

Chengyang Ying, Xinning Zhou, Hang Su, Dong Yan, Ning Chen, Jun Zhu Tsinghua University Contact: ycy21@mails.tsinghua.edu.cn

Safe Reinforcement Learning

 Safe reinforcement learning consider the uncertainty in the reinforcement learning, including transition uncertainty and observation uncertainty.

Transition Uncertainty

$$\max_{\theta} \min_{\mathcal{P} \in \hat{\mathcal{P}}} J_{\mathrm{tr}}(\pi_{\theta}, \mathcal{P}) \triangleq \mathbb{E} \left[D(\pi_{\theta}) \triangleq \sum_{t=1}^{\infty} \gamma^{t} r_{t} \Big| \pi_{\theta}, \mathcal{P} \right]$$

Observation Uncertainty

$$\max_{\theta} \min_{\nu \in \Gamma} J_{\text{obs}}(\pi_{\theta}) \triangleq \mathbb{E} \left[D(\pi_{\theta}, \nu) \triangleq \sum_{t=1}^{\infty} \gamma^{t} r_{t} \right]$$

2

Value Function Range

- Value Function Range
- We provide the connectation of transition disturbance and observation disturbance.
- We can control them both by controlling Value Function Range.
- We introduce CVaR to loose the min in Value Function Range to avoid excessive pessimism.

Definition 2 (Value Function Range). For MDP \mathcal{M} , the Value Function Range (VFR) of the policy π is

$$\hat{V}_{\mathcal{M},\pi} \triangleq \max_{s} V_{\mathcal{M},\pi}(s) - \min_{s} V_{\mathcal{M},\pi}(s).$$
(6)

$$\left|J_{\mathcal{M}}(\pi) - J_{\hat{\mathcal{M}}}(\pi)\right| \leq \frac{2\gamma}{1-\gamma} \epsilon_{\mathcal{P}} \hat{V}_{\mathcal{M},\pi}$$
$$\left|J_{\mathcal{M}}(\pi) - J_{\mathcal{M}}(\hat{\pi}_{\nu})\right| \leq \frac{\gamma}{1-\gamma} \epsilon_{\pi} \hat{V}_{\mathcal{M},\pi} + \frac{2}{1-\gamma} \epsilon_{\pi}.$$

Theorem 3 (Proof in Appendix B.2). For any $\alpha \in [0, 1]$, we have

$$-\mathrm{CVaR}_{\alpha}(-D(\pi)) \leq -\mathrm{CVaR}_{\alpha}(-V(s)).$$
(10)

3

 We formulate our objective as a constrained optimization problem and use Lagrangian relaxation method to deform it as an unconstrained problem.

CPPO

Based on previous work

 [Chow and Ghavamzadeh,
 2014], we can calculate
 the gradient of our
 objective and further
 propose CVaR Proximal
 Policy Optimization (CPPO).

$$\min_{\theta,\eta} -J(\pi_{\theta}) \quad s.t. \ \frac{1}{1-\alpha} \mathbb{E}[(\eta - D(\pi_{\theta}))^+] - \eta \le -\beta.$$

$$\max_{\lambda \ge 0} \min_{\theta, \eta} L(\theta, \eta, \lambda)$$
$$\triangleq -J(\pi_{\theta}) + \lambda \left(\frac{1}{1 - \alpha} \mathbb{E}[(\eta - D(\pi_{\theta}))^{+}] - \eta + \beta \right).$$

Algorithm 1 CVaR Proximal Policy Optimization (CPPO)

Require: confidence level α , learning rate $lr_{\eta}, lr_{\theta}, lr_{\lambda}, lr_{\phi}$ **Ensure:** parameterized policy π_{θ} and parameterized value function V_{ϕ} .

- 1: for $k = 1, 2, ..., N_{iter}$ do
- 2: Generate N trajectories with the current policy π_{θ} .
- 3: Compute advantage estimates \hat{A}_i^t of each state $s_{i,t}$ in each trajectory ξ_i and the cumulative reward $D(\xi_i)$.
- 4: Update parameters $\eta, \theta, \lambda, \phi$ respectively with the calculated gradients.
- 5: Modify β as a function of current trajectories' return.
- 6: end for

Δ

Evaluation on MuJoCo

Method	Ant-v3	HalfCheetah-v3	Walker2d-v3	Swimmer-v3	Hopper-v3
VPG	12.8 ± 0.0	896.9± 531.1	628.6 ± 229.4	48.3 ± 11.3	888.4± 209.5
TRPO	1625.4 ± 356.4	2073.8 ± 741.3	2005.6 ± 398.7	101.2 ± 29.3	2391.4 ± 455.3
PPO	3372.2 ± 301.4	3245.4 ± 947.3	2946.3 ± 944.3	122.0 ± 7.9	2726.0 ± 886.0
PG-CMDP	7.4 ± 3.6	928.7 ± 562.9	596.7 ± 219.9	55.4 ± 18.8	1039.2 ± 21.1
CPPO(ours)	3514.7 ± 247.2	3680.5±1121.3	$\textbf{3194.0} \pm \textbf{648.2}$	$\textbf{182.5}{\pm}\textbf{46.0}$	$\textbf{3144.6} \pm \textbf{158.4}$

curve of the training performance

5

Evaluation on MuJoCo

curve of the testing performance under transition disturbance

curve of the testing performance under observation disturbance

