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Two Types of PGMs

Directed edges give causality relationships (Bayesian 

Network or Directed Graphical Models)

Undirected edges give correlations between variables 

(Markov Random Field or Undirected Graphical Models)



Bayesian Networks

Structure: DAG

Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

Local conditional distributions 
(CPD) and the DAG completely 
determine the joint distribution



Markov Random Fields

Structure: undirected graph

Meaning: a node is 
conditionally independent 
of every other node in the 
network given its Direct 
Neighbors

Local contingency functions 
(potentials) and the cliques in 
the graph completely determine 
the joint distribution



Three Fundamental Questions

We now have compact representations of probability distributions: 

Graphical Models

A GM M describes a unique probability distribution P

Typical tasks:

 Inference 

 How do I answer questions/queries according to my model and/or based on 

given data?

 Learning

 What model is “right” for my data?

 Note: for Bayesian, they seek p(M|D), which is actually an inference problem



Query 1: Likelihood

Most of the queries one may ask involve evidence

 Evidence e is an assignment of values to a set E variables

 Without loss of generality

Simplest query: compute probability of evidence



Query 2: Conditional Probability

Often we are interested in the conditional probability distribution
of a variable given the evidence

 This is the a posterior belief in X, given evidence e

We usually query a subset of Y of all domain variables X={Y,Z} 
and “don’t care” about the remaining Z:

 The resulting p(Y|e) is called a marginal prob.



Applications of a posterior belief
Prediction: what is the probability of an outcome given the starting 
condition

 The query node is a descendent of the evidence

Diagnosis: what is the prob of disease/fault given symptoms

 The query node is an ancestor of the evidence

Learning under partial observations
 Fill in the unobserved values under an “EM” setting

The directionality of info flow between variables is not restricted by the 
directionality of edges in a GM
 Posterior inference can combine evidence from all parts of the network



Example: Deep Belief Network

Deep belief network (DBN) [Hinton et al., 2006]

 Generative model or RBM with multiple hidden layers

 Successful applications: OCR, collaborative filtering, 

multimodal learning



Query 3: Most Probable Assignment

In this query we want to find the most probably joint 

assignment (MPA) for some variables of interest

Such reasoning is usually performed under some given 

evidence e and ignoring other variables Z:

 This is the maximum a posterior configuration of y.



Applications of MPA

Classification: 

 Find most likely label, given the evidence (input features)

Explanation:

 What is the most likely scenario, given the evidence

Cautionary note:

 The MPA of a variable depends on its “context” – the set of 
variables been jointly queried

 Example:
 MPA of Y1 ?

 MPA of (Y1 Y2 )?



Complexity of Inference

Theorem:

 Computing P(X=x|e) in a GM is NP-hard

Hardness does not mean we cannot solve inference

 It implies that we cannot find a general procedure that works 

efficiently for arbitrary GMs

 For particular families of GMs, we can have provably efficient 

procedures.



Approaches to Inference

Exact inference algorithms

 The elimination algorithm

 Message-passing algorithm (sum-product, belief propagation)

 The junction tree algorithms

Approximate inference algorithms

 Markov chain Monte Carlo methods

 Variational methods



Marginalization and Elimination

A signal transduction pathway

 What’s the likelihood that protein E is active?

Query: P(e) 

 A naive summation needs to enumerate over an exponential # 
of terms

 By chain decomposition, we get



Elimination on Chains

Rearranging terms …

Now, we can perform the innermost summation

 This summation “eliminates” one variable from our summation 
argument at a “local cost”



Elimination on Chains

Rearranging and then summing again, we get



Elimination on Chains

Eliminate nodes one by one all the way to the end, we get

Complexity:

 Each step costs                                                operations: 

 Compare to naive evaluation that sums over joint values of n-1 

variables

O(jV al(Xi)j £ jV al(Xi+1)j) O(nk2)

O(kn)



Hidden Markov Model

Now, you can do the marginal inference for HMM:

 Answer the query:

p(y1jx1; : : : ; xT )



Undirected Chains

Rearranging terms …



The Sum-Product Operation

In general, we can view the task at hand as that of computing 

the value of an expression of the form:

 where      is a set of factors

We call this task the sum-product inference task

F



Inference on General GM via VE

General idea of Variable Elimination (VE):

 Write query in the form

 This suggests an “elimination order” of latent variables

 Iteratively:

 Move all irrelevant terms outside of innermost sum

 Perform innermost sum, getting a new term

 Insert the new term into the product



A more complex network

A food web

What is the prob that hawks are leaving given that the grass 
condition is poor?



Example: VE



Example: VE



Example: VE



Understanding VE

A graph elimination algorithm

Intermediate terms correspond to the cliques resulted from 

elimination



Graph elimination and marginalization

Induced dependency during marginalization

 summation  elimination

 intermediate term  elimination clique



A clique tree



Complexity

The overall complexity is determined by the number of largest 
elimination clique

 What is the largest elimination clique? – a pure graph theory question

 “good” elimination orderings lead to small cliques and hence reduce 
complexity 
 What if we eliminate “e” first in the above graph?

 Find the best elimination ordering of a graph – NP-hard 

 inference is NP-hard!

 But there often exist “obvious” optimal or near-opt elimination 
ordering



From Elimination to Message Passing

VE answers only one query (e.g., on one node), do we need 

to do a complete elimination for every such query?

Elimination  message passing on a clique tree

Messages can 

be reused!



From Elimination to Message Passing

VE answers only one query (e.g., on one node), do we need 

to do a complete elimination for every such query?

Elimination  message passing on a clique tree

 Another query …



The Message Passing Protocol

A node can send a message to its neighbors when (and only 

when) it has received messages from all its other neighbors

Computing node marginal:

 Naive approach: consider each node as the root and execute 

message passing
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The Message Passing Protocol

A node can send a message to its neighbors when (and only 

when) it has received messages from all its other neighbors

Computing node marginal:

 Naive approach: consider each node as the root and execute 

message passing



The message passing protocol

A two-pass algorithm

m12(X2)

m23(X3)m24(X4)



Belief Propagation: 

parallel synchronous implementation

For a node of degree d, whenever messages have arrived on any subset 
of d-1 nodes, compute the message for the remaining edge and send!

 A pair of messages have been computed for each edge, one per direction

 All incoming messages are eventually computed for each node



Correctness of BP for tree

Theorem: the message passing algorithm guarantees 

obtaining all marginals in the tree



Another view of M-P: Factor Graph

Example 1:



Factor Graphs



Message Passing on a Factor Tree

Two kinds of messages

From variables to factors From factors to variables



Message Passing on a Factor Tree

Message passing protocol:

 A node can send a message to a neighboring node only when it 

has received messages from all its other neighbors

Marginal probability of nodes



BP on a Factor Tree

Two-pass algorithm:



Why factor graph?

Turn tree-like graphs to factor trees



Why factor graph?

Turn tree-like graphs to factor trees

Trees are a data-structure that guarantees correctness of M-P!



Max-product Algorithm:

computing MAP assignment



Max-product Algorithm:

computing MAP configurations using a final 

bookkeeping backward pass



Inference on general GM

Now, what if the GM is not a tree-like graph?

Can we still directly run message-passing protocol along its edges?

For non-trees, we do not have the guarantee that message-passing 
will be consistent

Then what?

 Construct a graph data-structure from P that has a tree structure, and 
run message-passing on it!

 Junction tree algorithm



Junction Tree



Building Junction Tree



An Example



Summary

Sum-product algorithm computes singleton marginal 

probabilities on

 Trees

 Tree-like graphs

Maximum a posterior configurations can be computed by 

replacing sum with max in the sum-product algorithm

Junction tree data-structure for exact inference on general 

graphs



Learning Graphical Models



Learning Graphical Models



ML Structure Learning for Fully Observed 

Networks

Two optimal approaches:



ML Parameter Est. for 

fully observed Bayesian Networks of 

given structure



Parameter Learning



Recall Density Estimation

Can be viewed as a single-node graphical model

Instances of exponential family dist.

Building block of general GM

MLE and Bayesian estimate

Recall the example of Bernoulli distribution

 MLE gives count frequency

 Bayes introduces pseudo-counts



Recall Conditional Density Estimation

Can be viewed as two-node graphical models

Instances of GLIM

Building blocks of general GM

MLE and Bayesian estimate

Recall example of logistic regression

 We talked about the MLE

 Bayesian estimate is a bit involved (due to non-conjugacy). We’ll 

come to it in GPs



MLE for general BNs

If we assume the parameters for each CPD are globally 
independent, and all nodes are fully observed, then the log-
likelihood decomposes into a sum of local terms, one per node:

x 2



Decomposable likelihood of a BN

Consider the distribution defined by the directed acyclic GM:

This is exactly like learning four separate small BNs, each of which 

consists of a node and its parents



MLE for BNs with tabular CPDs

Assume each CPD is represented as a table (multinomial) 

where

 Note that in case of multiple parents,        will have a composite 

state, and the CPD will be a high-dimensional table

 The sufficient statistics are counts of family configurations

The log-likelihood is



Bayesian Estimate for BNs

How to define a parameter prior?

Assumptions (Geiger & Hecherman, 1997)

 Global parameter independence

 Local parameter independence

p(µjG)?

p ( µ j G ) =

MY

i = 1

p ( µ i j G )

p ( µ i j G ) =

q iY

j = 1

p ( µ
x i j x

j
¼ i

j G )



Parameter Sharing

Consider a time-invariant (stationary) 1st-order Markov model

 Initial state probability vector

 State transition probability matrix

The joint distribution:

Log-likelihood

Again, we optimize each parameter separately

 We have seen how to estimate   . What about A?¼



Learning a Markov chain transition matrix

A is a stochastic matrix

Each row of A is multinomial distribution

So, MLE of        is the fraction of transitions from i to j:

Application:

 If the states       represent words, this is called a bigram language 
model

Data sparsity problem:

 If            didn’t occur in data, we have              , then any future 
sequence with word pair            will have zero probability

 A standard hack: backoff smoothing

A i j

X t

A i j = 0i ! j

i ! j

~Ai!¢ = ¸´ + (1¡ ¸)AML
i!¢



Bayesian language model

Interpreted as a Bayesian language model

If assign a Dirichlet prior to each row of the transition matrix

We have



Example: HMMs

Supervised learning: estimation when the “right answer” is 
known

 Example: 
 the casino player allows us to observe him one evening, as he changes dice 

and produces 10,000 rolls

Unsupervised learning: estimation when the “right answer” is 
unknown

 Example:
 10,000 rolls of the casino player, but we don’t see when he changes dice

Question: update the parameters of the model to maximize  
likelihood



Definition of HMM



Supervised MLE

Be aware of the zero-count problem!



Summary: Learning BNs

For fully observed BN, the log-likelihood function decomposes 
into a sum of local terms, one per node; thus learning is also 
factored
 Structure learning

 Chow-Liu;    

 Neighborhood selection (later)

 Learning single-node GM – density estimation: exponential family 
distribution

 Learning two-node BN: GLIM

 Learning BN with more nodes
 Local operations



ML Parameter Est. for 

fully observed Markov Random Fields of 

given structure



MLE for Undirected Graphical Models

What we have known

 For directed GMs, the log-likelihood decomposes into a sum of 
terms, one per family (node plus parents)

However, for undirected GMs, the log-likelihood does NOT 
decompose!

In general, we will need to do inference (i.e., marginalization) to 
learn parameters for undirected GMs, even in the fully observed 
case



Log-likelihood for UGMs with tabular 

clique potentials

Sufficient statistics: for a UGM (V, E), the number of 

times that a configuration is observed in a dataset

In terms of counts, the log-likelihood is

A nasty term!



Derivative of Log-likelihood

Log-likelihood

First term:

Second term:



Conditions on Clique Marginals

Derivative of log-likelihood

Hence, for the ML parameters, we know that

In other words, at the ML setting of the parameters, for each 
clique, the model marginal must be equal to the observed 
marginal (empirical counts)

Note: this condition doesn’t tell us how to get the ML parameters! 



MLE for decomposable UGMs

Decomposable models

 G is decomposable  G is triangulated  G has a junction 

tree

 Potential based representation: 

Consider a chain

 The cliques are                            ; the separator is

 The empirical marginal must equal the model marginal

Let’s guess that

 We can verify that such a guess satisfies the condition

 Similar for 



MLE for decomposable UGMs (cont.)

Let’s guess that

To compute clique potentials, just equate them to the 

empirical marginal (or conditionals). Then Z=1:

One more example:



Iterative Proportional Fitting (IPF)

From the derivative of log-likelihood

We derive another relationship:

 Note that     appears implicitly in the model marginal

This is therefore a fixed-point equation for 

The idea of IPF is to hold     fixed on the R.H.S and solve it 

on the L.H.S. We cycle through all cliques and iterate:



Feature-based Clique Potentials

We use CRFs as an example to explain!



Classical Supervised Learning

 ( )

1 2y , , ,i

Mc c c

( ) ( ) ( ) ( )

1 2x , , ,
T

i i i i

dx x x   

Supervised Setting (figure from Taskar’05)



Sequential Labeling

Example: POS (part-of-speech) tagging

 “Do you want fries with that?”

 <verb pron verb noun prep pron>

 – sequence of words

 – sequence of part of speechyi

x i



Sequential Labeling

Example: Web Information Extraction

yi

x i

<dl><dt><b>Srinivasan Seshan</b> (Carnegie Mellon University) 

<dt><a href=…><i>Making Virtual Worlds 

Real</i></a><dt>Tuesday, June 4, 2002<dd>2:00 PM , 322 

Sieg<dd>Research Seminar

•* * name name * * affiliation affiliation affiliation * * * * title title

title title * * * date date date date * time time * location location * 

event-type event-type

– sequence of tokens

– sequence of field labels {name, …}



Two kinds of Relationships

Relationships between the and 
 Example: “Friday” is usually a “date”

How about the relationships among the
 Example: “name” is usually followed by “affiliation”

Classical models fail to consider the second kind of relationships.

tyx t

ty



Sequential Supervised Learning (SSL)

( ) ( ) ( ) ( )

1 2x x ,x , ,x
i

i i i i

T

( ) ( ) ( ) ( )

1 2y y ,y , ,y
i

i i i i

T

 ( )

1 2y , , ,i

j Mc c c

( ) ( ) ( ) ( )

1 2x , , ,
T

i i i i

j j j jdx x x   

Supervised Setting (figure from Taskar’05)



Graphical Models for SSL

Hidden Markov Models

Maximum Entropy Markov Models

Conditional Random Fields

Structural SVMs / Max-margin Markov Networks

Maximum Entropy Discrimination Markov Networks

…



Hidden Markov Models

Define a joint probability of paired observation and label 
sequences

form a Markov chain

are generated independently (as in naïve Bayes or 
Gaussian classifiers).

Y1 Y2 Yn-1 Yn

XnXn-1
X1 X2

1

1: 1:

(x,y) (y) (x | y)

( | ) ( | )i i i i

i n i n

p p p

p y y p x y

 



  
   
  
 

ty

x t



Hidden Markov Models

Learning:
 MLE

 Count and divide for complete case 

 EM for incomplete case, forward-backward algorithm to compute marginal 
probabilities

 Discriminative Learning

 Voted Perceptron

Labeling
 Given an observation sequence, choose label sequence s.t.

 Viterbi algorithm (i.e., max-product)

*

y

y argmax (x,y)p



Hidden Markov Models

Models both the   and relationships and the       and     
relationships.

Does not handle long-distance dependency
 Everything must be captured by the current label       .

 Photograph: /ˈfəʊtəˌɡrɑːf/;   Photography: /fəˈtɒɡrəfɪ/

Does not permit rich      and relationships
 We can’t use several to predict .

 For computational tractability, strong independence assumption about the 
observations

1ty x t ty ty

ty x

ty

x t ty



Recall Definition of CRFs



CRFs: Inference

Given CRF parameters          , find the      that maximizes 

p(y|x):

 Can ignore Z(x) because it is not a function of y.

Run the max-product algorithm on the junction-tree of CRF:

(¸;¹) y ¤



CRF Learning



CRF Learning

Computing the model expectations:

 Requires exponentially large number of summations: Is it 
intractable?

 Tractable! 
 Can compute marginal using the sum-product algorithm on the chain!

Expectation of f over the marginal 

prob of neighboring nodes!



CRF Learning

Computing marginal forward-backward message passing

 Represented in matrix form

Mi(yi¡1; yijx) = exp
¡
¸>f(yi; yi¡1;x) + ¹T (yi;x)

¢

Mi(x) = [Mi(yi¡1; yijx)]p ( y j x ) =

Q n + 1

i = 1 M i ( y i ¡ 1 ; y i j x )
³ Q n + 1

i = 1 M i ( x )
´

s t a r t , s t o p

start stop

M 1 M 2 M n M n + 1

: : :



CRF Learning

Computing marginal forward-backward message passing

 Forward pass:

0

0 0

1    
( | x)

0  

if y start
y

otherwise



 


1(x) (x) (x)t t tM  

: : :



CRF Learning

Computing marginal forward-backward message passing

 Forward pass:

T

1 1(x) (x) (x)t t tM  
1

1    
( | x)

0  
n

if y stop
y

otherwise
 


 


: : :



CRF Learning

Computing marginal forward-backward message passing

 Normalization to get marginal probabilities:

 
     

 

     

   

1 1 1

1

1 1 1

| x , | x | x
, | x

x

| x , | x | x

x x

t t t t t t t

t t

t t t t t t t

t t

y M y y y
p y y

Z

y M y y y

 

 

 

  



  





 
   

 

   

   

| x | x
| x

x

| x | x

x x

t t t t

t

t t t t

t t

y y
p y

Z

y y

 

 

 





Single Variable:

Neighboring Variables:



Some Empirical Results

Part-of-Speech tagging



Beyond Linear-Chains

CRFs can be defined over arbitrary undirected graphs, not limited 
to sequences
 Grid-like CRFs

 2D CRFs for Web information extraction (Zhu et al., 2005)

 Tree structured CRFs with/without inner-layer connections
 Multi-scale CRFs for image labeling

 HCRFs for simultaneous record detection and labeling (Zhu et al., 2006)

 Dynamic CRFs (in terms of time)
 Factorial CRFs for joint POS tagging and chunking

 Semi-Markov Random Fields
 Model uncertainty of segment boundary for joint segmentation and labeling

General mechanisms for specifying templates of graphical 
structure
 Relational Markov Networks
 Markov Logic Networks



Summary

Parameter learning for Undirected graphical models

Conditional random fields



References 

Chap. 8 of PRML

Chap. 17 of ESL (undirected graphical models)


