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低精度训练
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v 考虑某神经元w，不失一般性设 𝒘 = 𝟏

v 考察< 𝒘,𝑸 𝒘 >

v 考察信噪比：信号：<w,w>= 𝒘 𝟐 =

v 考察噪声<w,Q(w)-w>=∑𝒊#𝟏𝑵 𝒘𝒊(𝑸 𝒘𝒊 −𝒘𝒊)

v 注意到𝑸 𝒘𝒊 −𝒘𝒊是无偏的，Var[𝑸 𝒘𝒊 −𝒘𝒊]=O(s2)

v 由中心极限定理，Var[<w,Q(w)-w>] = ∑𝒊#𝟏𝑵 𝒘𝒊
𝟐𝒔𝟐

v Std[<w,Q(w)-w>] = s 𝒘

v 又注意到如果w是随机向量，那 𝒘 𝟐 = ∑𝒊#𝟏𝑵 𝒔𝟐 = 𝑵𝒔𝟐

v 所以信噪比= 𝒘 𝟐/s 𝒘 = sqrt(N)

v 所以cossim(w, Q(w)) = 1 – 1/sqrt(N)

为什么神经网络对量化如此鲁棒？
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v 那么

v 𝑐𝑜𝑠 𝛼 + 𝛽 = 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 − 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽

v 设N=10000

v 则𝑐𝑜𝑠 𝛼 + 𝛽 ≈ 𝑐𝑜𝑠 𝛼 ± 0.01cos(𝛼) ± 0.1sin(𝛼)

v 在𝛼较小的时候近似精确

为什么神经网络对量化如此鲁棒？
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回顾：训练后量化不够准确（误差积累）

v Train-test gap

v 训练损失函数：全精度神经网络

v 测试损失函数：量化神经网络

v 思路：在训练时考虑低精度神经网络
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v 直接训练带有伪量化器的网络

v 回顾：反向传播

v 前向：𝑦 = 𝑓 𝑥(, 𝑥), … , 𝑥*

v 反向：𝑑𝑥(, 𝑑𝑥), … , 𝑑𝑥* =
+,
+-!

𝑑𝑦, +,
+-"

𝑑𝑦,… , +,
+-#

𝑑𝑦

v 此处：𝑥 ∈ ℝ., 𝑦 ∈ ℝ/

v
+,
+-!
是𝐷×𝐶维雅可比矩阵

量化感知训练
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前向：𝑊0 = 𝑄 𝑊 ,𝑋0 = 𝑄 𝑋 , 𝑌 = 𝑋′𝑊′1

反向：𝑑𝑋0 = 𝑑𝑌 𝑊′, 𝑑𝑊0 = 𝑑𝑌1 𝑋0

     𝑑𝑋 = 𝑑𝑋0 ∘ 𝑸0 𝑿 , 𝑑𝑊 = 𝑑𝑊0 ∘ 𝑸0 𝑾

问题：量化器的梯度是什么？

案例：量化线性层
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v 𝑄(𝑋)为阶梯函数

v 梯度为梳子函数（处处为0或∞），只有恰好卡在边沿的时候，会传递无穷大的梯度

v 样本效率很低

v 解决方案：直通估计器(straight-through estimator) 𝑄0 𝑋 ≈ 1，𝑑𝑋 = 𝑑𝑋0

v 改进版：𝑋0 = 𝑄 clamp 𝑋,𝑚𝑖𝑛,𝑚𝑎𝑥 , 𝑑𝑋 = 𝑑𝑋0 ∘ 𝕀(𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑚𝑎𝑥)

v 直觉1：当台阶数趋于无穷时，的确可以如此近似

v 直觉2：要让X’越大，X也需要越大

量化器梯度 𝑑𝑋! ∘ 𝑸! 𝑿
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v 整个优化过程中，有两份模型权重

v Latent weight为FP32

v Quantized weight为低精度INT8/INT4/FP4…

v 前向传播：latent weight量化为quantized weight à 计算forward

v 反向传播：计算quantized weight的梯度 à straight-through到latent weight，更新权重

v Latent weight有记忆，能不断积累更新趋向，最终量变形成质变

Latent (master) weight and quantized weight
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v灾难遗忘

Ø 在训练过程中，模型会逐渐记住新数据，忘记旧数据

v训练数据集？

Ø 常见情况：量化感知训练数据集弱于原始（闭源）数据集

Ø 理想工作流：预训练-量化感知训练-（量化感知）指令微调-（量化感知）RL

Ø 实际往往不得不：预训练-指令微调-RL-量化感知训练

v从头开始 or 从收敛的全精度模型开始？

v知识蒸馏？

其他考虑



Large Model Computing, Tsinghua University 9

v BitNet b1.58：仅权重3值量化

v NVFP4 QAT：权重+激活 FP4量化

样例
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训练加速：全量化训练/低精度训练/混合精度训练/FP8训练……
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线性层：离群值模式

N

D

D

C

N: #tokens, D: input dimensionality, C: output dimensionality
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v 从头开始训练（training from scratch）：不能卡在局部最优

v 梯度也需要量化

v 低精度矩阵乘法收益难以掩盖量化开销

难点
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案例：DeepSeek FP8

• 激活：1*128

• 权重：128*128

• 梯度：1*128（？）
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v 每个值均为整数，但它们的期望可以是小数

v 𝑝 𝑥 = 1 = 0.8, 𝑝 𝑥 = 0 = 0.2, 𝐸 𝑥 = 0.8

v 随机舍入：

随机舍入
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Theoretical Results
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Fully Quantized Training

(quantized gradient) FQT

gradient
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Quantization-Aware Training

(exact gradient)
QAT

gradient

Theorem 1 (unbiased gradient)

FQT gradient is an unbiased gradient estimator

of the QAT gradient.

𝐄 %𝛻𝚯 2 = 𝛻𝚯 2

SGD: 𝚯& ß 𝚯&!" − 𝜂 +𝛻𝚯

FQT converges to a stationary point of QAT

Theorem 2 (gradient variance)

Minibatch samplingImpact of the l-th layer quantizer

to the k-th layer parameter gradient
Chen, Jianfei, et al. "A statistical framework for low-bitwidth training of deep neural networks." Advances in neural information processing systems 33 (2020): 883-894.
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Convergence Behavior

Theorem 2 (gradient variance)

Minibatch sampling Impact of the l-th layer quantizer

to the k-th layer parameter gradient =𝑂(
"
#!
) where 𝐵=2b-1 is the number of quant. bins

Sampling variance

If sampling variance dominates

• Less bits for free

Otherwise

• 1 less bit ≈ 4x larger variance ≈ 4x slower convergence

Chen, Jianfei, et al. "A statistical framework for low-bitwidth training of deep neural networks." Advances in neural information processing systems 33 (2020): 883-894.
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问题：量化块朝向

𝐂 = 𝐀𝐁
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𝑆%𝑆) 𝒂, 𝒃

• Activation X

• Forward pass: 1 token * 16 channels

• Backward pass: 16 tokens * 1 channel

• Weight W

• Forward pass: 16 input * 1 output

• Backward pass: 1 input * 16 output

X 
forward

1
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二次量化

X

BF16

Quantize 

16 token * 1 channel

Quantize 

1 token * 16 channel

X

FP4

16*1

X

FP4

1*16
Quantize 

16 token * 1 channel

X

FP4

16*1

Previous approach

Our approach
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What’s wrong with the previous approach?

Previous approach (microscaling paper)

Our approach

Computes forward pass for a model with

• 1*16 quantized activation

• 1*16 quantized weight

Computes gradient for another model with

• 16*1 quantized activation

• 16*1 quantized weight

You are not training the model you actually use…
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What’s the bottleneck?

Forward quantizers are the bottleneck…

Intuition:

• You only compute the forward pass once during inference

But you can compute the backward pass many times during training
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Oscillation problem

The weight learns to swing around the critical pointThe quantized model keeps oscillating

the optimization will not converge…
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Dilemma

Supervillain Superhero

Keep doing something bad Keep doing something goodOscillating in between

Mediocre
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LLM训练的震荡
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v 将震荡最频繁的元素的latent weight强制重制回中央

抑制震荡
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结果
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结果
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量化案例：前馈网络
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residual = x
x = norm(x)
gate = gate_proj(x)
up = up_proj(x)
z = act_fn(gate) * up
down = down_proj(z)
y = residual + down

前馈网络

residual = x
x = norm(x)
qx = Q(x)

gate = gate_proj(qx)
up = up_proj(qx)

z = act_fn(gate) * up
qz = Q(z)

down = down_proj(z)
y = residual + down

norm_Q算子

act_Q算子

利用FP数据类型

量化数值相乘后直接是FP32

无需反量化



Large Model Computing, Tsinghua University 29

v 量化算子分为两步：计算max；缩放&取整&类型转换

v 如果是per-tensor量化，需要扫描两次显存

v 静态量化：预先在校准集计算好max，推理时无需再算

v 动态量化：现场计算max

v 口诀：粗粒度推理用静态，其他都用动态

v 总结：裸写=扫三遍，+算子融合=扫两遍，+静态量化或细粒度量化=扫一遍

v 理论上来说，如果实现得理想，充分融合后访存甚至能比不做量化小点……

静态量化 vs 动态量化

max = compute_abs_max(x)
scaled_x = x / max * range  # 127, 448…
q_x = cast_to_lp(round(scaled_x))

± ±
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