Source code for tianshou.core.policy.deterministic

import tensorflow as tf

from .base import PolicyBase
from ..random import OrnsteinUhlenbeckProcess
from ..utils import identify_dependent_variables

__all__ = [
    'Deterministic',
]


[docs]class Deterministic(PolicyBase): """ Deterministic policy as used in deterministic policy gradient (DDPG) methods. It can only be used with continuous action space. The output of the policy network is directly the action. :param network_callable: A Python callable returning (action head, value head). When called it builds the tf graph and returns a Tensor of the action on the action head. :param observation_placeholder: A :class:`tf.placeholder`. The observation placeholder of the network graph. :param has_old_net: A bool defaulting to ``False``. If true this class will create another graph with another set of :class:`tf.Variable` s to be the "old net". The "old net" could be the target networks as in DQN and DDPG, or just an old net to help optimization as in PPO. :param random_process: Optional. A :class:`RandomProcess`. The additional random process for exploration. Defaults to an :class:`OrnsteinUhlenbeckProcess` with :math:`\\theta=0.15` and :math:`\sigma=0.3` if not set explicitly. """ def __init__(self, network_callable, observation_placeholder, has_old_net=False, random_process=None): self.observation_placeholder = observation_placeholder self.managed_placeholders = {'observation': observation_placeholder} self.has_old_net = has_old_net network_scope = 'network' net_old_scope = 'net_old' # build network, action and value with tf.variable_scope(network_scope, reuse=tf.AUTO_REUSE): action = network_callable()[0] assert action is not None self.action = action weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) self.network_weights = identify_dependent_variables(self.action, weights) self._trainable_variables = [var for var in self.network_weights if var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)] # deal with target network if not has_old_net: self.sync_weights_ops = None else: # then we need to build another tf graph as target network with tf.variable_scope('net_old', reuse=tf.AUTO_REUSE): self.action_old = network_callable()[0] old_weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=net_old_scope) # re-filter to rule out some edge cases old_weights = [var for var in old_weights if var.name[:len(net_old_scope)] == net_old_scope] self.network_old_weights = identify_dependent_variables(self.action_old, old_weights) assert len(self.network_weights) == len(self.network_old_weights) self.sync_weights_ops = [tf.assign(variable_old, variable) for (variable_old, variable) in zip(self.network_old_weights, self.network_weights)] # random process for exploration for deterministic policies self.random_process = random_process or OrnsteinUhlenbeckProcess( theta=0.15, sigma=0.3, size=self.action.shape.as_list()[-1]) @property def trainable_variables(self): """ The trainable variables of the policy in a Python **set**. It contains only the :class:`tf.Variable` s that affect the action. """ return set(self._trainable_variables)
[docs] def act(self, observation, my_feed_dict={}): """ Return action given observation, adding the exploration noise sampled from ``self.random_process``. :param observation: An array-like with rank the same as a single observation of the environment. Its "batch_size" is 1, but should not be explicitly set. This method will add the dimension of "batch_size" to the first dimension. :param my_feed_dict: Optional. A dict defaulting to empty. Specifies placeholders such as dropout and batch_norm except observation. :return: A numpy array. Action given the single observation. Its "batch_size" is 1, but should not be explicitly set. """ sess = tf.get_default_session() # observation[None] adds one dimension at the beginning feed_dict = {self.observation_placeholder: observation[None]} feed_dict.update(my_feed_dict) sampled_action = sess.run(self.action, feed_dict=feed_dict) sampled_action = sampled_action[0] + self.random_process.sample() return sampled_action
[docs] def reset(self): """ Reset the internal states of ``self.random_process``. """ self.random_process.reset_states()
[docs] def act_test(self, observation, my_feed_dict={}): """ Return action given observation, removing the exploration noise. :param observation: An array-like with rank the same as a single observation of the environment. Its "batch_size" is 1, but should not be explicitly set. This method will add the dimension of "batch_size" to the first dimension. :param my_feed_dict: Optional. A dict defaulting to empty. Specifies placeholders such as dropout and batch_norm except observation. :return: A numpy array. Action given the single observation. Its "batch_size" is 1, but should not be explicitly set. """ sess = tf.get_default_session() # observation[None] adds one dimension at the beginning feed_dict = {self.observation_placeholder: observation[None]} feed_dict.update(my_feed_dict) sampled_action = sess.run(self.action, feed_dict=feed_dict) sampled_action = sampled_action[0] return sampled_action
[docs] def sync_weights(self): """ Sync the variables of the "old net" to be the same as the current network. """ if self.sync_weights_ops is not None: sess = tf.get_default_session() sess.run(self.sync_weights_ops)
[docs] def eval_action(self, observation, my_feed_dict={}): """ Evaluate action in minibatch using the current network. :param observation: An array-like. Contrary to :func:`act` and :func:`act_test`, it has the dimension of batch_size. :param my_feed_dict: Optional. A dict defaulting to empty. Specifies placeholders such as dropout and batch_norm except observation. :return: A numpy array with the batch_size dimension and same batch_size as ``observation``. """ sess = tf.get_default_session() feed_dict = {self.observation_placeholder: observation} feed_dict.update(my_feed_dict) action = sess.run(self.action, feed_dict=feed_dict) return action
[docs] def eval_action_old(self, observation, my_feed_dict={}): """ Evaluate action in minibatch using the old net. :param observation: An array-like. Contrary to :func:`act` and :func:`act_test`, it has the dimension of batch_size. :param my_feed_dict: Optional. A dict defaulting to empty. Specifies placeholders such as dropout and batch_norm except observation. :return: A numpy array with the batch_size dimension and same batch_size as ``observation``. """ sess = tf.get_default_session() feed_dict = {self.observation_placeholder: observation} feed_dict.update(my_feed_dict) action = sess.run(self.action_old, feed_dict=feed_dict) return action