
大模型计算-HW4

November 2025

1 Introduction

本次作业你需要对不同的量化方法进行模拟, 在 Qwen3-1.7B 模型上测
试不同量化方法的精度表现以及在 nanovllm 中推理的吞吐表现。并通过
torchao 对模型使用 SmoothQuant 方法量化并测试推理速度 (prefilling).

2 Preliminaries

2.1 INT8/FP8 与细粒度量化

INT8 与 FP8 被广泛用于目前 LLM 的训练和推理中，可以说，量化到
8BIT是目前 LLM用于 serving的基本配置。在 FP8、MXFP被硬件支持之
前，INT8/INT4 是为数不多用于低精度计算的数据格式，而由于均匀分布
的 INT 与浮点数训练的 LLM 权重/激活值分布不同，直接应用 per-tensor
的 INT 量化会导致较大的性能损失。
由此，许多工作开始使用更加细粒度的量化，在不修改矩阵乘 kernel的

前提下，我们最多可以做到 per-token 的量化粒度。而在 Marlin、Jetfire 以
及 DeepseekV3 后，在矩阵乘 K 维度的组量化已经成为目前低精度量化的
标配。
对于 Deepseek V3 而言，尽管 FP8 实际上并不需要十分细粒度的量

化，但由于 Nvidia GPU 的 FP8 TensorCore 在 Ada/Hopper 上有精度问
题，Deepseek 仍然使用了 128 粒度的 K 维度量化。

1



2 PRELIMINARIES 2

2.2 TorchAO

TorchAO是一个 Torch原生支持量化的仓库。目前已经在 A100, H100,
B200等显卡上支持了 int4, int8, float8等多种数据格式的量化。安装 torchao
非常简单，通过如下命令即可：

pip install ao

使用 torchao 对 huggingface 模型进行量化需要定义 Config，目前支持
的 Config 定义在 quant_api.py当中。以 Int8 WeightOnly 量化为例

1 from torchao.quantization import quantize_, Int8WeightOnlyConfig
2 quantize_(model, Int8WeightOnlyConfig())

量化的粒度（grannulity）可以通过传入参数来控制，不同的量化类型所支持
的粒度不同,支持的类型可以在 quant_api.py当中查看。以 Int8 WeightOnly
量化为例，如果不传入任何参数，会进行 per-channel 量化。除此之外，也
可以进行更细粒度的分组量化，通过传入 group_size 自定义分组的大小：

1 from torchao.quantization import quantize_, Int8WeightOnlyConfig
2 quantize_(model, Int8WeightOnlyConfig(group_size=128))

类似的，如果希望进行 Weight 和 Activation 的 Int8 量化，需要选择不同
的 Config:

1 from torchao.quantization import quantize_, \
2 Int8DynamicActivationInt8WeightConfig
3 quantize_(model, Int8DynamicActivationInt8WeightConfig())

2.3 SmoothQuant

SmoothQuant 是一种用于大语言模型的 PTQ 方法，在不重新训练模
型的情况下，实现对激活与权重的低比特量化。其核心思想是 通过缩放因
子的重新分配，将激活中的尖峰（outliers）平滑到权重中，从而降低激活
的动态范围，使其更容易被量化。在 Transformer 的线性层计算中，我们有

y = xW,

其中 x 为激活，W 为权重。若激活部分某些通道存在极端大值，直接对 x

进行低比特量化会导致量化误差极大。

https://github.com/pytorch/ao
https://github.com/pytorch/ao/blob/main/torchao/quantization/quant_api.py
https://arxiv.org/abs/2211.10438


3 TASK 3

SmoothQuant 引入一个按通道的缩放因子 s，并利用如下数学等价变
换：

xW =
(x
s

)
(Ws),

其中 s 是一个可学习或通过统计获得的正数缩放向量。该变换不改变层的
输出，但会将激活 x 的动态范围缩小，从而大幅降低激活量化的难度；同
时，权重 Ws 的变化可以通过离线量化处理，误差可控。

SmoothQuant 无需重新训练即可使用（Zero-shot PTQ）, 而且显著减
少了激活量化误差。在 TorchAO 当中， smoothquant.py已经基本实现了
SmoothQuant 的逻辑。

3 Task

3.1 量化精度测试

基于修改后的 nanovllm代码，利用并修改 utils/quantization.py，测试
不同量化方法在下游任务中的精度。
仓库提供了 test_mmlu.py与 test_ppl.py测试 mmlu上 5 shots的 ac-

curacy以及 wikitext上的 ppl. config中添加了 linear_dtype和 weight_quant_fn,
可以选择性使用。

• 测试 weight only 的 INT8/FP8 per-tensor 和 per-row(per-channel)量
化对精度以及 ppl 的影响，是否精度越差结果越差？

• 测试 weight only 的 INT8/FP8 不同 group size 的组量化精度，INT8
和 FP8 对组大小的要求相同吗？

• 简述 per-tensor / per-row / per-group 量化在系统实现中的影响，量
化/反量化是否可以 fuse 到已有的 kernel 中？

3.2 量化吞吐测试

基于修改后的 nanovllm代码，利用并修改 utils/quantization.py，测试
不同量化方法在下游任务中的速度。

• 在 RTX4090上测试 INT8/FP8 per-row quantization在实际推理中的
吞吐，对 prefilling 和 decoding 各有什么影响？

https://github.com/pytorch/ao/blob/main/torchao/quantization/smoothquant.py
https://github.com/guyan364/nano-vllm-hw3/tree/main
https://github.com/guyan364/nano-vllm-hw3/tree/main


4 DDL 4

• 将低精度矩阵乘修改为伪量化乘法，RTX4090 上 int8 与 fp8 的精度
是否相同？为什么？

3.3 TorchAO

• 参考 smoothquant.py实现对 Qwen2.5-1.5B的 Int8格式的Weight和
Activation 的量化脚本。

• 实现 FP8 格式的 Weight 和 Activation 的 SmoothQuant 量化脚本。

• 比较 FP8 和 Int8 两种格式量化的模型精度，可以自主选择评价指标。

4 DDL

本次作业 12.31 截止. 请提交一份 PDF 报告.


	Introduction
	Preliminaries
	INT8/FP8 与细粒度量化
	TorchAO
	SmoothQuant

	Task
	量化精度测试
	量化吞吐测试
	TorchAO

	DDL

