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&htl
< AttentionSZREXRIIIR0(N?)
< NEFBKRIAHR, LSpHHRER
< IBEER, BIIFEE—1"LELTXIKEREE
< WEAR AR BN *NAYES HIEPFITE
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}\Rt'\\ > B IT
RSN o [ [
AN |\\\\\ m [ e e e ] )
Approximate | l\:\ \:\\ j IQ[T—I—[‘I
i < :*:\: o=

Temporal Head

© A-shapehead @ vertical-slash head

Jiang H, Li Y, Zhang C, et al. Minference 1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention[J]. arXiv preprint arXiv:2407.02490, 2024.
Xi H, Yang S, Zhao Y, et al. Sparse VideoGen: Accelerating Video Diffusion Transformers with Spatial-Temporal Sparsity[J]. arXiv preprint arXiv:2502.01776, 2025.
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Attention Sink

<+ EEOINESERI L Mtoken E, AHA? (EB=]:: cdf > 0.8?)

<+ B A28 tokenfIE Mhead#fFHE “iZEEL”

+ MRAFEEE, KBattnhIoFEHEHEresidual path EiX4MtokenBIERE
& EE—HEENE, iEAREQ tokenfJo magnitudefA—fE

<+ {BsoftmaxiEENBHEH—, FiBAYtokend “iSEHY" SEEEP—F

Keine 4 knonsink = ko + €s
v£yET0 q = akging + Bko + Bés
(q, Ksink) = a”ksinkllz

(C[; kS) — ,Bllk0||2 + ﬁ(q' ES)

) WNREEattention A IMHB: ikaXp
" INE4BiLattentionffZEE: iEAK, HATEISCARVERIRIKE:,
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< St headfiattention pattern, 58/ headEFHSAYIEIIIERE Sparse VideoGen

StreamingLLM

\ 4

(d) StreamingLLLM (ours)

Spatial Head

Radial Attention

Wz DH(:IJJ‘;I]&’/_X;&J’ Key Half l?gonal widh ey HalfDia?ma.l Frequency
§ E T E
f_\ é%l: ) —I " _|7_“]’_—|——|_
ntion Sink Zg( (o o o [ [ [
’ “f = [
g () E A = I_
c e i oo o )
- -D N i mEi : B | | _] T —I
: : , A S

<« evicted L cached

tOkenS tOkenS — ’ . Masl‘( Value: D —ao‘ ‘. 0
(a) Compute Density Distribution ~ “*“™*™  (b) Attention Mask

Temporal Head
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’0

* IRIEEURTI SR E S /786

s Idea

> Identical to SDDMM

> i SR E N S F : 'Q' E

** Questions:

> How to select the mask/router?

P Vv

> How to be hardware friendly?

"Only computes selected rectangular blocks of the full attention matrix

Large Model Computing, Tsinghua University 5



syl Eris

* Fact: Q/K in adjacent tokens are usually (but not always) similar
¢ Idea:
» compress the sequence to a shorter one by mean pooling
2
» Compute full attention on the pooled sequence 0(%5)

» Selects topcdf blocks of the pooled attention

> Compute full attention for the selected blocks O(pN?)

“ Tricks ;:;Q;;z'
H llr‘éf !
. C e ghife e 8 g g '
> Do not always compress (tokens might be dissimilar) £ % L 2 |
£ :
» Don’t do topk selection, do topcdf ehannel Channel " Channel

| — | | — |
-11 14 -16 12 -4

(a) QKV distribution in Cogvideo
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ZZf5l: SpargeAttention

Full Attention
End-to-End Time:
1897s on L40

SpargeAttn: Accurate Sparse

Attention Accelerating Any S
pargeAtin
Model Inference. 2025 End-to-End Time:
1037s on L40 '
1.83x Speedup mppe T ] ' i

“
G5 BN BN BN BN BN BN BN BN BN BN BN BN BN BB BN BB = - -

Figure 1. SpargeAttn can achieve 1.83x speedup on Mochi on
L40 GPU, with no video quality loss.

* Plug-and-play, lossless inference acceleration

s ~1T flops on RTX 4090

% 6~7x faster than FlashAttention2, even for moderate seq. length 4K~8K

s Supports both LLMs and Diffusion models

Model (seq_len) | Attention (Sparsity) Speed (TOPS)1 | WikiText (Ppl.) | | Longbench 1 | InfiniteBench 1 | NIAH 1
Full-Attention 156.9 6.013 38.682 0.659%4 0.907
Minference (0.5) 140.1 10.631 28.860 0.5152 0.832
Llama3.1 FlexPrefill (0.5) 240.6 6.476 38.334 0.6460 0.858
(128K) Minference (0.3) 115.7 6.705 34.074 0.6532 0.870
FlexPrefill (0.42) 206.9 6.067 38.334 0.6581 0.878
SpargeAttn (0.54) 708.1 6.020 39.058 0.6638 0.909
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=fHl: MmoBA (REISEMNIS, BHEADIE)
MoBA(q, K, V') = Softmax (qK[I]T) Vi,
I; =[(i—1)x B+ 1,i x B]

_ J1 s; € Topk ({5515 € [n]}, k)
S 0 otherwise

s; = (q, mean_pool(K|[I;]))
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HF o2 HAAEIEE/]: NSA

1 k't, ’U.t Split to Continuous Blocks

I V\"y -

| \ Compress / :

} ax Compression 3 }

| ’

\ : il

1 ® Sliding |
1 : )

I )

| ! N

| qt Compressed Attention ! Selected Attention Sliding Attention

; HNEEEEEE EEEEEEEE

|

| | | | |

| Output Output Output u
: | | : 3 e e St
: Gated Output | |ty
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NSAERIEE3 M 3Z15?

< Sliding window#3ZiZiRMiZEeFHiF
< Compressionf3ZRIF, (BEXWFLLMOJgEEZAIEINiElearnable router
> WFSIRSIEEgEETFTN, ZRe5E

< tbAYroutingi®2LA (q1 * k32) AR
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HIFa|Z I RBpiEnRE=71: DSA

< BiELL (g1 * k1) HAblock size

< XAMRIERIbLock BEAMIEHRIF?

< FifBHead—ilEroute, BXHHE, BELHAE
% RIEMLAtE W SHBEEhead4pE—iE

< YIGAEENE, (ERIELLMIIGIHXLLHIAX, EERAET

< F—/MJ\ReLU attention (head’)’, headdim/)\) REMLEEKETH
< 8/1°\Qitop 2048 K

HI
It,s — Z wf,] -ReLU (qé] ) k.{) ’
“ 18THRIE: Zhead3H vs $token j=1
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DSA

Output Hidden u, [OOOO ------ OOOO]
{of;} [[[[OO - Od ||| {o¢,}

[ Multi-Query Attention (Core Attention) ]
f
[ 3
{[az; qgi]}[[[[OO ~Q0) / Top-k Selector \ il
concatenate

[ - Lightni

@l . (K300 - OO) [ .'ﬁde','(:}g]
= OO OO] concatenate
m Q\{qﬁi}

(SO wonore e (00 00 @30 @ wi=

apply RoPE partially  partially

c? [O O ’ O O] apply RoPE  apply RoPE
Input Hidden h, [OOOQ ------ OO OO]
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DSA

0.7% 2.4%
—— DeepSeek-V3.1-Terminus —— DeepSeek-V3.1-Terminus

0.6$4{ —— DeepSeek-V3.2 2061 DeepSeek-V3.2
: :
Qo 0.5% o 1661
2 2
S 0:4% S
= =1.2%
% 0.3%- %
& &
JJ')’ 46 0.8$-
o 0.2$' O
o o

01$_ 04$'

0$ ' T ) 0$ T T T
oK 32K 64K 96K 128K OK 32K 64K 96K 128K
Token Position Token Position
(a) Prefilling (b) Decoding

Figure 3 | Inference costs of DeepSeek-V3.1-Terminus and DeepSeek-V3.2 on H800 clusters.
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DSAEZ/A?

H800: 80GB HBM, 3TB/s, 1000TF@FP16, 2000TF@FPS8
#13: MoE EP144, Attn DP144, {RiZF52£E128K
REBESEFELA: BI=BFFN+B-RK=/ Expert+attn=1.2B+7168*2048*3*57*3+11.6B=15.3B=20.3GB

EmABatch size=(80-20.3) / (4.2GB/seq) =

*KHbs=14
MoEIEIR (IZiIFFIZEH) = iZBEI=Bweight+BE=4 expert = 8.7B = 3ms
MoEZEIR (IitEZE) = Sitbs*1444 token*61EEBE9  expert*7168*2048*3*2 / 144-KE5FP8EH] = 0.34ms

Attn proj (i6fF) = iEHY11.6B FP8E#{ / 3TB = 3.87ms

MLAZER ({BigMLABEFT#ITE) = (seqlen*heads*576*4) * bs*6l / 1Tflops FP16 = 32.24ms
IN_EDSARG, seqlenEliEd2048, IEIRPE(K/I0.52ms

BAFERM 3+3.87+32.24=39. 11msf&{EKZE3+3.87+0.52=7.39ms, £95.3xhE! fBBiEEIEFF135t0oken/s
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st

< SN - off, FUsARIGEREE NN FTEA T GEFREITRNRHERIRGED
+ BURE: TR E T REEEEIBRES 1 token
~ BEFRM "2RRT" , EREMEEtoken ISR
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=EZEEES
% EHO = softmax(QKT)V, pk.....
0 = QK

< ¢p/IReLU, HEET
0 =p(@(PEK)'V)

N*M M*D

< HESRERO (V?D)IFEZEO WMD), HEND=M=128, MEREXIEFE (EFEIM=-D)
+ BH4ER, AHLBEA?
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iESD: BRE

% 0 = softmax(QK ")V ARBEIIESNIEMPEINMATRTZIN. a5, £&

<+ IG—IRN*NRUR S D REREN->M, M->NEOFEMEGRS
< B—MER: 118H = oK)V

EHYRS

< BERENNATRERRSEIMMERL, 1BjiEEiRxifaERS. IFIMO(K;) (JFR)

“+ RE—1 "£Ricled” , FifiEEfitEREHXNM =R
+ BHER: 1180 = ¢(QH

< FRENMMEUERIRSEINDNER, Rl iERjRREENESH. IEIMN0Q;;) (JAERA)

» &E: mravtaenesEIG e

< ¥tE: MLARIBR—MATiIARhead ESE, ZMTEHERIEARIRATTESE
< EBIIHEEP = ¢(Q)P (K )FRPRBITEM
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iESD: BRE

o HARIREH? FREHV: N KERBER— M EEMES T (VEIES)
o I : MIEEEXERNS. .
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Ot =

Ot =

TRE

¢(q)(@K)'V)
sum(¢(qe)(K)")

¢(%)Z _1 ¢k )TVL
¢(Qt)z 1¢(k )

/N

| Clk==s
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HElF%ETE

9@ i ¢0) v,
T (g X, p k)T

1B

(Ht = Heq + (k) vy~

Zy =Zi g+ k)" —
0 — ¢ (qe)H;

. ‘ $(q¢)Zy

A&7 M*DIEFE + MERIE=E
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HEVFEED: =mtEE ((Riem=D)

< Fi3iEst
0 = ((p(@dpEK)T) e M)V
&5 8 m])3iEiE M IEE

A BEEMASEER

AEIE3EO0(N?D)

< BRI
th =H;_1 + ¢(k) v,
Zy =Zi 1+ (k)"

A

0 — ¢ (qe)H;
L ‘ $(qe)Zy
RIRSHE0(ND?)

1S T %65

SIS REYP0 ()RS
tH2FKvcache, {BEiHEESR
SBHTE, AERFTIS

Recurrent Form

1 xd

dx 1Ko

1O
(2

J_ b
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PIREER

< BEFISRARIACHIR: FEEBIR, WRE1~r{token, MZRPFEt M tokenBEENTSIE

l t
0, = (cp(qt) > ¢(kl-)Tvi> + (cp(qt) > qb(ki)Tvi)
i=1

i=l+1

= ¢(q)H; + (9’5(%) Z Cb(ki)Tvi)

i=l+1

> BRI THE, UE—RUESHRRSITE, B IRAHTE0(CD)/ tokenBH i HELY
o RAHEE

Hyi = H + z ¢ k)" v;
< BIFRENBESHRE: oWcD) (HFHi7itHE) + o(WvD?) (IKEEERB)
< FITEAC, IBICHEAFHITE, (BRSIEASSE

< {EGPUFRTAREC-1285k8 7 ? HEERAFEHKM
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==l ) (DeltaNet)

<~ BRENRN (BH8P) H, =H,_ 1 +kiv,
< [AE: ICICRIEAR, INSEEEREK, FHEHRINE B

< DeltaNetEAN#IN: B, mAEBEM
Hy = Hy_q — .BtktT(kth—1 — V)

M*1 1*M M*D 1*D

“ kHe . MEEFBENUELPHFEAS; B IFEIN. BAMEXHENEE
o Lk, = aREY, RISV, BANHBETT, k. H,_ DIREZITHERS

+ E—RNERELAEE.....2

Large Model Computing, Tsinghua University

24



HA?BIC1Z

o H=KTV =3YN.k ® v,;AJLANY{—PEXABiC1Z (associative memory)
< gkl =1
> ZEAIBREAEEREASRELFE?

% U; = k;H = Y )_; cossim(k;, k;) v;

< XE—M#ZMOY3 (kernel regression)

< WRFRBKIE3RR: 7; = v;, CIZEENEIEIRIRE

<+ ZEfFE, BAN > D, AAIGERBNMKRAIESR, iclcivaeHiSHIENCICHER
+ REb: ASFERRR (BRIHFRIURLED, BXLFIERED)

< XHEBSEIENCIEAREE, BRHTZE, WRBEIREERTE

Large Model Computing, Tsinghua University

25



DeltaNet: fHE:

“ Hy = He_q — Bek{ (keHeq — v¢)
X E.IDJsE:zIEIJ Vold = kth—1§g|ﬁ‘J:7:EEEiiﬂyHt—1I:F*E;Ektgiﬂtﬂﬂgia'lz
<+ BAS{E

“ H=Hi_1 — ﬁtktT(Vold — V)
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izt A1 S5

<+ BHEIE—1k - vAIERE]
< BN, BRI
1*M M*D

< f5hlite, ERRNALEERN: H(k) = kH
<+ =PRSS E

N
1 5
min EZ”ICLH — Ui”
=1

< [EFS(k;, vi), FEIEE:
gi = (k;H —v)Tk;

Hy = Hy_4 — ,BtktT(kth—1 — V)
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Bl : Gated DeltaNet

% pESDeltaNetEER
Hy = (1 — Bek{ ke )Hi—q + Bekiv,

% Gated DeltaNet®HFh
Hy = a;(1 — Bek{ ke)He—q + Beki vy
li%%fj

<+ BItFEREYL

N

1 A

H, = argming = ) [lkiH = vill2 + 5 |1
=1

> EHOTE: S ENCRMIEE T, B3 (k;, v;)ifseD
> BEINAER WS EFHiEQtoken” MIAMIRE, SiF EFEERPE, ONFMHIIBEHE
> ERMIBRBELSREABRT? il “HEIE 1000 T RIS EESIG?
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2=f5: Mamba2

* MNEIFRARE, ZIREFEZEETEIFGONAYIEE

=
» maEsl], Afdelta rule
Ht — C(th_l + Btvt

B SNEE

% FHTRRAUBIEO = (M 0 QKT)V
o EEMEq ERETINEAEN, EBEME, SR
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Sparse+Linear Attention

<+ SCprL, attention mapAWiEEsparsefi...
< MRFFH<EIGM, FliIFEsparsitygeisH
< (BHEIRHART

1e9 Sparsity = 0% Sparsity =45% Sparsity = 92%
Average Value = 1/N 4 R, . W h, N
o BN "
| (45.4%) (46.5%) ] - E\: ‘w“:-.\;
E; ¥ L, T - A, T
1.0 o L WY S B
a og ::: '\“\: . ol \"‘\ \
k-1 e TR N N
o 0.8 o —_ § b ¥ N b h
Soo B | 2
v 0.6 § ‘Bo 1076 10— 1074 1073 1076 1075 10~4 1073 107 1075 10~ 107>
L
0a | 8 g ., To=pv 10=PV L10=PV
0, (=} :_;.i':’ ] e e = = = —— _:‘*:..:;‘;:.:
0.2 S.1%) E =——= = ————— e
Critical| E e e S
il N ST T = | .
00 1 N, R = e
< -1 0 1 -1 0 1 =1 0 1
Frequency of Attention Weights Error = 0% Error < 3% Error > 33%
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Sparse+Linear Attention

{Bo]geF1RZ tokenZH{LIAY

>

Full Attention Weights Top-8% Weights

S \\\ \

NN

NN
AN
N N
RN
N \ N
\\. \
108 107 10  10°° 108 1077 10  10°°
Rank = 6226 Top-8%, Rank = 6230 -

eI inearD SZ RN AS IR RV SRS

Sparse
Attention

_F.

-

Low-Rank

10-6 10-°

10~7
Bottom-92%, Rank=9 _J

10-8
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Sparse+Linear Attention

% SLA

S,,;j — QZKJT/\/E, P,,;j — OnlineSoftmax(Sij), Of — Of + Pf,;jVj.

P(Q)P(K)'
rowsum (¢(Q)p(K) ")

® (1 - M).

O = O° + Proj(0Y).
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SR

Wan2.1-1.4BAJLAHEI95%Isparsity

Table 1: Quality and efficiency comparison of SLA and other baseline methods.
Method Quality Efficiency
VA1t VTT IQt oct AQt SCct  VR?T | FLOPsJ|  Sparsity 1

Full Attention | 76.78 82.88  62.5 233 56.1 93.0 0.059 52.75T 0%
Sparge-F 0.002 0.026 26.0 4.6 35.7 85.1 -0.216 7.91T 85%
Sparge-T 73.83 77.87 619 221 554 931 0.014 7.38T 84%
VMoBa 32.33 35.79 58.0 188 462 899 -0.175 791T 85%
VSA 5537 64.61 606 224 51.9 83.6 -0.069 5.92T 89%
SLA 76.96 8392 62.2 23.6 53.9 93.1 0.048 2.74T 95 %

Large Model Computing, Tsinghua University
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mARHsparseAHlinearZE2A T

Full Attention (Sparsity = 0%)

SLA (Sparsity = 95%)

Linear Only
(Sparsity = 100%)

Spare Only
(Sparsity = 85%)

Sparge-F
(Sparsity=85%)

VSA
(Sparsity = 89%)

VMoBa
(Sparsity = 85%)
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3 FlashAttn

Forward Kernel Speed

E=3 VMoBa (95%)
2 VMoBa (85%) [=1 VSA (89%)

0 VSA (95%)
E=3 SLA (95%)

Backward Kernel Speed

_ 2996
= ] 13.7x
- 1553
q) .
3 892
(Vp)]
-219 228 348 Fj

EE: 1032

D T 620
31 370

1218 EZ] {;1

1011

1479

33 QSIP\ QSP‘ 5\)\
?\35\'\ \JN\5°/0\\JN\5°/0\ \390/0\ \950/0\ kg\:)O/o\

ea\ngk \JSP\ 5\}\
?\35‘0 \lN\c)O/o\\j 50/0\ \890/0\ \9‘)0/& \950/0\

(a) Attention GPU Kernel speed comparison on RTX5090.

Original

VMoBa
(Sparsity=85%)
VMoBa
(Sparsity=95%)
VSA
(Sparsity=89%)
VSA
(Sparsity=95%)
SLA
(Sparsity=95%)

[] others [ ] Attention

62s | 97s

62s | 47s ]

62s | 28s |

62s [ 26s | 2.2x E2E
Speedup

62s | 16s |

62s 11

(b) End-to-end video generation latency comparison.
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* https://attention-survey.github.io/files/Attention_Survey.pdf
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