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Generalization

+ A generalization is a form of abstraction whereby common properties of
specific instances are formulated as general concepts or claims -- Wiki

(ZH 2R BRSO AR IERIA I — RS E R BB RIS Z )

- The ability to categorize correctly new examples that differ from those used
for training is known as generalization -- PRML



Generalization in Supervised Learning

Definition 2.1 (Generalization error) Given a hypothesis h € H, a target concept c € C,
and an underlying distribution D, the generalization error or risk of h is defined by

R(h) = P [h(z) #c@)] = E [lnwye) (2.1)

€Tre~

where 1, is the indicator function of the event w.?

Definition 2.2 (Empirical error) Given a hypothesis h € H, a target concept ¢ € €, and
a sample S = (x1,...,T,.), the empirical error or empirical risk of h is defined by

A rough summary: train in finite samples and generalize to unseen samples
or the distribution



Reinforcement Learning

o W
> Agent J
Observation o, b
Reward 1, Action a,
State s, -
Environment }
N

In fully-observed MDP, o=s



Outline

- Preliminary

- Generalization in RL

- Generalize to Unseen MDPs

- Pretrained Large Models for All?
- Reference



Generalization in RL
- There are many unknown distributions in RL...

Single MDP

- Model the transition distribution (model learning)

- When given a policy, calculate the return of the policy via finite trajectories
(state-action pairs)

(When on-policy, the result is almost the same as the case in Supervised
Learning)

Multiple MDPs (Main concerns today)
- There a distribution of MDPs, how to estimate them (transition, policy) via
some sampled MDPs.
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Generalization in unseen MDPs = solving POMDP (NeurlPS21)

Main Result:

In standard supervised learning, ERM (empirical risk minimization) in
the training set translates into good generalization performance
(without distribution shift and with appropriate inductive biases)

In RL, similar “empirical risk minimization” approaches can be sub-
optimal for generalizing to new environments

Ghosh D, Rahme J, Kumar A, et al. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability[J]. Advances in Neural
Information Processing Systems, 2021, 34: 25502-25515.



Generalization in unseen MDPs = solving POMDP (NeurlPS21)

A simple example in Classification and RL

Classifacation: Given an image from a dataset (like FashionMNIST),
output its category. Correct: get reward 0. Wrong: get reward -1.

Reinforcement Learning: Repeat the above process until the result is
correct.

Ghosh D, Rahme J, Kumar A, et al. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability[J]. Advances in Neural
Information Processing Systems, 2021, 34: 25502-25515.



Generalization in unseen MDPs = solving POMDP (NeurlPS21)

Ideal Behavior Learned RL Behavior

State J—»h_‘m»\'m J*J"J"J"'
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t=2 t=3 t=4
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Figure 2: Sequential Classification RL Problem. In this task, an agent must keep guessing the label for an
image until it gets it correct. To avoid low test return, policies should change actions if the label guessed was
incorrect, but standard RL methods fail to do so, instead guessing the same incorrect label repeatedly.

In standard RL, there exists a deterministic policy is the optimal policy
(choose the action with the maximal Q value)

In this case: first choosing the action it is most confident about, if
incorrect, then the second, and so forth.

Ghosh D, Rahme J, Kumar A, et al. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability[J]. Advances in Neural

Information Processing Systems, 2021, 34: 25502-25515.



Generalization in unseen MDPs = solving POMDP (NeurlPS21)

Test Performance

Empirical results in FashionMNIST:
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Figure 3: DQN on RL FashionMNIST.
DQN achieves lower test performance than
simple variants that leverage the structure of
the RL problem.

Ghosh D, Rahme J, Kumar A, et al. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability[J]. Advances in Neural
Information Processing Systems, 2021, 34: 25502-25515.
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Generalization in unseen MDPs = solving POMDP (NeurlPS21)

Formalization
MDP (epistemic POMDP): MP® = (8P°, QP A, TP, 770, P, )
State and Ovservation: ¢ = (A, s,) o = s

Transition and Return:

TP(M',8") | (M, 8),a) = (M’ = M)Tp(8'|s,a)  1P°((M, 8),a) = rrq(s,a).

Ghosh D, Rahme J, Kumar A, et al. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability[J]. Advances in Neural
Information Processing Systems, 2021, 34: 25502-25515.



Generalization in unseen MDPs = solving POMDP (NeurlPS21)

Proposition 5.1. If the true MDP M is sampled from P(M), and evidence D from M is provided
to an algorithm during training, then the expected test-time return of m is equal to its performance in
the epistemic POMDP M?P°.

Jpmeo (1) = Epgoprgy[Im(m) | D (2)

In particular, the optimal policy in MP° is Bayes-optimal for generalization to the unknown MDP
M it receives the highest expected test-time return amongst all possible policies.

Optimal policy is non-Markovian since the episode contains
information about the identity of the MDP being acted in.

When restricted to Markovian policies, the optimal policy is in general
stochastic.

Ghosh D, Rahme J, Kumar A, et al. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability[J]. Advances in Neural
Information Processing Systems, 2021, 34: 25502-25515.



Generalization in unseen MDPs = solving POMDP (NeurlPS21)

This result iIs not isolated.

Actually, when there are certain uncertainty in MDP, the optimal
Markovian policy we found may not be deterministic.

For example, when the policy is disturbed by an adversary (SA-MDP)

Theorem 3. There exists an SA-MDP and some stochastic policy w € 11k such that we cannot find
a better deterministic policy 7' € Ilyp satisfying Viioy«(x)(8) = Viopx(r)(s) forall s € S.

Zhang H, Chen H, Xiao C, et al. Robust deep reinforcement learning against adversarial perturbations on state observations[J]. Advances in
Neural Information Processing Systems, 2020, 33: 21024-21037.

Ghosh D, Rahme J, Kumar A, et al. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability[J]. Advances in Neural
Information Processing Systems, 2021, 34: 25502-25515.



Generalization in unseen MDPs = solving POMDP (NeurlPS21)

How to find the optimal policy?

Use a sequential policy (like Istm, transformer)
Use a stochastic memoryless policy

Proposition 6.1. Let 7,71, - - - m, be memoryless policies, and define ryax = max; s |7 a; (8, a)|.
The expected return of w in MP? is bounded below as:

T (7 ZJM ™) - ‘f ZE VD () ()], @)

Proposition 6.2. Let f : {7, };c[n) — T be a function that maps n policies to a single policy satisfying

f(m, -+ m) = m for every policy &, and let o be a hyperparameter satisfying o > (”/_Tfjgt Then
letting 7], ... m, be the optimal solution to the following optimization problem:

{77 biepy = argmax = 3~ Jug,(m) — a Y By, [VDxz OB T FARDU)] @)

the policy 7* = f({n*Yicin) is optimal for the empirical epistemic POMDP M.

Ghosh D, Rahme J, Kumar A, et al. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability[J]. Advances in Neural
Information Processing Systems, 2021, 34: 25502-25515.



Generalization in unseen MDPs = solving POMDP (NeurlPS21)

Algorithm 1 Linked Ensembles for the Epistemic POMDP (LEEP)

1:

= S I IS S

: Return m = max; m: w(als) =

Receive training contexts Ci.in, number of ensemble members n

Bootstrap sample training contexts to create C:. ,...C™. , where C’.. C Ciyain-

N o train? train”® train
Initialize n policies: 7y, ...,
for iteration £k = 1,2.3,... do

for policy:=1,...,ndo |

Collect environment samples in training contexts C;. . using policy ;

Take gradient steps wrt 7; on these samples with augmented RL loss:

Ty = Ty = T]vi([:RL(ﬂ'?;) - aEswm,C

train

max; m;(al|s)
T 3L max;mi(a’]s)

Everytime train in
contextual MDP with many
contexts rather than a
single MDP

Lo lDEL(Ti (0] )| maxw;(als))))

Ghosh D, Rahme J, Kumar A, et al. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability[J]. Advances in Neural
Information Processing Systems, 2021, 34: 25502-25515.



Generalization in unseen MDPs = solving POMDP (NeurlPS21)

Maze Heist Bigfish Dodgeball

— LEEP
- PPO

Test Return

# Env Steps 1¢7 # Env Steps 1€7 # Env Steps 1€/ # Env Steps 1€/

Figure 4: Test set return for LEEP and PPO throughout training in four Procgen environments
(averaged across 5 random seeds). LEEP achieves higher test returns than PPO on three tasks (Maze,
Heist and Dodgeball) and matches test return on Bigfish while having less variance across seeds.

Ghosh D, Rahme J, Kumar A, et al. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability[J]. Advances in Neural
Information Processing Systems, 2021, 34: 25502-25515.



CaDM (ICML20)

Conder generalization in test environments with unseen contexts c

goal: learn the environment, i.e., use current K past transition
P = {(si—k,a—x) - (si—1,a¢.—1)} to encode the context ¢

Forward model: use c, current state and current action to predice the
next state

Lee K, Seo Y, Lee S, et al. Context-aware dynamics model for generalization in model-based reinforcement learning[C]//International Conference
on Machine Learning. PMLR, 2020: 5757-5766.



CaDM (ICML20)
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Figure 2. Illustrations of our framework. We decompose the task of learning a global dynamics model into context encoding and transition
inference. (a) Our dynamics model predicts the next state conditioned on the latent vector. (b) We introduce a backward dynamics model
that predicts a previous state by utilizing a context latent vector. (c) We force the context latent vector to be temporally consistent by

utilizing it for predictions in the future timesteps.

Lee K, Seo Y, Lee S, et al. Context-aware dynamics model for generalization in model-based reinforcement learning[C]//International Conference

on Machine Learning. PMLR, 2020: 5757-5766.



CaDM (ICML20)

Backward model: capture contextual information while mitigating the
risk of overly focusing on predicting only the "seen” forward dynamic
(intuition: context should be useful for predicting both forward and

backward transition) By s [+ B ], (D)
1 t+M—1
et = i Y log f (sitilsisaig (Fk:¢):6),
Egziiward = M Z log b (Si‘si—l—l; i, g (TEK; ¢) ;1@) )
Action choose: =

use MPC methods (like CEM) to take an action (assume the reward
function is known) B
combine with model free methods 7 (atlst. g (7 x:9))

Lee K, Seo Y, Lee S, et al. Context-aware dynamics model for generalization in model-based reinforcement learning[C]//International Conference
on Machine Learning. PMLR, 2020: 5757-5766.



Results for Model-Based

Half-cheetah Ant
Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)
Vanilla DM 1560.7+ 453.1 1026.74+ 164.7 686.7+ 1894 646.4+ 89.0 520.0+ 976 385.8+ 852
Stacked DM 1301.4+ 3105 761.1+ 236.6 661.5+ 2205 492.3+ 68.7 417.1+ 468 338.9+ 515
GrBAL 1170+ 887 -43.7+ 106.9 -94.5+ 1413 55.0+ 100 46.5+ 6.5 42,94 338
ReBAL 1086.7+ 90.0 657.5+ 1849 396.6+ 1885 100.14 123 7314155 0317
PE-TS 4347.14 3009 2019.64 274.8 1422.3+ 162.8 11833+ 511 1075.1+£ 1036 856.6+ 66.5
Vanilla + CaDM 3536.5+ 6417 1556.1+ 260.6 1264.5+ 2287 1851.0+L 1137 1315.7+ 455 821.4+ 1135
PE-TS + CaDM 8264.0+ 13740  7087.2-+ 14956 4661.8+ 783.9 2848.4+ 619 2121.0+ 604 1200.7+ 218
CrippledHalfCheetah SlimHumanoid
Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)
Vanilla DM 1005.14 429.0 870.0+ 308.0 5T7.3+ 765 1119.84 31756 1004.4+ 798.2 1135.5-+ 5569
Stacked DM 630.6+ 2113 545.14 2898 417.94 1458 1057.4+ 5475 876.24 1005.2 651.84 4499
GrBAL 151.94 127 9.2+ 17.1 16.6x 230 -62.61 233.1 -562.84 2535 -398.6+ 1772
ReBAL 701.7+ 1197 904.54 90.7 833.0+ 1180 1205.8+ 546.8 85.84 388.9 108.74+ 3576
PE-TS 1846.8+ 380.7 1916.5+ 3282 1227.64 352 1339.64 524.0 758.61 528.8 810.4+ 363.4
Vanilla + CaDM 243514 %804 1375.3+ 290.6 966.9+ 89.4 1758.2+ 459.1 1228.9+ 374.0 1487.9+ 3390
PE-TS + CaDM 3294.94 7339 2618.74 647.1 12942+ 2149 1371.94 400.0 903.7+ 3439 814.5+ 2748

Table 1. The performance (average returns) of trained dynamics models on various control tasks. The transition dynamics of environments
are changing in both training and test environments. The results show the mean and standard deviation of returns averaged over five runs.

Lee K, Seo Y, Lee S, et al. Context-aware dynamics model for generalization in model-based reinforcement learning[C]//International Conference
on Machine Learning. PMLR, 2020: 5757-5766.



Results for Model-Free

HalfCheetah Ant
Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)
Vanilla PPO 2043.44 8029 807.7+L 5536 574.0+ 6456 211.94 445 149.4+ 270 11734239
Stacked PPO 1125.4+ 855 2611k idig 5. 712081 90.6+ 163 53.24 106 46.0+ 109
PPO + PC 1584.9+ 4043 642.14 4883 462.11 5345 249 94 850 207.0+ 338 163.54 304
PPO + EP 1620.9+ 4915 895.34 445.1 674.2+ 6868 138.8+ 349 107.84 199 93.5+ 324
PPO + CaDM 2652.0+ 11336 1224.2+ 630.0 1021.1+ 6766 268.6+ 77.0 228.8+ 484 199.2+ 521
CrippledHalfCheetah SlimHumanoid
Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)
Vanilla PPO 2059.6+ 6583 1223.61 559.9 781.74 2703 7685.5+ 2599.4 3761.31 15824 2751.6t 869.4
Stacked PPO 1238.1+ 1025 967.1+ 1466 904.4+ 1465 4831.0+ 688.1 2443.0+ 5356 1577.84 5735
PPO + PC 2920.7+ 7717 1162.2+ 4565 546.3+ 2159 7130.1+ 33780 39028.5+ 1848.7 2362.6+ 7819
PPO + EP 1494.2+ 3117 1017.0+ 201.1 719.0+ 4385 4824 .77+ 1508.7 2224.77+ 8829 1293.44 729.0
PPO + CaDM 2356.6+ 6243 1454.0+ 4626 1025.0+ 296.2 10455.0+ 10049  4975.74 13057  3015.1+ 1508.3

Table 2. The performance (average return) of trained agents on various control tasks. The transition dynamics of environments are
changing in both training and test environments. The results show the mean and standard deviation of returns averaged over five runs.

Lee K, Seo Y, Lee S, et al. Context-aware dynamics model for generalization in model-based reinforcement learning[C]//International Conference

on Machine Learning. PMLR, 2020: 5757-5766.
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A Generalist Agent (Gato) Deepmind 2022.5




A Generalist Agent (Gato) Deepmind 2022.5

- “Inspired by progress in large-scale language modeling, we apply a
Similar approach towards building a single generalist agent beyond
the realm of text outputs.”

- Use a single agent with the same parameters to handle multi-modal
tasks (including RL, CV, NLP)

- Parameters: 34M ~ 1.18B 1B = 1000,000,000

(As a comparison: GPT-2 ~ 1.5B, GPT-3 ~ 100B, Switch Transformer
~ 1600B, WuDao ~1750B)

- In the part of RL, Gato only focuses on supervised learning

Reed S, Zolna K, Parisotto E, et al. A generalist agent[J]. arXiv preprint arXiv:2205.06175, 2022.



A Generalist Agent

Goal:
use one NN with the
same parameters for 604
tasks, including:
- Control Tasks
- Atari Games
- DM Control
- Meta World
- Vision and Language
- MassiveText (text)
- ALIGN (image-text)
- Robotics
- RGB Stacking (real
and sim)

What is the capital of
@ France?

Paris. G

f5 Can you write me a poem?

I don't know exactly what
to write. There's just so
much to answer.

%o e

-
Sl L

W - B

A cat that is sitting newt |
to a brick wall

LB g abs SO DUSTHE

Figure 1 | A generalist agent. Gato can sense and act with different embodiments across a wide range of
environments using a single neural network with the same set of weights. Gato was trained on 604 distinct
tasks with varying modalities, observations and action specifications.



A Generalist Agent

Atari images Batched and masked
and discrete actions shifted targets

IR INERY NN
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\ 1L
Images, proprioception b
and continuous actions i i i i I I I i i I I i
L4+ h 4 7 T

Images and

I'm going to London

questions ! Proprioception
| Image
Q: What's in the picture?
@ A: Tt's a cute cat B Text

Continuous ections

II'I llll B biscrete actions

Figure 2 | Training phase of Gato. Data from different tasks and modalities is serialized into a flat sequence
of tokens, batched, and processed by a transformer neural network akin to a large language model. Masking is
used such that the loss function is applied only to target outputs, i.e. text and various actions.

Reed S, Zolna K, Parisotto E, et al. A generalist agent[J]. arXiv preprint arXiv:2205.06175, 2022.



Method

Serialize all data into a flat sequence of tokens
- Text: SentencePiece
- Images: VIiT

- Discrete Values, e.g. Atari button presses: flattened into sequences
of integers

- Continuous Values, e.g. proprioceptive inputs or joint torques:
original value -> [-1, 1] -> discretized to 1024 uniform bins.

. B} b b b
Train: Supervised Learning = £@.5)=-3 2 imG.Dioges (515, ....s5)

m(b,t) =1 iff s_I™(b)} is output



Results: Simulated control tasks > 450 for 50%

Sokoban

RGB Stacking simulator
DM Manipulation Playground
DM Control Suite Pixels
ALE Atari Extended
Procgen Benchmark
ALE Atari

Modular RL

Meta-World

BabyAl

DM Control Suite

DM Lab

500 {1
400
300

200

100

Total Number of Tasks above Threshold

20 40 60 80 100
Threshold as % of Expert Score

Figure 5 | Gato’s performance on simulated control tasks. Number of tasks where the performance of the
pretrained model is above a percentage of expert score, grouped by domain. Here values on the x-axis
represent a specific percentage of expert score, where 0 corresponds to random agent performance. The y-axis
is the number of tasks where the pretrained model’s mean performance is equal to or above that percentage.
That is, the width of each colour band indicates the number of tasks where Gato’s mean performance is above
a percentage of the maximum score obtained by a task-specific expert.

Reed S, Zolna K, Parisotto E, et al. A generalist agent[J]. arXiv preprint arXiv:2205.06175, 2022.



Results: Robotics

Table 2 | Gato real robot Skill Generalization results. In addition to performing hundreds of other tasks,
Gato also stacks competitively with the comparable published baseline.

AGENT | GRouP 1 | GRoUP 2 | GROUP 3 | GROUP 4 | GROUP 5 | AVERAGE

GAaToO ‘ 24.5% 33% 50.5% 76.5% 66.5% 50.2%

BC-IMP (LEE ET AL., 2021) 23% 39.3% 39.3% 77+9% 66% 49%

Skill generalization:

Test in five triplets of object shapes are not included in the training
data

Reed S, Zolna K, Parisotto E, et al. A generalist agent[J]. arXiv preprint arXiv:2205.06175, 2022.



Analysis: Pretrain + Finetune

1. A model pretrained only on data from the same domain as the task to be fine-tuned on, same
domain only data.

2. A model pretrained only on non-control data, no control data.

3. A model fine-tuned from scratch, i.e. no pretraining at all, scratch.

i Cartpole swingup 5000 Metaworld assembly DMLab order of apples forage Atari boxing
=+ 4000 g-=2| 20 O e o st 100 .
- - 3 -
750 . > v A& p s S 7 -
c i, Rong P 3000 v ¥ T 7 =3
2 500|le o PN -2 pd 0l* ° o 50 S e P
a | ——— e | 2000 o;f-i -~ « _ == "',.-11-'1
o« L___..[—"':""t--... -;-"'4 L-ﬂf !__--i}.-‘:, 8 = 'f" . 25 E;:FEE F
0 0 0 ¢ '
1 3 5 10 100 1000 1 3 5 10 100 1000 1 3 5 10 100 1000 1 3 5 10 100 1000
# finetuning episodes # finetuning episodes # finetuning episodes # finetuning episodes
— expert -== scratch - == no control data - =« same domain only data -== all data

Figure 9 | Few-shot performance, ablating over various pretraining settings. Orange corresponds to the
base Gato pretrained on all data. Red is trained from scratch only on the few-shot data. 364M parameter
variants of Gato were used for this experiment to save compute.

Reed S, Zolna K, Parisotto E, et al. A generalist agent[J]. arXiv preprint arXiv:2205.06175, 2022.



Algorithm Distillation (AD) Deepmind (Sumitted to ICLR23)

Data Generation

|
Task 1 |

| RL algorithm
learning histories

' (n) _
Task 1 h’T = (OO,CLO,T’O,Ol,CLl,T’l,...,OT,CLT,T’T)R

learning progress
Model Training

Predict actions using
% @0 (| 7O f rrrmmrres Oi=1) [Ge=1) [Fo—1] [ O } across-episodic contexts
R Voo

Causal Transformer —— | Py(aslhi_1,0¢)

Figure 1: Algorithm Distillation (AD) has two steps — (i) a dataset of learning histories is collected from
individual single-task RL algorithms solving different tasks; (i1) a causal transformer predicts actions from
these histories using across-episodic contexts. Since the RL policy improves throughout the learning histories,
by predicting actions accurately AD learns to output an improved policy relative to the one seen in its context.
AD models state-action-reward tokens, and does not condition on returns.

Laskin M, Wang L, Oh J, et al. In-context Reinforcement Learning with Algorithm Distillation[J]. arXiv preprint arXiv:2210.14215, 2022.



Algorithm Distillation (AD)

Policy Distillation (PD): learns policies from offline RL data via imitation
learning, not Reinforcement Learning algorithms (E.g. Gato)

Algorithm Distillation (AD): learns an in-context policy improvement operator
by optimizing a causal sequence prediction loss on the learning histories of
an RL algorithm

if a transformer’s context is long enough to include policy improvement due
to learning updates it should be able to represent not only a fixed policy but a
policy improvement operator by attending to states, actions and rewards
from previous episodes.

Laskin M, Wang L, Oh J, et al. In-context Reinforcement Learning with Algorithm Distillation[J]. arXiv preprint arXiv:2210.14215, 2022.



Algorithm Distillation (AD)

Algorithm 1 Algorithm Distillation

Require: Train { M"™"} and test { M"*'} tasks, observations o € O, actions a € A, and rewards r € R.
Require: Network parameters ¢; for¢ = 1,..., N source RL algorithms.
Require: Network parameters @ for a causal transformer Fy that predicts actions.
Require: An empty buffer to store data D.
I: for:=1...Ndo > Part 1: Dataset Generation

2 Sample a task M ™" randomly from the train task distribution.

3 Train the source RL algorithm ¢; until it converges to the optimal policy.

4 Save the learning history hgf) = (00,00, 70,...,0T,aT,rT), to the dataset D <— D U hg,f).

5: end for

6: while Fp not converged do > Part 2: Algorithm Distillation
p Randomly sample a multi-episodic subsequence B;Z) = (G Oy P « 5 OijdogyBilogs Pote | OF lenigith o
8 Autoregressively predict the actions with Py and compute the NLL loss in Eq. 6.

9 Backpropagate to update the transformer parameters.

10: end while

11; fork = 1... M do > Part 3: Autoregressive Evaluation
12: Sample a task M randomly from the test task distribution. Initialize empty context queue C.

L% Unroll the transformer Pp(-|C') in the environment storing sequential transitions (i.e. histories) in C'.

14: Measure the return accumulated by the agent for each episode of evaluation.
15: end for

Laskin M, Wang L, Oh J, et al. In-context Reinforcement Learning with Algorithm Distillation[J]. arXiv preprint arXiv:2210.14215, 2022.



Algorithm Distillation (AD)

Dark Room Dark Room (Hard) Dark Key-to-Doo 1.0 Watermaze
R e e e R P I A e e Sy ey Py I =y e e
. 15 %8 | AD
- 10 = o g i i
£ 6 g0 ED
i a g 204 —= 5olrce
0.2 0.2 , -=== RL? (1 billion)
0 s —-s. — - — ; - — = /
0 4 8 12 16 20 0 4 8 12 16 20 0 10 20 30 40 50 0'OO 2 4 6 8
Env Steps (Thousands) Env Steps (Thousands) Env Steps (Thousands) Env Steps (Thousands)

Figure 4: Main results: we evaluate AD, RL?, ED, and the source algorithm on environments that require
memory and exploration. In these environments, an agent must reach a goal location that can only be inferred
through a binary reward. AD is consistently able to in-context reinforcement learn across all environments and is
more data-efficient than the A3C (“Dark” environments) (Mnih et al., 2016) or DQN (Watermaze) (Mnih et al.,
2013) source algorithm it distilled. We report the mean return = 1 standard deviation over 5 training seeds with

20 test seeds each.

ED: Expert Distillation (similar to Gato), RL"2: a meta rl algorithm, source: basic algorithm for collecting data

Laskin M, Wang L, Oh J, et al. In-context Reinforcement Learning with Algorithm Distillation[J]. arXiv preprint arXiv:2210.14215, 2022.



Algorithm Distillation (AD)
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Figure 5: AD and ED conditioned on partial demonstrations: We compare the performance of AD and ED
when prompted with a demonstration from the source algorithm’s training history on Dark Room (semi-dense).
While ED slightly improves and then maintains performance from the input policy, AD is able to improve it

in-context until the policy 1s optimal or nearly optimal.

sample policies from the hold-out test-set data along different points of the source algorithm history - from a
near-random policy to a near-expert policy to pre-fill the context for both AD and ED
AD improves every policy in-context until it is near-optimal

Laskin M, Wang L, Oh J, et al. In-context Reinforcement Learning with Algorithm Distillation[J]. arXiv preprint arXiv:2210.14215, 2022.



LSTM vs Transformer
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Figure 14: Comparison between algorithm distillation with a Transformer and LSTM architecture on

Dark Key-to-Door. Mean == 1 standard deviation over 5 training seeds and 20 evaluation seeds. 300
episodes corresponds to 15k environment steps.

Laskin M, Wang L, Oh J, et al. In-context Reinforcement Learning with Algorithm Distillation[J]. arXiv preprint arXiv:2210.14215, 2022.



Conclusion

- Generalize to unseen MDPs somehow makes the fully observable
environment partially observable, which is similar to uncertainty RL.

- To handle this issue, there are some types of methods: use stochastic
policies, data augmentation, use sequential model.

- The capacity of Current NNs is enough to capture the gap between
different RL tasks (Attention is all you need).
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