
清华大学计算机系陈键飞

《大模型计算》课程团队

稀疏注意力

Large Model Computing, Tsinghua University 1

v Attention复杂度终归是𝑂(𝑁!)

v N足够大的时候，终会成为瓶颈

v 理想情况，我们希望有一个无限上下文长度的模型

v 必须要想办法避免N*N的注意力矩阵计算

动机

Large Model Computing, Tsinghua University 2

注意力模式

Jiang H, Li Y, Zhang C, et al. Minference 1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention[J]. arXiv preprint arXiv:2407.02490, 2024.

Xi H, Yang S, Zhao Y, et al. Sparse VideoGen: Accelerating Video Diffusion Transformers with Spatial-Temporal Sparsity[J]. arXiv preprint arXiv:2502.01776, 2025.

Large Model Computing, Tsinghua University 3

v 注意力权重都在前几个token上，为什么？（定量：cdf > 0.8？）

v 解释：不是每个token的每个head都需要“读取”

v 如果不需要读取，来自attn的O就会稀释residual path上这个token的信息

v 需要一种选择机制，让不同Q token的O magnitude不一样

v 但softmax注意力自带归一化，所有的token的“读取”强度都一样

Attention Sink

ksink

knonsink

V约等于0

𝑘!"!#$!% = 𝑘& + 𝜖#
𝑞 = 𝛼𝑘#$!% + 𝛽𝑘& + 𝛽𝜖#
𝑞, 𝑘#$!% = 𝛼 𝑘#$!% '

𝑞, 𝑘# = 𝛽 𝑘& ' + 𝛽 𝑞, 𝜖#

如果想要attention不做事情：让𝛼大𝛽小

如果想让attention做事情：让𝛽大，此时真实起作用的K是𝜖!
𝜖!

Large Model Computing, Tsinghua University 4

v 分析每个head的attention pattern，给每个head加静态的掩码矩阵

静态稀疏注意力

StreamingLLM

Sparse VideoGen

Radial Attention

Large Model Computing, Tsinghua University 5

动态稀疏注意力

v根据数据动态决定注意力掩码

v Idea

Ø Identical to SDDMM

Ø只计算选择的注意力分块

v Questions:

Ø How to select the mask/router?

Ø How to be hardware friendly?

§ Only computes selected rectangular blocks of the full attention matrix

P Q K

O P V

Large Model Computing, Tsinghua University 6

免训练路由

v Fact: Q/K in adjacent tokens are usually (but not always) similar

v Idea:

Ø compress the sequence to a shorter one by mean pooling

Ø Compute full attention on the pooled sequence 𝑂(!
!

"!
)

Ø Selects topcdf blocks of the pooled attention

Ø Compute full attention for the selected blocks 𝑂 𝜌𝑁#

v Tricks

Ø Do not always compress (tokens might be dissimilar)

Ø Don’t do topk selection, do topcdf

Large Model Computing, Tsinghua University 7

案例：SpargeAttention

v Plug-and-play, lossless inference acceleration

v ~1T flops on RTX 4090

v 6~7x faster than FlashAttention2, even for moderate seq. length 4K~8K

v Supports both LLMs and Diffusion models

SpargeAttn: Accurate Sparse
Attention Accelerating Any

Model Inference. 2025

Large Model Computing, Tsinghua University 8

案例：MoBA（模型参数可训练，路由不可训练）

Large Model Computing, Tsinghua University 9

基于可学习路由的稀疏注意力：NSA

Large Model Computing, Tsinghua University 10

v Sliding window分支按说应该能学出来

v Compression分支很好，但是对于LLM可能更多的是扮演learnable router

Ø 对于多模态模型可能有奇效，之后会看到

v 此时routing还是以（q1 * k32）为块大小

NSA真的需要3个分支吗？

Large Model Computing, Tsinghua University 11

v 直接以（q1 * k1）为block size

v 这么细粒度的block怎么做硬件友好？

v 所有Head一起route，要么都算，要么都不算

v 反正MLA也必须把所有head绑在一起

v 训练不能加速，但反正LLM训练时长文比例不大，索性就不管了

v用一个小ReLU attention（head少，headdim小）决定哪些k要计算

v 每个Q选top 2048 K

v 设计抉择：按head分组 vs 按token分组

基于可学习路由的稀疏注意力：DSA

Large Model Computing, Tsinghua University 12

DSA

Large Model Computing, Tsinghua University 13

DSA

Large Model Computing, Tsinghua University 14

v H800: 80GB HBM, 3TB/s, 1000TF@FP16, 2000TF@FP8

v 并行：MoE EP144, Attn DP144，假设序列全是128K

v 模型显存占用：前三层FFN+每卡三个Expert+attn=1.2B+7168*2048*3*57*3+11.6B=15.3B=20.3GB

v 每卡最大Batch size=(80-20.3) / (4.2GB/seq) = 14

v 采用bs=14

v MoE延迟（按访存核算） = 读取前三层weight+每层三个expert = 8.7B = 3ms

v MoE延迟（按计算核算） = 总共bs*144个token*61层每层9个expert*7168*2048*3*2 / 144卡总FP8算力 = 0.34ms

v Attn proj（访存）= 读取11.6B FP8参数 / 3TB = 3.87ms

v MLA延迟（假设MLA能打满计算）= (seqlen*heads*576*4) * bs*61 / 1Tflops FP16 = 32.24ms

v 加上DSA后，seqlen固定为2048，延迟降低为0.52ms

v 总延迟从3+3.87+32.24=39.11ms降低至3+3.87+0.52=7.39ms，约5.3x加速！解码速度提升至135token/s

DSA有多有效？

清华大学计算机系陈键飞

《大模型计算》课程团队

线性注意力

Large Model Computing, Tsinghua University 16

v 当𝑁 → ∞时，类似DSA的稀疏注意力几乎注定不可能兼顾计算效率和建模能力

v 核心原因：无限长的上下文只能看到有限多个token

v 需要某种“全局表示”，能更紧凑地压缩token中的信息

动机

Large Model Computing, Tsinghua University 17

v 平方𝑂 = softmax 𝑄𝐾" 𝑉，改成……

𝑂 = 𝜙 𝑄 𝜙 𝐾 !𝑉
v 𝝓为ReLU。由结合律

𝑂 = 𝜙 𝑄 𝜙 𝐾 (𝑉

v时间复杂度由𝑂(𝑁'𝐷)降低至𝑂(𝑁𝑀𝐷)，若取D=M=128，则复杂度大幅降低（通常取M=D）

v是什么意思，为什么有效？

朴素线性注意力

N*M M*N N*D

N*M M*D

Large Model Computing, Tsinghua University 18

v 𝑂 = softmax 𝑄𝐾" 𝑉本来是通过注意力矩阵𝑃实现N个词元间可学习的、动态的、全连接的混合

v 将一次N*N的混合分解成N->M，M->N的两阶段混合

v 第一阶段：计算𝐻 = 𝜙 𝐾 "𝑉

v 将来自N个词元的信息混合到M个槽位，槽位j读取词元i的强度是动态的、可学习的𝜙(𝐾#$)（非负）

v R是一个“全局记忆体”，所有词元都把信息写进这M个共享槽位

v 第二阶段：计算𝑂 = 𝜙 𝑄 𝐻

v 将来自M个槽位的信息混合到N个词元，词元i读取槽位j的强度是动态的、可学习的𝜙(𝑄#$)（非负）

v 本质：把来自N个词元的信息压缩进M个槽位

v 对比：MLA是将同一个词元的不同head压缩，线性注意力是将不同的词元压缩

v 注意力矩阵𝑃 = 𝜙 𝑄 𝜙 𝐾" 秩限制在M

线性注意力：解读

Large Model Computing, Tsinghua University 19

v 什么时候有效？所有的V: N*K本来就在同一个固定的M维线性子空间（V可压缩）

v 例如说：数据存在大量冗余……

线性注意力：解读

相似

相似

Large Model Computing, Tsinghua University 20

归一化

𝑜# =
𝜙 𝑞# 𝜙 𝐾 "𝑉
sum(𝜙 𝑞# 𝜙 𝐾 ")

分量形式

𝑜) =
𝜙 𝑞) ∑$*+, 𝜙 𝑘$ (𝑣$
𝜙 𝑞) ∑$*+, 𝜙 𝑘$ (

扩展：归一化

行向量 列向量

Large Model Computing, Tsinghua University 21

𝑜# =
𝜙 𝑞# ∑$%&# 𝜙 𝑘$ "𝑣$
𝜙 𝑞# ∑$%&# 𝜙 𝑘$ "

递归形式

𝐻% = 𝐻%&' + 𝜙 𝑘% "𝑣%
𝑍% = 𝑍%&' + 𝜙 𝑘% "

𝑜% =
𝜙 𝑞% 𝐻%
𝜙 𝑞% 𝑍%

自回归线性注意力

“状态”：M*D矩阵 + M维向量

Large Model Computing, Tsinghua University 22

v 并行模式

因为自回归掩码𝑀的存在

不再能应用结合率

时间复杂度𝑂(𝑁!𝐷)

自回归注意力：三种计算模式（假设M=D）

𝑂 = 𝜙 𝑄 𝜙 𝐾 $ ∘ 𝑀 𝑉

v 递归模式
𝐻% = 𝐻%&' + 𝜙 𝑘% "𝑣%
𝑍% = 𝑍%&' + 𝜙 𝑘% "

𝑜% =
𝜙 𝑞% 𝐻%
𝜙 𝑞% 𝑍%

时间复杂度𝑂(𝑁𝐷!)

适用于解码

解码过程中只需维护𝑂(𝐷!)状态

相当于KVcache，但就地更新

没有并行度，不适用于训练

Large Model Computing, Tsinghua University 23

v 将序列分成大小为C的块：考虑第c块，对应第l~r个token，则该块中第t个token的注意力可写作

𝑜# = 𝜙 𝑞# 2
$%&

'

𝜙 𝑘$ "𝑣$ + 𝜙 𝑞# 2
$%'(&

#

𝜙 𝑘$ "𝑣$

= 𝜙 𝑞# 𝐻' + 𝜙 𝑞# 2
$%'(&

#

𝜙 𝑘$ "𝑣$

v 简洁起见忽略了分母。则第一项可直接利用状态计算，而第二项可并行在𝑂(𝐶𝐷)/token时间计算出

v 状态转移

𝐻()' = 𝐻* + 2
$%'(&

)

𝜙 𝑘$ "𝑣$

v 总计算时间复杂度：𝑂(𝑁𝐶𝐷)（并行计算）+ 𝑂(𝑁𝐷!) （状态转移）
v 并行度为C，增加C可提升并行度，但也会提升复杂度

v 在GPU中可能C=128就够了？其实只有常数代价

分块模式

Large Model Computing, Tsinghua University 24

v 传统写入规则（忽略𝝓） 𝐻% = 𝐻%&' + 𝑘%"𝑣%

v 问题：记忆只增不减，状态数值越来越大，新知识权重越来越小

v DeltaNet写入规则：覆盖，而非追加

𝐻% = 𝐻%&' − 𝛽%𝑘%" 𝑘%𝐻%&' − 𝑣%

v 𝑘%𝐻%&'：取出待写入位置𝑘%中的原内容； 𝛽%：可学习的、输入相关的写入强度

v 当𝑘% = 𝑎为独热时，应将𝑣%写入𝐻的第𝑎行，𝑘%𝐻%&'为取出该行的原内容

v 更一般的情况怎么解释…………？

遗忘门（DeltaNet）

M*D 1*DM*1 1*M

Large Model Computing, Tsinghua University 25

v 𝐻 = 𝐾"𝑉 = ∑#+', 𝑘# ⊗𝑣#可以叫做一个联想记忆（associative memory）

v 假设 𝑘# = 1

v 该怎么把里面压缩后内容恢复出来？

v D𝑣# = 𝑘#𝐻 = ∑$+', cossim(𝑘# , 𝑘$) 𝑣$

v 这是一种核回归（kernel regression）

v 如果所有k正交：D𝑣# = 𝑣#，记忆能够精确恢复

v 实际上，因为𝑁 ≫ 𝐷，不可能所有𝑁个k两两正交，记忆的v会被与相似的记忆做平滑

v 类比：人会产生既视感（感觉这件事情可能发生过，但实际没有发生过）

v 这种平滑导致我们记忆不精确，但提供了泛化，对模型能力未必完全是坏事

联想记忆

Large Model Computing, Tsinghua University 26

v 𝐻% = 𝐻%&' − 𝛽%𝑘%" 𝑘%𝐻%&' − 𝑣%

v 可以看到： 𝑣-./ = 𝑘%𝐻%&'实际上是在读取𝐻%&'中根据𝑘%查询出的记忆

v 也可写作

v 𝐻% = 𝐻%&' − 𝛽%𝑘%" 𝑣-./ − 𝑣%

DeltaNet：解释

Large Model Computing, Tsinghua University 27

v 将𝐻看作一个𝑘 → 𝑣的函数

v 给定一个𝑘，查到一个𝑣

v 特别地，查询方式为线性探测：𝐻 𝑘 = 𝑘𝐻

v 一个好的记忆应满足

min
1
2
K
#+'

,

𝑘#𝐻 − 𝑣# !

v 给定样本(ki, vi)，随机梯度：

𝑔# = 𝑘#𝐻 − 𝑣# "𝑘#

v 采用学习率𝛽%，得到：

𝐻% = 𝐻%&' − 𝛽%𝑘%" 𝑘%𝐻%&' − 𝑣%

测试时训练

1*M M*D DeltaNet实质上在采用
梯度下降法压缩上下文

Large Model Computing, Tsinghua University 28

v 改写DeltaNet更新

𝐻% = 𝐈 − 𝛽%𝑘%"𝑘% 𝐻%&' + 𝛽%𝑘%"𝑣%

v Gated DeltaNet更新

𝐻) = 𝛼) 𝐈 − 𝛽)𝑘)(𝑘) 𝐻)-+ + 𝛽)𝑘)(𝑣)

v 目标函数

𝐻% = argmin0
1
2
K
#+'

,

𝑘#𝐻 − 𝑣# ! +
𝜆
2
𝐻 1

!

v 更新分两步：先对正则化项做梯度下降，再对(ki, vi)做SGD

v 遗忘门的本质是“应专注于附近的token”的归纳偏置。实际上就是代替RoPE。GDN不用位置编码

v 但这个归纳偏置会不会太局限了？比如“找到第1000个字符”这样的任务能完成吗？

改进：Gated DeltaNet

遗忘门

Large Model Computing, Tsinghua University 29

v 从数学公式来看，实际是朴素线性注意力和GDN的插值

v 带有遗忘门，不带delta rule

𝐻9 = 𝛼9𝐻9:; + 𝐵9𝑣9

v 并行形式可以写作𝑂 = 𝑀 ∘ 𝑄𝐾" 𝑉

v 其中𝑀是𝛼)连乘得到的衰减矩阵，距离越远，衰减越大

案例：Mamba2

遗忘强度 写入强度

清华大学计算机系陈键飞

《大模型计算》课程团队

混合高效注意力

Large Model Computing, Tsinghua University 31

Sparse+Linear Attention

v 实际上，attention map不见得是sparse的……

v 如果序列长度增加，我们希望sparsity能提升

v 但其实提升不了

Large Model Computing, Tsinghua University 32

Sparse+Linear Attention

但可能有很多token是相似的

因此可以用linear分支来吸收不稀疏的部分

Large Model Computing, Tsinghua University 33

Sparse+Linear Attention

v SLA

Large Model Computing, Tsinghua University 34

结果

Wan2.1-1.4B可以做到95%的sparsity

Large Model Computing, Tsinghua University 35

结果

而只用sparse不用linear完全不行

Large Model Computing, Tsinghua University 36

结果

Large Model Computing, Tsinghua University 37

v https://attention-survey.github.io/files/Attention_Survey.pdf

延伸阅读

清华大学计算机系陈键飞

《大模型计算》课程团队

谢谢

