\nabla_{\phi} \mathbb{H}(q) = -\nabla_{\phi} \mathbb{E}_{q} \log q_{\phi}(\mathbf{x}) - \nabla_{\phi} \mathbb{E}_{q_{\phi}} \log q(\mathbf{x})$$
$$= -\nabla_{\phi} \mathbb{E}_{\epsilon \sim \nu(\epsilon)} \log q(f(\epsilon; \phi))$$
$$= -\mathbb{E}_{\epsilon \sim \nu(\epsilon)} \nabla_{\mathbf{x}} \log q(f(\epsilon; \phi)) \nabla_{\phi} f(\epsilon; \phi)$$

Similarly for cross-entropy (out-of-sample) and KL-divergence.

Applications

Mutual Information Gradient Estimation for Representation Learning (Wen et al., ICLR 20)

Applications

Model	CIFAR-10			CIFAR-100		
	conv	fc(1024)	Y(64)	conv	fc(1024)	Y(64)
DIM (JSD)	55.81%	45.73%	40.67%	28.41%	22.16%	16.50%
DIM (JSD + PM)	52.2%	52.84%	43.17%	24.40%	18.22%	15.22%
DIM (infoNCE)	51.82%	42.81%	37.79%	24.60%	16.54%	12.96%
DIM (infoNCE + PM)	56.77%	49.42%	42.68%	25.51%	20.15%	15.35%
MIGE	57.95%	57.09%	53.75%	29.86%	27.91%	25.84%

Mutual Information Gradient Estimation for Representation Learning (Wen et al., ICLR 20)

Applications

Functional Bayesian Neural Networks (Sun, Zhang, Shi, Grosse, ICLR 19)

Summary

- Eigenfunction expansions of the score has a simple form.
- Eigenfunctions can be approximated with Nyström Methods.
- Score estimation is useful when samples are easier to obtain than densities.

From Eigenfunctions to Distributions of Functions

$$f = \sum_{i} \eta_i \varphi_i$$
$$\eta_i \sim p(\eta_i)$$
• GP samples can be represented as series of eigenfunctions

$$f \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}')) \iff f = \sum_{i} \eta_i \varphi_i, \quad \eta_i \sim \mathcal{N}(0, \mu_i)$$

• GP samples can be represented as series of eigenfunctions

$$f \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}')) \iff f = \sum_{i} \eta_i \varphi_i, \quad \eta_i \sim \mathcal{N}(0, \mu_i)$$

• GP samples can be represented as series of eigenfunctions

$$f \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}')) \iff f = \sum_{i} \eta_i \varphi_i, \quad \eta_i \sim \mathcal{N}(0, \mu_i)$$

$$\mathbb{E}[f(\mathbf{x})] = \sum_{i} \mathbb{E}[\eta_i]\varphi_i(\mathbf{x}) = 0$$

• GP samples can be represented as series of eigenfunctions

$$f \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}')) \iff f = \sum_{i} \eta_i \varphi_i, \quad \eta_i \sim \mathcal{N}(0, \mu_i)$$

$$\mathbb{E}[f(\mathbf{x})] = \sum_{i} \mathbb{E}[\eta_{i}]\varphi_{i}(\mathbf{x}) = 0$$
$$\mathbb{E}[f(\mathbf{x})f(\mathbf{x}')] = \sum_{i} \mathbb{E}[\eta_{i}^{2}]\varphi_{i}(\mathbf{x})\varphi_{i}(\mathbf{x}')$$

• GP samples can be represented as series of eigenfunctions

$$f \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}')) \iff f = \sum_{i} \eta_i \varphi_i, \quad \eta_i \sim \mathcal{N}(0, \mu_i)$$

$$\mathbb{E}[f(\mathbf{x})] = \sum_{i} \mathbb{E}[\eta_{i}]\varphi_{i}(\mathbf{x}) = 0$$
$$\mathbb{E}[f(\mathbf{x})f(\mathbf{x}')] = \sum_{i} \mathbb{E}[\eta_{i}^{2}]\varphi_{i}(\mathbf{x})\varphi_{i}(\mathbf{x}') = \sum_{i} \mu_{i}\varphi_{i}(\mathbf{x})\varphi_{i}(\mathbf{x}')$$

• GP samples can be represented as series of eigenfunctions

$$f \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}')) \iff f = \sum_{i} \eta_i \varphi_i, \quad \eta_i \sim \mathcal{N}(0, \mu_i)$$

$$\begin{split} \mathbb{E}[f(\mathbf{x})] &= \sum_{i} \mathbb{E}[\eta_{i}]\varphi_{i}(\mathbf{x}) = 0\\ \mathbb{E}[f(\mathbf{x})f(\mathbf{x}')] &= \sum_{i} \mathbb{E}[\eta_{i}^{2}]\varphi_{i}(\mathbf{x})\varphi_{i}(\mathbf{x}') = \sum_{i} \mu_{i}\varphi_{i}(\mathbf{x})\varphi_{i}(\mathbf{x}') = k(\mathbf{x}, \mathbf{x}')\\ & \text{Mercer's theorem} \end{split}$$

Gaussian Processes (GP)

 $\mathbf{f} = f(\mathbf{X}) := [f(\mathbf{x}_1), \dots, f(\mathbf{x}_N)]^\top$ $\mathcal{O}(N^3)$ complexity

Gaussian Processes (GP)

(Deisenroth & Rasmussen, 11)

(Titsias & Lawrence, 10)

Scalable GPs via Approximate Inference

Scalable GPs via Approximate Inference

Sparse variational GP methods (SVGP)

• Augmented joint distribution:

$$p(\mathbf{y}, \mathbf{f}, \mathbf{u}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, \mathbf{u})$$

• Variational distribution:

$$q(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u}) q(\mathbf{u})$$

$$\operatorname{KL}\left[q(\mathbf{f}, \mathbf{u}) \| p(\mathbf{f}, \mathbf{u} | \mathbf{y})\right] = \mathbb{E}_q \log \frac{p(\mathbf{f} | \mathbf{u}) q(\mathbf{u}) \cdot p(\mathbf{y})}{p(\mathbf{y} | \mathbf{f}) \cdot \frac{p(\mathbf{f} | \mathbf{u})}{p(\mathbf{y} | \mathbf{f})} p(\mathbf{u})}$$

(Titsias, 09; Hensman et al., 13 & 15)

Scalable GPs via Approximate Inference

Sparse variational GP methods (SVGP)

• Augmented joint distribution:

$$p(\mathbf{y}, \mathbf{f}, \mathbf{u}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, \mathbf{u})$$

• Variational distribution:

$$q(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u}) q(\mathbf{u})$$

 $\operatorname{KL}\left[q(\mathbf{f}, \mathbf{u}) \| p(\mathbf{f}, \mathbf{u} | \mathbf{y})\right] = \mathbb{E}_{q} \log \frac{p(\mathbf{f} | \mathbf{u}) q(\mathbf{u}) \cdot p(\mathbf{y})}{p(\mathbf{y} | \mathbf{f}) \cdot p(\mathbf{f} | \mathbf{u}) p(\mathbf{u})}$ $\mathbb{E}_{q(\mathbf{u})p(\mathbf{f} | \mathbf{u})}\left[\log p(\mathbf{y} | \mathbf{f})\right] - \operatorname{KL}\left[q(\mathbf{u}) \| p(\mathbf{u})\right]$

 $\mathcal{O}(M^3)$ complexity per update

(Titsias, 09; Hensman et al., 13 & 15)

Inducing Points Are Expensive

Inducing Points Are Expensive

Can we do better?

$$\begin{aligned} \mathbf{f} \sim p(\mathbf{f}) & \left\{ \begin{array}{l} \mathbf{u} \sim p(\mathbf{u}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K_{ZZ}}) \\ & \mathbf{f} \sim p(\mathbf{f} | \mathbf{u}) \end{array} \right. \end{aligned}$$

$$\mathbf{f} \sim p(\mathbf{f}) \begin{cases} \mathbf{u} \sim p(\mathbf{u}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{Z}\mathbf{Z}}) \\ \mathbf{f} \sim p(\mathbf{f}|\mathbf{u}) \end{cases} p(\mathbf{f}|\mathbf{u}) \equiv \mathcal{N}(\mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{u}, \mathbf{K}_{\mathbf{X}\mathbf{X}} - \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{K}_{\mathbf{Z}\mathbf{X}})$$

$$\begin{aligned} \mathbf{f} \sim p(\mathbf{f}) & \left\{ \begin{array}{ll} \mathbf{u} \sim p(\mathbf{u}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{Z}\mathbf{Z}}) & \mathbf{u} \sim p(\mathbf{u}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{Z}\mathbf{Z}}) \\ \mathbf{f} \sim p(\mathbf{f}|\mathbf{u}) & \left\{ \begin{array}{l} \mathbf{f}_{\perp} \sim p_{\perp}(\mathbf{f}_{\perp}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{X}\mathbf{X}} - \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{K}_{\mathbf{Z}\mathbf{X}}) \\ \mathbf{f} = \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{u} + \mathbf{f}_{\perp} \end{aligned} \right. \end{aligned}$$

$$\begin{aligned} \mathbf{f} \sim p(\mathbf{f}) & \left\{ \begin{array}{ll} \mathbf{u} \sim p(\mathbf{u}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{Z}\mathbf{Z}}) & \mathbf{u} \sim p(\mathbf{u}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{Z}\mathbf{Z}}) \\ \mathbf{f} \sim p(\mathbf{f}|\mathbf{u}) & \left\{ \begin{array}{l} \mathbf{f}_{\perp} \sim p_{\perp}(\mathbf{f}_{\perp}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{X}\mathbf{X}} - \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{K}_{\mathbf{Z}\mathbf{X}}) \\ \mathbf{f} = \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{u} + \mathbf{f}_{\perp} \end{aligned} \right. \end{aligned}$$

$$\begin{aligned} \mathbf{f} \sim p(\mathbf{f}) & \left\{ \begin{array}{ll} \mathbf{u} \sim p(\mathbf{u}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{Z}\mathbf{Z}}) & \mathbf{u} \sim p(\mathbf{u}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{Z}\mathbf{Z}}) \\ \mathbf{f} \sim p(\mathbf{f} | \mathbf{u}) & \left\{ \begin{array}{l} \mathbf{f}_{\perp} \sim p_{\perp}(\mathbf{f}_{\perp}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{X}\mathbf{X}} - \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{K}_{\mathbf{Z}\mathbf{X}}) \\ \mathbf{f} = \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{u} + \mathbf{f}_{\perp} \end{aligned} \right. \end{aligned}$$

The variational posterior distribution over f_{\perp} is simply chosen to be the prior distribution.

$$\begin{aligned} \mathbf{f} \sim p(\mathbf{f}) & \left\{ \begin{array}{ll} \mathbf{u} \sim p(\mathbf{u}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{Z}\mathbf{Z}}) & \mathbf{u} \sim p(\mathbf{u}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{Z}\mathbf{Z}}) \\ \mathbf{f} \sim p(\mathbf{f} | \mathbf{u}) & \left\{ \begin{array}{l} \mathbf{f}_{\perp} \sim p_{\perp}(\mathbf{f}_{\perp}) \equiv \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{X}\mathbf{X}} - \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{K}_{\mathbf{Z}\mathbf{X}}) \\ \mathbf{f} = \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{u} + \mathbf{f}_{\perp} \end{aligned} \right. \end{aligned}$$

- Can we improve the variational approximation for \mathbf{f}_{\perp} ?
- Full Gaussian parameterization of $q(\mathbf{f}_{\perp})$ has $\mathcal{O}(N^3)$ cost.

Orthogonal Decomposition

$$V = \left\{ \sum_{i=1}^{M} a_i k(\mathbf{z}_i, \cdot) \; \middle| \; \mathbf{a} \in \mathbb{R}^M \right\}$$

 $p_{\parallel}: f_{\parallel} = k(\mathbf{x}, \mathbf{Z})^{\top} \mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1} \mathbf{u} \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{Z}) \mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1} k(\mathbf{Z}, \mathbf{x}'))$ $p_{\perp}: f_{\perp} \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}') - k(\mathbf{x}, \mathbf{Z}) \mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1} k(\mathbf{Z}, \mathbf{x}'))$ $p: f = f_{\perp} + f_{\parallel} \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$

Orthogonal Inducing Points

Orthogonal Inducing Points

Orthogonal Inducing Points

O: orthogonal inducing points

- After reparameterization, posterior inference for f is equivalent to posterior inference for f_{\perp} , u
- introducing inducing variables v_{\perp} in the orthogonal process to summarize f_{\perp} .

Sparse Orthogonal Variational Inference for Gaussian Processes

O: orthogonal inducing points

SOLVE-GP lower bound

 $\mathbb{E}_{q(\mathbf{u})q(\mathbf{v}_{\perp})p_{\perp}(\mathbf{f}_{\perp}|\mathbf{v}_{\perp})} \left[\log p(\mathbf{y}|\mathbf{f}_{\perp} + \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{u})\right] - \mathrm{KL}\left[q(\mathbf{v}_{\perp})\|p_{\perp}(\mathbf{v}_{\perp})\right] - \mathrm{KL}\left[q(\mathbf{u})\|p(\mathbf{u})\right]$

Orthogonal Inducing Points Are Cheaper

+ Inducing points A Orthogonal inducing points

Orthogonal Decomposition: Details

$$f = \sum_{i} \eta_{i} \varphi_{i} \qquad g = \sum_{j} \xi_{j} \varphi_{j}$$

Orthogonal Decomposition: Details

$$f = \sum_{i} \eta_{i} \varphi_{i} \qquad g = \sum_{j} \xi_{j} \varphi_{j}$$

• Define $\langle f, g \rangle = \sum_{i} \frac{\eta_i \xi_i}{\mu_i}$
Orthogonal Decomposition: Details

$$f = \sum_{i} \eta_{i} \varphi_{i} \qquad g = \sum_{j} \xi_{j} \varphi_{j}$$

• Define $\langle f, g \rangle = \sum_{i} \frac{\eta_i \xi_i}{\mu_i}$ $\langle f, k(\mathbf{x}, \cdot) \rangle = \left\langle \sum_{i} \eta_i \varphi_i, \sum_{i} \mu_j \varphi_j(\mathbf{x}) \varphi_j \right\rangle = \sum_{i} \frac{\eta_i \cdot \mu_i \varphi_i(\mathbf{x})}{\mu_i} = f(\mathbf{x})$

Orthogonal Decomposition: Details

$$f = \sum_{i} \eta_{i} \varphi_{i} \qquad g = \sum_{j} \xi_{j} \varphi_{j}$$

• Define $\langle f, g \rangle = \sum_{i} \frac{\eta_{i} \xi_{i}}{\mu_{i}}$
 $\langle f, k(\mathbf{x}, \cdot) \rangle = \left\langle \sum_{i} \eta_{i} \varphi_{i}, \sum_{j} \mu_{j} \varphi_{j}(\mathbf{x}) \varphi_{j} \right\rangle = \sum_{i} \frac{\eta_{i} \cdot \mu_{i} \varphi_{i}(\mathbf{x})}{\mu_{i}} = f(\mathbf{x})$

• Solve the projections to the subspace:

$$\langle f, f_{\parallel} \rangle = \langle f, g \rangle \quad \forall g \in V \implies f_{\parallel} = k(\cdot, \mathbf{Z}) \mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1} \mathbf{u}$$

$$V = \left\{ \sum_{i=1}^{M} a_i k(\mathbf{z}_i, \cdot) \; \middle| \; \mathbf{a} \in \mathbb{R}^M \right\}$$

Regression

HouseElectric (N=1,311,539, D=9)

Classification - CIFAR 10

Convolutional GPs¹

new SOTA: 64.6% -> 68.2%

Methods	SVGP		SOLVE-GP	SVGP
Μ	1K	1.6K	1K+1K	2K*
Test LL	-1.59	-1.54	-1.51	-1.48
Test Acc	66.07%	67.18%	68.19%	68.06%
Time /iter	0.241	0.380	0.370	0.474

Deep Convolutional GPs²

new SOTA: 76.2% -> 80.3%

Methods	SVGP	SOLVE-GP	SVGP
Μ	384, 384, 1K	384+384, 384 +384, 1K+1K	768,768, 2K*
Test LL	-0.88	-0.79	-0.82
Test Acc	78.76%	80.3%	80.33%
Time /iter	0.418	0.752	1.246

^{1,2} Neither neural network components nor data augmentation is used.

Why is 80% interesting?

Radford Neal's NN-as-GP kernel CNN-GP vs. CNN (Novak et al., 2019) Neural Tangent Kernel CNTK vs. CNN (Arora et al., 2019)

Depth	CNN-GAP	CNTK-GAP
3	57.96%	70.47%
4	80.58%	75.93%
6	80.97%	76.73%
11	75.45%	77.43%
21	81.23%	77.08%

Conclusion

- Eigenfunctions are powerful tools. They can be used for
 - \circ $\,$ nonparametric estimation of score functions.
 - analyzing orthogonal decomposition of GPs.
- Functionally "orthogonal" learning
 - Inducing points are feature detectors.
 - Feature detectors need to be functionally "orthogonal" to be efficient.
 - Implications for ML methods in general?

Main Refs:

A Spectral Approach to Gradient Estimation for Implicit Distributions. Shi, Sun, Zhu, ICML 18 Sparse Orthogonal Variational Inference for Gaussian Processes. Shi, Titsias, Mnih, AISTATS 20

Thanks to you and my coauthors

Shengyang Sun

Jun Zhu

Michalis K. Titsias

Andriy Mnih