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Diffusion Probabilistic Models (DPMs)
Ho et al. Denoising diffusion probabilistic models (DDPM), Neurips 2020.
Song et al. Score-based generative modeling through stochastic differential equations, ICLR 2021.
Bao et al. Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models, ICLR 2022.
Bao et al. Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models, ICML 2022.
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𝑥0 𝑥1 𝑥𝑁…

Transition of diffusion: 𝑞 𝑥𝑛 𝑥𝑛−1 = 𝑁( 𝛼𝑛𝑥𝑛−1, 𝛽𝑛𝐼) 𝛼𝑛 = 1 − 𝛽𝑛

≈ 𝑁(0, 𝐼)𝑥2

Diffusion process:  𝑞 𝑥0, … , 𝑥𝑁 = 𝑞 𝑥0 𝑞 𝑥1 𝑥0 …𝑞(𝑥𝑁|𝑥𝑁−1)

• Diffusion process gradually injects noise to data

• Described by a Markov chain: 𝑞 𝑥0, … , 𝑥𝑁 = 𝑞 𝑥0 𝑞 𝑥1 𝑥0 …𝑞(𝑥𝑁|𝑥𝑁−1)

Demo Images from Song et al. Score-based generative modeling through stochastic differential equations, ICLR 2021.
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𝑥0 𝑥1 𝑥𝑁…

Transition of denoising: 𝑞 𝑥𝑛−1 𝑥𝑛 =?

≈ 𝑁(0, 𝐼)𝑥2

= 𝑞 𝑥0|𝑥1 …𝑞 𝑥𝑁−1 𝑥𝑁 𝑞(𝑥𝑁)

• Diffusion process in the reverse direction ⇔ denoising process

• Reverse factorization: 𝑞 𝑥0, … , 𝑥𝑁 = 𝑞 𝑥0|𝑥1 …𝑞 𝑥𝑁−1 𝑥𝑁 𝑞(𝑥𝑁)
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Diffusion process:  𝑞 𝑥0, … , 𝑥𝑁 = 𝑞 𝑥0 𝑞 𝑥1 𝑥0 …𝑞(𝑥𝑁|𝑥𝑁−1)



𝑥0 𝑥1 𝑥𝑁…

Transition of denoising: 𝑞 𝑥𝑛−1 𝑥𝑛 =?

≈ 𝑁(0, 𝐼)𝑥2

The model:  𝑝 𝑥0, … , 𝑥𝑁 = 𝑝 𝑥0|𝑥1 …𝑝 𝑥𝑁−1 𝑥𝑁 𝑝(𝑥𝑁)

Model transition: 𝑝 𝑥𝑛−1 𝑥𝑛 = 𝑁(𝜇𝑛 𝑥𝑛 , Σ𝑛(𝑥𝑛))

approximate

• Approximate diffusion process in the reverse direction
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Diffusion process:  𝑞 𝑥0, … , 𝑥𝑁 = 𝑞 𝑥0 𝑞 𝑥1 𝑥0 …𝑞(𝑥𝑁|𝑥𝑁−1)

= 𝑞 𝑥0|𝑥1 …𝑞 𝑥𝑁−1 𝑥𝑁 𝑞(𝑥𝑁)



• We hope 𝑞 𝑥0, … , 𝑥𝑁 ≈ 𝑝 𝑥0, … , 𝑥𝑁 𝑝 𝑥𝑛−1 𝑥𝑛 = 𝑁(𝜇𝑛 𝑥𝑛 , Σ𝑛(𝑥𝑛))

• Achieved by minimizing their KL divergence (i.e., maximizing the ELBO)

min
𝜇𝑛,Σ𝑛

𝐾𝐿(𝑞(𝑥0:𝑁)||𝑝 𝑥0:𝑁 ) ⇔ max
𝜇𝑛,Σ𝑛

E𝑞 log
𝑝(𝑥0:𝑁)

𝑞(𝑥1:𝑁|𝑥0)

min KL max ELBO

6By Fan Bao, Tsinghua University

What is the optimal solution?
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Theorem (The optimal solution under scalar variance, i.e., Σ𝑛 𝑥𝑛 = 𝜎𝑛
2𝐼)

The optimal solution to min
𝜇𝑛 ⋅ ,𝜎𝑛

2
𝐾𝐿(𝑞(𝑥0:𝑁)||𝑝 𝑥0:𝑁 ) is

𝜇𝑛
∗ 𝑥𝑛 =

1

𝛼𝑛
𝑥𝑛 + 𝛽𝑛∇ log 𝑞𝑛(𝑥𝑛) ,

𝜎𝑛
∗2 =

𝛽𝑛

𝛼𝑛
(1 − 𝛽𝑛E𝑞𝑛(𝑥𝑛)

∇ log 𝑞𝑛 𝑥𝑛
2

𝑑
).

3 key steps in proof:
➢ Moment matching
➢ Law of total variance
➢ Score representation of 

moments of 𝑞(𝑥0|𝑥𝑛)

Bao et al. Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models, ICLR 2022.

Noise prediction form:

∇ log 𝑞𝑛(𝑥𝑛) = −
1

ഥ𝛽𝑛
E𝑞 𝑥0 𝑥𝑛 [𝜖𝑛]

Estimated by predicting noise

Parameterization of 𝝁𝒏 ⋅ : 

𝜇𝑛 𝑥𝑛 =
1

𝛼𝑛
𝑥𝑛 − 𝛽𝑛

1

ഥ𝛽𝑛
Ƹ𝜖𝑛(𝑥𝑛)
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Theorem (The optimal solution for diagonal covariance , i.e., Σ𝑛 𝑥𝑛 = diag(𝜎𝑛 𝑥𝑛
2) )

The optimal solution to min
𝜇𝑛 ⋅ ,𝜎𝑛 ⋅ 2

𝐾𝐿(𝑞(𝑥0:𝑁)||𝑝 𝑥0:𝑁 ) is

𝜇𝑛
∗ 𝑥𝑛 =

1

𝛼𝑛
𝑥𝑛 + 𝛽𝑛∇ log 𝑞𝑛(𝑥𝑛) ,

𝜎𝑛
∗ 𝑥𝑛

2 =
ഥ𝛽𝑛−1
ഥ𝛽𝑛

𝛽𝑛 +
𝛽𝑛
2

ഥ𝛽𝑛𝛼𝑛
(E𝑞(𝑥𝑛|𝑥𝑛) 𝜖𝑛

2 − E𝑞(𝑥𝑛|𝑥𝑛) 𝜖𝑛
2).

Bao et al. Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models, ICML 2022.

Predict noise

Predict squared noise



 Implementation framework of predicting squared noise

数据
𝑥0

带噪数据
𝑥𝑛

高斯噪声
𝜖𝑛

平方噪声
𝜖𝑛
2

预测网络
ℎ𝑛(𝑥𝑛)

最小化均方误差
min
ℎ𝑛

𝐄‖ℎ𝑛 𝑥𝑛 − 𝜖𝑛
2‖2

2

预测网络
Ƹ𝜖𝑛(𝑥𝑛)

最小化均方误差
min
ො𝜖𝑛

𝐄‖ Ƹ𝜖𝑛(𝑥𝑛) − 𝜖𝑛‖2
2

基于预测噪声平方的最优协方差估计:

最优协方差表达式:

constant

By Fan Bao, Tsinghua University 9
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Theorem (The optimal solution for diagonal covariance , i.e., Σ𝑛 𝑥𝑛 = diag(𝜎𝑛 𝑥𝑛
2) )

The optimal solution to min
𝜎𝑛 ⋅ 2

𝐾𝐿(𝑞(𝑥0:𝑁)||𝑝 𝑥0:𝑁 ) with imperfect mean is

෤𝜎𝑛
∗ 𝑥𝑛

2 =
ഥ𝛽𝑛−1
ഥ𝛽𝑛

𝛽𝑛 +
𝛽𝑛
2

ഥ𝛽𝑛𝛼𝑛
E𝑞(𝑥0|𝑥𝑛)[ 𝜖𝑛 − Ƹ𝜖𝑛(𝑥𝑛)

2].

Bao et al. Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models, ICML 2022.

Generally, the mean 𝜇𝑛 𝑥𝑛 =
1

𝛼𝑛
𝑥𝑛 − 𝛽𝑛

1

ഥ𝛽𝑛
Ƹ𝜖𝑛(𝑥𝑛) is not optimal due to approximation or 

optimization error of Ƹ𝜖𝑛(𝑥𝑛). 

Noise prediction residual 
(NPR)
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数据
𝑥0

带噪数据
𝑥𝑛

高斯噪声
𝜖𝑛

噪声残差
( Ƹ𝜖𝑛 𝑥𝑛 − 𝜖𝑛)

2

预测网络
𝑔𝑛(𝑥𝑛)

最小化均方误差
min
𝑔𝑛

𝐄‖𝑔𝑛 𝑥𝑛 − ( Ƹ𝜖𝑛 𝑥𝑛 − 𝜖𝑛)
2‖2

2

预测网络
Ƹ𝜖𝑛(𝑥𝑛)

最小化均方误差
min
ො𝜖𝑛

𝐄‖ Ƹ𝜖𝑛(𝑥𝑛) − 𝜖𝑛‖2
2

基于预测噪声残差的最优协方差估计:

最优协方差表达式:

 Implementation framework of predicting NPR



• The continuous timesteps version (SDE)

• 𝑞 𝑥0, … , 𝑥𝑁 becomes

• 𝑑𝒙 = 𝑓 𝑡 𝒙𝑑𝑡 + 𝑔 𝑡 𝑑𝒘 ↔ 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2 ∇log 𝑞𝑡 𝒙 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

• 𝑝 𝑥0, … , 𝑥𝑁 becomes

• 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2𝒔𝑡 𝒙 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘
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Song et al. Score-based generative modeling through stochastic differential equations, ICLR 2021.



Conditional DPMs: Paired Data
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We have pairs of (𝑥0, 𝑐), where 𝑥0 is the data and 𝑐 is the condition.
The goal is to learn the unknown conditional data distribution 𝑞(𝑥0|𝑐).



 Original model 𝑠𝑛 𝑥𝑛 → conditional model 𝑠𝑛 𝑥𝑛|𝑐

 Training: min
𝑠𝑛

E𝑐E𝑛 ҧ𝛽𝑛E𝑞𝑛(𝑥𝑛|𝑐) 𝑠𝑛 𝑥𝑛|𝑐 − ∇ log 𝑞𝑛(𝑥𝑛|𝑐)
2

 Conditional DPM: 

 Discrete time: 𝑝 𝑥𝑛−1 𝑥𝑛, 𝑐 = 𝑁(𝜇𝑛 𝑥𝑛|𝑐 , Σ𝑛(𝑥𝑛)), 𝜇𝑛 𝑥𝑛 =
1

𝛼𝑛
𝑥𝑛 + 𝛽𝑛𝑠𝑛 𝑥𝑛|𝑐

 Continuous time: 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2𝒔𝑡 𝒙|c 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 Challenge: design the model architecture 𝑠𝑛 𝑥𝑛|𝑐

Conditional Model

By Fan Bao, Tsinghua University 14



 Exact reverse SDE: 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2 ∇log 𝑞𝑡 𝒙|𝑐 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 ∇log 𝑞𝑡 𝒙|𝑐 = ∇ log 𝑞𝑡(𝑥) + ∇ log 𝑞𝑡(𝑐|𝑥)

 Conditional score-based SDE:

 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2(𝑠𝑡 𝑥 + ∇ log 𝑝𝑡(𝑐|𝑥)) 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 Benefits: Many discriminative models have well studied architectures

Discriminative Guidance
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Discriminative
model

Original 
DPM

The paired data is used in the 
training of the discriminative modelApproximated by



 Exact reverse SDE: 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2(∇ log 𝑞𝑡(𝑥) + ∇ log 𝑞𝑡(𝑐|𝑥)) 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 Scale discriminative guidance: 

 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2(∇ log 𝑞𝑡(𝑥) + 𝜆∇ log 𝑞𝑡(𝑐|𝑥)) 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 Conditional score-based SDE:

 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2(𝑠𝑡 𝑥 + 𝜆∇ log 𝑝𝑡(𝑐|𝑥)) 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2(𝑠𝑡 𝑥|𝑐 + 𝜆∇ log 𝑝𝑡(𝑐|𝑥)) 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

Scale Discriminative Guidance
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Dhariwal et al. Diffusion Models Beat GANs on Image Synthesis

Conditioned on label



 Scale discriminative guidance: 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2(∇ log 𝑞𝑡(𝑥) + 𝜆∇ log 𝑞𝑡(𝑐|𝑥)) 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 ∇ log 𝑞𝑡(𝑐|𝑥) = ∇ log 𝑞𝑡(𝑥|𝑐) − ∇ log 𝑞𝑡(𝑥)

 Learn conditional & unconditional model together

 Introduce token ∅, and use 𝑠𝑡 𝑥𝑡|∅ to represent unconditional cases

 Conditional score-based SDE: 

 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2(𝑠𝑡 𝑥|∅ + 𝜆(𝑠𝑡 𝑥 𝑐 − 𝑠𝑡(𝑥|∅)) 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 Training: 

 min
𝑠𝑛 ⋅

E𝑐E𝑛 ҧ𝛽𝑛E𝑞𝑛(𝑥𝑛|𝑐) 𝑠𝑛 𝑥𝑛|𝑐 − ∇ log 𝑞𝑛(𝑥𝑛|𝑐)
2 + 𝜆E𝑛 ҧ𝛽𝑛E𝑞𝑛(𝑥𝑛) 𝑠𝑛 𝑥𝑛|∅ − ∇ log 𝑞𝑛(𝑥𝑛)

2

Self Guidance
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conditional loss unconditional loss

Ho et al. Unconditional Diffusion Guidance

Require an extra
discriminative model



Application: Image Super-Resolution

 Paired data (𝑥0, 𝑐), 𝑥0 is high resolution image, 𝑐 is low resolution image

 Learn a conditional model 𝑠𝑛 𝑥𝑛|𝑐

 Architecture: 𝑠𝑛 𝑥𝑛|𝑐 = UNet(cat 𝑥𝑛, 𝑐
′ , 𝑛), 𝑐′ is the bicubic interpolation of 𝑐

By Fan Bao, Tsinghua University 19

Saharia et al. Image Super-Resolution via Iterative Refinement



Application: Image Super-Resolution
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Saharia et al. Image Super-Resolution via Iterative Refinement



Application: Text to Image

 Dataset contains pairs of (𝑥0, 𝑐), where 𝑥0 is image and 𝑐 is text

 Techniques: conditional model with self-guidance

 Challenge: design 𝑠𝑡 𝑥 𝑐

By Fan Bao, Tsinghua University 21

Nichol et al. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models



Application: Text to Image

 Architecture of 𝑠𝑡 𝑥 𝑐 : UNet + Transformer

 UNet encodes image 𝑥

 Transformer encodes text 𝑐 and the embedding is injected to UNet

 The token embedding is injected after group normalization in Res Block:

 The token embedding is concatenated to the attention context in UNet

By Fan Bao, Tsinghua University 22

Nichol et al. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models

Other details
Dataset: the same as DALL-E
#parameters: 2.3 billion for 64x64



Application: Segmentation

 Paired data (𝑥0, 𝑐), 𝑥0 is segmentation, 𝑐 is image

 𝑠𝑡 𝑥 𝑐 = UNet(𝐹 𝑥 + 𝐺(𝑐), 𝑡)

By Fan Bao, Tsinghua University 23

Amit et.al. SegDiff: Image Segmentation with Diffusion Probabilistic Models 



Conditional DPMs: Unpaired Data
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We only have a set of 𝑥0 (data).
The goal is to construct a conditional distribution 𝑝(𝑥0|𝑐).



Energy Guidance

 Unconditional DPM trained from a set of 𝑥0 (data):

 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2𝒔𝑡 𝒙 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 A strategy to construct 𝑝(𝑥0|𝑐) is to insert an energy function:

 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2(𝒔𝑡 𝒙 − ∇𝐸𝑡(𝒙, 𝑐)) 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘, 𝑥𝑇 ∼ 𝑝(𝑥𝑇|𝑐)

 The generated data tends to have a low energy 𝐸𝑡(𝒙, 𝑐)

 The energy depends on specific applications

By Fan Bao, Tsinghua University 25



Energy Guidance

 Pros: 

 Provides a framework for incorporating domain knowledge to DPMs

 Cons:

 𝑝(𝑥0|𝑐) is very black box

 Energy design is based on intuition

By Fan Bao, Tsinghua University 26



Application: Text to Image

 High level idea: Define energy as a negative similarity between image and text

 CLIP provides a model to measure the similarity between images and texts:

 Similarity: sim 𝒙, 𝑐 = 𝒇(𝒙) ∙ 𝒈(𝑐)

 Energy: 𝐸𝑡 𝒙, 𝑐 = −sim 𝒙, 𝑐

By Fan Bao, Tsinghua University 27

Nichol et al. GLIDE: Towards Photorealistic Image 
Generation and Editing with Text-Guided Diffusion Models



Application: Text to Image

By Fan Bao, Tsinghua University 28

Self
guidance

Energy
guidance



Application: Generate Low Density Images
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Vikash et al. Generating High Fidelity Data from Low-density Regions using Diffusion Models

Dataset Samples from SDE of 𝒔𝑡 𝒙|c

Samples from SDE is more similar 
to high density part in dataset



Application: Generate Low Density Images

 Original SDE: 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2𝒔𝑡 𝒙|c 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 New SDE: 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2(𝒔𝑡 𝒙|c − ∇𝐸𝑡(𝒙, 𝑐)) 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘

 High level intuition: Small energy ~ x is away from the class c

 𝐸𝑡 𝑥, 𝑐 = sim 𝑥, 𝑐 = 𝑓 𝑥 ∙ 𝜇𝑐
 𝑓 is an image encoder and 𝜇𝑐 is the averaged embedding of class 𝑐

 Empirically, use a contrastive version of the loss

By Fan Bao, Tsinghua University 30

Vikash et al. Generating High Fidelity Data from Low-density Regions using Diffusion Models

Vikash et al. Generating High Fidelity Data from Low-density Regions using Diffusion Models



Application: Generate Low Density Images
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Vikash et al. Generating High Fidelity Data from Low-density Regions using Diffusion Models

Dataset Samples from SDE of 𝒔𝑡 𝒙|c Samples from 𝒔𝑡 𝒙|c − ∇𝐸𝑡(𝒙, 𝑐)



Application: Image2Image Translation

 𝑐 is the reference image

 𝒔𝑡 𝒙 is a DPM on target domain

 𝑑𝒙 = 𝑓 𝑡 𝒙 − 𝑔 𝑡 2(𝒔𝑡 𝒙 ) 𝑑𝑡 + 𝑔 𝑡 𝑑ഥ𝒘, 𝑥𝑡0 ∼ 𝑝(𝑥𝑡0|𝑐)
 No energy guidance

 𝑐 only influence the start distribution

 Choose an early start time 𝑡0 < 𝑇

 𝑝(𝑥𝑡0|𝑐) is a Gaussian perturbation of 𝑐
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Meng et al. Image Synthesis and Editing with Stochastic Differential Equations



Application: Image2Image Translation
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Meng et al. Image Synthesis and Editing with Stochastic Differential Equations

𝑝(𝑥𝑡0|𝑐) is a Gaussian perturbation of 𝑐

Stroke to painting



DPMs for Downstream Tasks
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Regard DPMs as pretrained models (feature extractors)



DPMs for Downstream Segmentation
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DPM features are already 
unsupervised segmentation.

Dmitry et.al. Label-Efficient Semantic Segmentation with Diffusion Models



DPMs for Downstream Segmentation

 Use features from DPMs at different layers and times.

 Finetune a MLP after these features.

 Only a small number of segmented data is required.
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Dmitry et.al. Label-Efficient Semantic Segmentation with Diffusion Models



DPMs for Other Domains
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DPMs for Other Domains

 Text to speech
 Vadim et. al. Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech

 Video generation
 Ho et. al. Video Diffusion Models 

 Industry anomaly detection
 Yana et.al. TFDPM: Attack detection for cyber-physical systems with diffusion 

probabilistic models （网络物理系统的攻击检测）
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DPMs for Other Domains

 Point Cloud
 Lyu et. al. A CONDITIONAL POINT DIFFUSION-REFINEMENT PARADIGM FOR 3D 

POINT CLOUD COMPLETION
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DPMs for Science

 Molecular dynamics
 Wang et.al. From data to noise to data: mixing physics across temperatures 

with generative artificial intelligence

 Hoogeboom et. al. Equivariant Diffusion for Molecule Generation in 3D 
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DPMs for Science
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DPMs for Science

 Medical
 Aviles-Rivero et. al. Multi-Modal Hypergraph Diffusion Network with Dual 

Prior for Alzheimer Classification
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Thanks!
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