

Triple Generative Adversarial Nets

Chongxuan Li, Kun Xu, Jun Zhu and Bo Zhang Department of Computer Science and Technology, Tsinghua University {licx14, xu-k16}@mails.tsinghua.edu.cn

Background and Motivation

Generative Adversarial Nets(GANs)

Given samples from p(x),to learn $p_g(x) \approx p(x)$. D(x) outputs a binary unit.

$$X \sim p(X) \longrightarrow \mathsf{D} \longrightarrow \mathsf{A}$$
$$\mathsf{D} \longrightarrow \mathsf{A}/\mathsf{R}$$

- G and C will benefit each other.
- With cross entropy losses on labeled data and generated data, the unique optimum is $p(x,y) = p_g(x,y) = p_c(x,y)$.

Experiments

Classification

State-of-the art classification results on MNIST, SVHN and CIFAR10.

Generation

Under nonparametric assumptions, the global optimum is $p_g(x) = p(x)$.

Semi-Supervsised GANs

Given partially labeled data from p(x, y), to learn $p_c(y|x)$ and $p_g(x)$. D(x) outputs $|\mathcal{Y}|$ or $|\mathcal{Y}| + 1$ dimensional units.

No game-theoretical analysis as in original GANs.

Problems of Two-Player Formulation

• An extreme case, where G is good but C is poor [1]

Good C results in good G

(a) Improved-GAN (FM)

(b) Triple-GAN

Conditional Generation

- G converges, i.e. $p_g(x) = p(x)$
- D_G^* rejects $x \sim p_g(x)$ with probability $\frac{1}{2}$
- C^* should accept it and classify it as certain class confidently
- Then C and G won't be both optimal because of sharing parameters between D and C
- Cannot control what to generate
 - The classifier predicts accurately while the generator cannot leverage such information

Triple-GAN

Rethink the Problem

- A dual perspective: p(x,y) = p(y)p(x|y) = p(x)p(y|x)
- Marginal distributions are known
- Conditional distributions are of interests

Three-Player Game

- Given partially labeled data, learn $p_c(\boldsymbol{y}|\boldsymbol{x})$ and $p_g(\boldsymbol{x}|\boldsymbol{y})$

(c) Automobile

(d) Horse

Disentangle Classes and Styles

Figure 1: Same y for each row. Same z for each column.

Latent Space Interpolation

where D(x) outputs a binary unit to justify (x, y) pairs. A minimax game: $\min_{C,G} \max_{D} E_p[\log D(x, y)] + \alpha E_{p_c}[\log(1 - D(x, y))] + (1 - \alpha) E_{p_g}[\log(1 - D(x, y))].$

Game-Theoretical Analysis and Regularizations

• The optimum is $p(x,y) = (1 - \alpha)p_g(x,y) + \alpha p_c(x,y)$.

References [1] Salimans T, Goodfellow I, Zaremba W, et al. Improved techniques for training gans[C]//Advances in Neural Information Processing Systems. 2016: 2234-2242.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, US