
清华大学计算机系陈键飞

《大模型计算》课程团队

稀疏神经网络

Large Model Computing, Tsinghua University 1

稀疏神经网络

𝐘!"#$" = 𝐗!"#$"𝐖$%&'$"
(

稠密网络

稀疏网络

v 考虑线性层 𝐘 = 𝐗𝐖𝑻

v 直觉：神经元未必需要看到所有输入

v 人脑神经元：860亿

v 度数：1000～10000

v 结果：

v 网络更小

v 计算所需的flops更少

Large Model Computing, Tsinghua University 2

v 稀疏率（sparsity / sparsity ratio)

v 零的占比

v 50%稀疏率 = 2倍加速

v 90%稀疏率 = 10倍加速

v 零的模式

v 非结构化稀疏

v 半结构化稀疏（2:4稀疏）

v 结构化稀疏（块稀疏/整行整列稀疏）

稀疏矩阵乘法

v SpMM

𝐶"#$%# = 𝐴"#$%#𝐵%&'(%#

Large Model Computing, Tsinghua University 3

2:4稀疏

Row-wise 2:4 Col-wise 2:4

PyTorch原生支持: torch.sparse

Large Model Computing, Tsinghua University 4

v 如何把稠密神经网络变成稀疏神经网络，使得精度损失尽量小？

v 思路1：让稠密权重𝑾和稀疏权重𝑺(𝑾)尽量接近

min
) *

𝑊 − 𝑆 𝑊 +

v 解析解：贪心地保留幅值最大的元素

𝑆 𝑊 , = 𝑊,×𝑀,

𝑀, = 𝕝 𝑊,	𝑖𝑠	𝑡𝑜𝑝𝑘 ∈ {0,1}

v 免训练剪枝算法，基于幅值的剪枝（magnitude-based pruning）

v 问题：权重最小不代表总体损失最小

神经网络剪枝

掩码mask

Large Model Computing, Tsinghua University 5

v 思路2：基于一次性计算得到的掩码，微调保留下的权重

掩码M为根据W的幅值一次性计算得到

v “一次性”剪枝（one-shot pruning / single-shot pruning）

v 直观理解：在部分突触受到损伤时，其他突触会进行“代偿”

v 问题：初始选定的M不一定是最优的？

v 例如：两个突触权重均很高，但功能重合

v 更理想的方式是同时学习𝑊和𝑀

幅值剪枝+微调

min
*
ℒ(𝑊 ∘ 𝑀)

Large Model Computing, Tsinghua University 6

v Lasso回归

v 问题：找到最少的线性因子，解释预测结果

v 完全是线性回归，只是增加了正则化项 𝛽 - = ∑,.-/ 𝛽,

v 为什么这样就能稀疏？

v 考虑梯度：ℒ0!
1 = 𝑓 𝛽 0!

1 + 𝜆

v 梯度下降：每维固定减𝜆

v 作用小的维度无力跑赢正则化

训练掩码:通过正则化引入稀疏性

作为对比，L2正则化的梯度是：

• 考虑梯度：ℒ0!
1 = 𝑓 𝛽 0!

1 + 𝜆𝛽,

• 梯度下降：小的减得少，大的减得多

Large Model Computing, Tsinghua University 7

v 分类损失𝑓(𝑊)

v L1正则化项：𝜆 𝑊 -

v 问题：

v 比较适合非结构化稀疏，半结构化稀疏/结构化稀疏需要额外的trick

v 稀疏度为动态决定，不容易控制

v 正则化项与分类损失存在竞争

v 正则化与Adam联用时需要特别的处理

v 但都可以解决，解决以后L1正则化事实上能取得SOTA的性能

训练稀疏神经网络-L1正则化

Large Model Computing, Tsinghua University 8

结果：神经网络剪枝

v 训练40B token

Large Model Computing, Tsinghua University 9

结果：神经网络剪枝

Large Model Computing, Tsinghua University 10

v 利用L1正则化，在训练的过程中网络未必稀疏

v 在训练全过程中网络均稀疏的训练方法，称为稀疏训练（sparse training）

v 事实上，掩码也可以动态更新

v 例如说，动态地定义𝑀(𝑊)为W的topk。每次前向传播时：

Ø 根据W计算M

Ø 计算 !𝑊

Ø 计算网络损失（只利用稀疏的 !𝑊）

v 这样，当某维权重增大时，就会从不保留变为保留

v 稀疏度控制比较容易。只需调整topk的k

稀疏训练

min
*
	ℒ I𝑊 , 	 I𝑊 = 𝑊 ∘𝑀

Large Model Computing, Tsinghua University 11

v 非结构化剪枝：把M设置成整个tensor的topk

v 半结构化剪枝：把M设置成每个4元组的top 2

v 结构化剪枝：把M设置成所有neuron的topk neuron

稀疏训练：案例

min
*
	ℒ I𝑊 , 	 I𝑊 = 𝑊 ∘𝑀

Large Model Computing, Tsinghua University 12

v 问题是：如何计算梯度？

v 方案1:直接通过autograd

d𝑊 = d I𝑊 ∘ 𝑀(𝑊)

v 缺点：如果某维未被选中，就不会收到梯度

v 方案2:利用直通估计器

d𝑊 = d I𝑊 ∘ 𝑀 𝑊 +𝑊 ∘𝑀1 𝑊 ≈ d I𝑊 ∘ 𝑀 𝑊 +𝑊

v 例如说，某维初始W=0.001，未进入topk，M(W)=0。而梯度−d I𝑊 = 10

v 则该维仍会收到10*0.001=0.01的更新，积累足够多时仍可能成为topk

稀疏训练

min
*
	ℒ I𝑊 , 	 I𝑊 = 𝑊 ∘𝑀(𝑊)

Large Model Computing, Tsinghua University 13

v 问题：震荡又来了

v 每次迭代，竟有6%的掩码反转

v 解决方案：进行正则化

v SR-STE

v 惩罚M(W)=0的维度的权重

v “让逝者安息”

v 有效抑制震荡，但也同时抑制了可能性

稀疏训练

+𝜆 1 −𝑀 𝑊 ∘𝑊
+

Large Model Computing, Tsinghua University 14

v 一个随机初始化的稠密前馈网络包含一个子网络（“中奖彩票”），当该子网络被独立训练时，

在相似的迭代次数内，可以达到与原始网络相当甚至更优的准确率。

v 甚至有可能存在一些子网络，无需训练就能达到很高准确率？

v 剪枝即训练？“突触修剪”

突触修剪包括轴突和树突的完全退化和消失，是在包括人类在内的许多哺乳动物的幼年期至进入

青春期之间发生的突触消除过程。修剪从出生时开始，一直持续到25岁左右。传统上认为，突触

修剪在性成熟时完成，但这一观点受到核磁共振成像研究的挑战。婴儿大脑的尺寸到成年时将增

长至原来的5倍，最终达到约860（ ± 80）亿个神经元。导致这一增长的因素有两个：神经元之

间的突触连接的增长，以及神经纤维的髓鞘形成。不过，神经元的总数保持不变。修剪受环境因

素影响，被普巴认为表征了学习。青春期之后，突触连接的体积由于突触修剪再次减少。

彩票假说（Lottery Ticket Hypothesis）

Large Model Computing, Tsinghua University 15

v 时间窗口： 这个阶段从孕期最后三个月开始，一直持续到童年早期（大约5-7岁左右达到峰值）。

v 过程： 在这个阶段，大脑神经元之间会以惊人的速度建立新的连接，称为“突触”。

v 在生命的最初几年，大脑每秒可以形成超过100万个新的神经连接。

v 到2岁时，幼儿大脑中的突触数量甚至能超过成年人大脑。

v 目的： 这种“过量生产”是为了让大脑为任何可能的环境和文化做好准备。

v 它赋予了婴幼儿巨大的学习潜力和可塑性，使他们能够轻松地吸收语言、技能和各种信息。

v 大脑此时就像一块海绵，尽可能多地吸收一切。

第一阶段：突触的过量产生（Synaptogenesis）

Large Model Computing, Tsinghua University 16

v 时间窗口： 这个过程从童年早期开始，并一直持续到青春期晚期，甚至到20岁出头。

v 修剪的高峰期通常出现在青春期前后。

v 过程： 大脑并不会保留所有在早期形成的连接。

v 根据“用进废退”的原则，开始系统地清除那些不常被使用的、弱化的神经连接。

v 经常被刺激、被使用的连接（经常练习的技能、使用的语言、重复思维模式）得到加强和巩固

v 目的：

v 提高效率：减少“无效连接”的干扰，让神经信号的传递路径更专一、更迅速

v 功能特化：大脑的不同区域变得更加专业化

v 塑造自我：经历、学习和环境决定了哪些连接被保留，哪些被修剪

第二阶段：突触修剪（Synaptic Pruning）

https://zh.wikipedia.org/wiki/突触修剪

Large Model Computing, Tsinghua University 17

v 如果要做：优先尝试one-shot方法

v 训练W比不训练W好很多

v 训练M比不训练M好一些，但需要非常仔细地调试

v 比量化难得多，需要训练很久

v 训练数据集质量非常重要

v 减少参数量，因此也减少了知识容量，难度取决于data / parameter

v 为什么有用？

v 可能性1:神经元不需要看全部输入（非结构化/半结构化剪枝）

v 可能性2:网络过参数化是为了方便优化，多余的参数在训练完毕后可以去除（所有剪枝方法）

小结

清华大学计算机系陈键飞

《大模型计算》课程团队

稀疏混合专家

Large Model Computing, Tsinghua University 19

激活稀疏

v 对于给定的输入，不是所有的神经元都需要激活

FFN1

SDDMM

FFN2

SPMM

稠密激活 稀疏激活

不同token激活的神经元不同

v 问题：对硬件不友好

Large Model Computing, Tsinghua University 20

稀疏混合专家

v 思路：将神经元分组，要么一起激活，要么一起不激活

v 稀疏矩阵乘法可以通过GroupGEMM高效实现

v 问题：如何预先知道每个token需要计算哪些专家？

v 通过路由器（router）

分块稀疏激活

Group 1Group 2

Z% x = m% x ×𝑓&(𝑥)	

稀疏掩码预测

即router

m x = 𝐭𝐨𝐩𝐤(softmax g(𝑥))

Large Model Computing, Tsinghua University 21

v 257个专家，1个总激活，剩余的256选8

v 61层（其中4~61层是MoE)，Hidden dim=7168，Expert dim=2048

v MoE部分总参数量 = 58 * 7168 * 2048 * 3 * 257 = 656B

v MoE部分激活参数量 = 58 * 7168 * 2048 * 3 * 9 = 23B

v 稠密FFN激活参数量 = 3 * 7168 * 18432 * 3 = 1.2B

v 注意力部分激活参数量约为11.4B（之后讲解）

v LM Head = 0.9B

v 路由参数 = 58 * 7168 * 256 = 0.1B

v 共计36.6B

v 直觉：MoE部分是一个巨大的知识库，根据输入查找对应的知识

举例：DeepSeekv3

Large Model Computing, Tsinghua University 22

v 通过负载均衡损失（load balancing loss）

Ø 专家负载： 𝑓! =
"
#
∑$%"# 1(Token	t	 selects	Expert	e)	

§ 对于𝐸选𝑘的MoE，我们有 ∑"#$% 𝑓" =
&
%

Ø 优化目标：min ∑")*+ 𝑓",

§ 然而，𝒇𝒆不可导，该函数无法传梯度

§ 解决方案：将其中一个𝒇𝒆通过可导的平均路由得分近似（平均分数越高，选择该专家的token数往往越多）

§ 平均路由得分：𝑷𝒆 =
*
-
∑.)*- 	 𝑠",.	，其中 𝒔𝒆,𝒕 为 Token 𝑡 对 Expert 𝑒 的路由得分

Ø 损失函数：ℒ𝒍𝒃𝒍 = ∑!%"(𝑓!𝑃!

Ø 作用：

§ 不加负载均衡loss，会导致routing collapse（路由塌缩），即模型只倾向于选择少数几个专家，剩下的专家会失活

§ 负载均衡loss能让专家分配的token数接近，有利于专家并行

负载均衡

Large Model Computing, Tsinghua University 23

v 计算逻辑：为每个Expert找到所有

路由到的Token，拼成稠密矩阵

v 实现细节：专家并行 + 分组矩阵乘

Ø 专家并行（Expert Parallel, EP）

§ 将不同的专家分到不同的卡上，各张

卡上的Token找到合适的专家进行通

信，并行计算

Ø 分组矩阵乘（Group General

Matrix Multiply，GroupGEMM）

§ 对于同一张卡的不同专家，同时计算

矩阵乘法，避免等待上一个专家算完

后才开始计算下一个专家

实现

Large Model Computing, Tsinghua University 24

不连续性

离散Topk路由

连续ReLU路由

✅ 稀疏

✅ 连续

✅ 可微

m x = 𝐭𝐨𝐩𝐤(softmax g(𝑥))

m x = 𝐑𝐞𝐋𝐔 g(𝑥)

Large Model Computing, Tsinghua University 25

结果

Large Model Computing, Tsinghua University 26

动态计算量分配

Large Model Computing, Tsinghua University 27

v Routing策略上有多种变体

v 其他改进：细粒度专家，级连专家，etc.

v 目前认为37B active MoE约等于100B+的dense model

v 为什么不等于600B的？

Ø 深度不够

Ø Hidden不够

Ø 模型越大边际效益递减

小结：MoE

清华大学计算机系陈键飞

《大模型计算》课程团队

谢谢

