
大模型计算 HW5

December 2025

1 Introduction

稀疏化是当前大模型加速中的关键技术路线之一。在不改变模型架构
的前提下，通过移除冗余参数，使模型满足硬件稀疏 kernel 的要求，从而
在实际推理中实现加速。主要的剪枝方法按照剪枝粒度可以分为：非结构化
（unstructured）、半结构化（semi-structured）以及结构化（structured）
剪枝。本次作业你需要在 LLaMA模型上实现非结构化（unstructured）和
半结构化（semi-structured）的剪枝方法。你将通过补充修改提供的代码实
现权重稀疏化，并测试不同剪枝策略在模型精度与 GPU 推理加速（prefill
/ decode）中的影响。最终，你需要提交一份 PDF 报告以及代码，总结你
的实现、实验过程、精度变化以及加速效果。

2 Preliminaries

稀疏化指将神经网络部分参数置零，以减少有效计算量。根据粒度不
同，可分为三类。

2.0.1 非结构化剪枝（Unstructured Pruning）

对单个权重进行逐点剪枝：粒度最细，可实现较高稀疏率；不满足现有
GPU kernel 要求；理论 FLOPs 降低不等于实际加速。

2.0.2 半结构化剪枝（Semi-structured Pruning, 2:4 等）

在 Nvidia Ampere/Hopper GPU中，2:4稀疏模式最常用：在每 4个连
续权重中，仅保留 2 个非零值。其特点是硬件原生支持（2:4 TensorCore）；

1

固定 50% 稀疏率；能带来稳定的 1.3×−1.6× 加速。

2.0.3 结构化剪枝（Structured Pruning）

以更大粒度直接移除结构单元，例如：移除完整的 Attention heads；剪
掉 MLP hidden channels；移除 FFN blocks 的部分行列。例如对 MLP：若
删除中间维度的某些 channel，需要同时删除 W1 的列与 W2 的行。特点：
(1) 对内存、吞吐、KV cache 有显著影响；(2) 可与现有 dense kernel 完全
对齐；(3) 精度影响通常更大。

2.1 不同粒度的剪枝方法实际加速影响

剪枝方式 需特殊 kernel 可否 fuse 到 matmul 典型加速
非结构化 是（且困难） 否 几乎无
半结构化 2:4 已有硬件支持 易 30–60%
结构化 否 完全可 fuse 与降维一致

表 1: 不同剪枝方式对系统加速的影响

3 Tasks

3.1 代码部分

本次实验的代码部分旨在让你以一个完整的稀疏化框架为主线，逐步
实现当前数种较为常见的剪枝方法，并在统一的模型与推理流程下比较它
们在不同稀疏度下的表现。你需要从最基本的 magnitude 剪枝开始，逐步
扩展到Wanda、RIA以及 OWL+X等方法。所有方法都应在保持模型原有
结构的前提下，对权重矩阵施加稀疏化约束，并保证剪枝后的模型能够正常
完成前向推理。代码链接

3.1.1 Magnitude Pruning

在最简单的设定中，剪枝依据权重的绝对值大小进行。给定某层权重矩
阵 W ∈ Rm×n，其稀疏化形式可写为

W ′
i,j = Wi,j · 1(|Wi,j | > τ) ,

2

https://github.com/yellowtree123/HW5

其中阈值 τ 由目标稀疏率决定。你需要完成 lib.prune_all.py当中 prune_magnitude
函数的代码，实现非结构化与半结构化稀疏的相关代码。

3.1.2 Wanda

Wanda 的思想基于权重元素对模型输出的相对贡献，引入激活统计来
衡量某一输入通道的重要性。对权重矩阵 W 的元素 Wi,j，其 Wanda 得分
为

si,j = |Wi,j | · ∥Xj∥2,

其中 Xj 为输入激活矩阵中与列 j 对应的激活向量。稀疏化时保留得分高的
元素，将其余置零。你需要完成 lib.prune_all.py 当中 prune_wanda 函数
的代码，完成 Wanda 的标准实现。

3.1.3 Relative Importance Activation (RIA)

进一步地，我们观察到每一个元素的重要性需要与其在同一行或者同
一列的其他元素进行比较。在这个部分中你需要实现的是 RIA（Relative
Importance and Activations）打分指标。
我们首先定义相对重要性（Relative Importance, RI）指标。对权重Wi,j，

RIi,j =
|Wi,j |∑
i′ |Wi′,j |

+
|Wi,j |∑
j′ |Wi,j′ |

.

第一项在每个输入通道（列）内归一化，第二项在每个输出通道（行）内归
一化，避免整列或整行被完全剪空。
在此基础上，引入激活信息，形成 RIA（Relative Importance and Ac-

tivations）。设输出通道 i 的激活为 Xi，则

RIAi,j = RIi,j · ∥Xi∥ a
2 =

(
|Wi,j |∑
i′ |Wi′,j |

+
|Wi,j |∑
j′ |Wi,j′ |

)
· ∥Xi∥ a

2 ,

其中 a 是超参数（原文推荐 a = 0.5）。在实施时，你需要计算所有 RIAi,j

并在给定稀疏率下选择得分最高的元素，同时支持非结构化与 N :M 半结构
化模式。你需要完成 lib.prune_all.py 当中 prune_ria 函数的代码，实现非
结构化与半结构化稀疏的相关代码, 并搜索最佳的超参 a。

3

3.1.4 OWL+Wanda：Outlier Weighed Layerwise Sparsity

在前面的剪枝方法中，通常默认对所有层采用统一的稀疏率，而 OWL
（Outlier Weighed Layerwise Sparsity）试图利用模型中 outlier 特征的分布，
为每一层分配非均匀的 layerwise 稀疏度。与 Wanda 一样，我们对 Wi,j 定
义 outlier 得分

Ai,j = ∥Xj∥2 · |Wi,j |,

其中 Xj 是输入激活中与列 j 对应的向量。对第 l 层，设该层权重元素数为
Nl，其得分矩阵为 A(l)，均值为 Ā(l)。设定阈值 M > 1，则第 l 层的 outlier
比例（LOD）定义为

Dl =
1

Nl

∑
i,j

1
(
A

(l)
i,j > M · Ā(l)

)
.

将所有层的 outlier 比例组成向量

LOD = [D1, D2, . . . , DL].

OWL 基本原则是：outlier 比例越高的层应当保留更多参数。因此给每
一层分配的稀疏率满足

Sl ∝ (1−Dl),

并做归一化以满足全局稀疏率约束

L∑
l=1

SlNl = Sglobal

L∑
l=1

Nl.

如果不同层之间的 sparsity 差异过大，会造成类似“全局剪枝”的破坏
性效果，使稀疏 LLM 出现性能崩塌。为避免这种情况，OWL 引入一个至
关重要的超参数 λ 来控制稀疏率的最大偏移范围。

OWL 因此将每层 sparsity 限制在

Sl ∈ [Sglobal − λ, Sglobal + λ],

同时仍需满足平均稀疏率为 Sglobal。你需要完成 lib.prune_all.py当中 prune_wanda_outlier
函数的代码，实现 outliner 数量的计算并给出将其转化为不同层的 sparsity
ratio 的代码。

4

3.2 性能分析

3.2.1 模型性能与稀疏度的关系

在完成上述稀疏化方法后，你需要系统化地评估不同稀疏度对模型性
能的影响。建议在相同的验证环境下，对 Magnitude，Wanda 和 RIA 在多
个稀疏率（例如 30%、50%、70%、90%）下的 Zero-shot 准确率或困惑度
进行测试，并绘制折线图展示稀疏度与性能之间的关系。

3.2.2 测试半结构化稀疏模型的实际加速

进一步地，利用你在上一部分得到的 2:4稀疏模型使用 TensorRT-LLM
并测试实际推理加速。在构建支持 2:4 稀疏的 TensorRT 引擎时，可参考官
方文档：

https://nvidia.github.io/TensorRT-LLM/latest/commands/
trtllm-build.html

首先需要将 HF 格式的模型转为 Tensorrt 的格式：

python examples/llama/convert_checkpoint.py \
--model_dir /path/to/hf_model_or_repo \
--output_dir /root/autodl-tmp/trtllm_checkpoints/llama_7b \
--dtype float16

接着构造 TensorRT-LLM engine。

trtllm-build \
--checkpoint_dir /root/autodl-tmp/trtllm_checkpoints/llama_7b \
--output_dir /root/autodl-tmp/trt_engines/llama_7b_fp16 \
--dtype float16 \

最后可以手动利用 tensorrt_llm.LLM 测试 decode 与 Prefill 加速。或
者可以使用 benchmark 脚本：

python TensorRT-LLM/benchmarks/python/benchmark.py ...

本任务需要你比较稀疏模型相对于 dense 模型的实际加速倍率。你可
以控制输入输出长度以及 batchsize。实验中应特别注意推理 prefill 以及
decode 两个阶段呈现出的不同加速趋势，并在报告中做出合理解释。

5

https://nvidia.github.io/TensorRT-LLM/latest/commands/trtllm-build.html
https://nvidia.github.io/TensorRT-LLM/latest/commands/trtllm-build.html

3.3 拓展（二选一，多做可以加分）

3.3.1 不同结构对于剪枝的敏感性分析

本小节旨在探讨 Transformer 结构中的不同子模块在剪枝过程中的敏
感性差异。你需要分析并比较 Attention 与 MLP 在稀疏化后性能下降的程
度，判断究竟哪一部分更适合进行高比例剪枝，并给出理论或经验上的解
释。分析视角可包括但不限于以下几个方向：算子在推理中的 FLOPs占比、
参数规模差异带来的结构性冗余、各自对稀疏性模式（如非结构化与 N :M

半结构化）的适配性，以及它们在不同任务中的重要性差异等。希望你结合
实验结果给出一个较为完整的 sensitivity 讨论。

3.3.2 剪枝对于 Calibration Data 的敏感性分析

在前面的实验中，我们计算激活统计量（如 ∥Xj∥2）时默认使用的是通
用的 C4 数据集。本拓展任务希望你进一步分析剪枝过程对校准数据（Cali-
bration Data）的依赖程度。具体而言，你可以尝试将 C4替换为更具领域特
征的校准数据集，例如 MaTH，并在相同稀疏率下评估模型的困惑度（ppl）
以及其在数学任务评测集上的表现。通过比较不同类型的 Calibration Data
所带来的剪枝效果差异，思考模型的结构化知识是否影响稀疏化的稳定性，
以及域内校准是否能够提升剪枝模型在特定任务上的适应能力。

4 DDL

本次作业 1.9 截止. 请提交一份 PDF 报告以及代码文件。

6

	Introduction
	Preliminaries
	非结构化剪枝（Unstructured Pruning）
	半结构化剪枝（Semi-structured Pruning, 2:4 等）
	结构化剪枝（Structured Pruning）

	不同粒度的剪枝方法实际加速影响

	Tasks
	代码部分
	Magnitude Pruning
	Wanda
	Relative Importance Activation (RIA)
	OWL+Wanda：Outlier Weighed Layerwise Sparsity

	性能分析
	模型性能与稀疏度的关系
	测试半结构化稀疏模型的实际加速

	拓展（二选一，多做可以加分）
	不同结构对于剪枝的敏感性分析
	剪枝对于 Calibration Data 的敏感性分析

	DDL

