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Two Types of PGMs

# Directed edges give causality relationships (Bayesian
Network or Directed Graphical Models)

P(X;, X5 X3 Xy X5 X X5 Xp)

= P(X)) P(X;) P(X;| X)) P(X,| X;) P(X{| X3)
P(X,| X, X,) P(X,| X,) PX,| X5 X,

# Undirected edges give correlations between variables
(Markov Random Field or Undirected Graphical Models)

P(X;, X5 X; Xy X5 X X5 XG)

= 1/Z exp{E(X,)+E(X,)+E(X,, X )+E(X, X))*E(X, X,)
+ E(Xy X5 X)FE(X» X)+EXp X5 X))}




Bayesian Networks
# Structure: DAG

# Meaning: a node is
conditionally independent
of every other node in the
network outside its Markov

blanket

# Local conditional distributions
(CPD) and the DAG completely

determine the joint distribution e




Markov Random Fields

# Structure: undirected graph

# Meaning: a node is
conditionally independent
of every other node in the
network given its Direct
Neighbors

# Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint distribution




Three Fundamental Questions

# We now have compact representations of probability distributions:
Graphical Models

4 A GM M describes a unique probability distribution P

& Typical tasks:

o Inference

How do I answer questions/queries according to my model and/or based on

given data?

e.g.. P(X,|D)

o Learning
o M =argmax F(D; M)

T MeM

c.

g =]

What model is “right” for my data?
Note: for Bayesian, they seek p(M| D), which is actually an inference problem




Query 1: Likelihood

# Most of the queries one may ask involve evidence
o Evidence e is an assignment of values to a set E variables

o Without loss of generality

E={X,,..X}

i

# Simplest query: compute probability of evidence

P(e) = 2 ---EP(XI,...,xk,e)




Query 2: Conditional Probability

# Often we are interested in the conditional probability distribution
of a variable given the evidence

P(Xe) __ P(Xe)

PXe)= Pl) Y P(X=xe)

o This is the a posterior belief in X, given evidence e

# We usually query a subset of Y of all domain variables X={Y,Z}
and “don’t care” about the remaining Z:

P(Y\e)=2P(Y,Z=z\e)

a The resulting p(Y | e) is called a marginal prob.




Applications of a posterior belief

& Prediction: what is the probability of an outcome given the starting
condition 0

o The query node is a descendent of the evidence

# Diagnosis: what is the prob of disease/fault given symptoms
9

a The query node is an ancestor of the evidence

& Learning under partial observations

a Fill in the unobserved values under an “EM” setting

#& The directionality of info flow between variables is not restricted by the
directionality of edges in a GM

o Posterior inference can combine evidence from all parts of the network




Example: Deep Belief Network

# Deep beliet network (DBN) [Hinton et al., 2006]

o Generative model or RBM with multiple hidden layers
o Successful applications: OCR, collaborative filtering,

multimodal learning

QOO00O0O
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visible nodes (data)




Query 3: Most Probable Assignment

# In this query we want to find the most probably joint

assignment (MPA) for some variables of interest

# Such reasoning is usually performed under some given

evidence e and ignoring other variables Z:
MPA(Y |e) = argmax , P(y|e)=argmax g EP(y,z e)

o This is the maximum a posterior configuration of y.




Applications of MPA

# Classification:

o Find most likely label, given the evidence (input features)

& Explanation:

o What is the most likely scenario, given the evidence

& Cautionary note:

a The MPA of a variable depends on its “context” — the set of
variables been jointly queried

yiyz Plyiyz)

o Example: 0 0 035
MPA of Y, ?

MPA of (Y, Y, )? g —
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Complexity of Inference

# Theorem:
o Computing P(X=x | e) in a GM is NP-hard

# Hardness does not mean we cannot solve inference

o It implies that we cannot find a general procedure that works

efficiently for arbitrary GMs

a For particular families of GMs, we can have provably efficient

procedures.




Approaches to Inference

# Exact inference algorithms

o The elimination algorithm
0 Message-passing algorithm (sum-product, belief propagation)

a The junction tree algorithms

& Approximate inference algorithms

o Markov chain Monte Carlo methods

o Variational methods




Marginalization and Elimination

& A signal transduction pathway

(4 >~ >~ O>—C O>—CED

o What's the likelihood that protein E is active?

@ Query: P(e)
P(e) = Z E 2 2 P(a,b,c,de)

o A naive summation needs to enumerate over an exponential H
of terms

o By chain decomposition, we get

P(e) = 2 2 2 E P(a)P(b|a)P(c|b)P(d|c)P(e|d)




Elimination on Chains

CA >~ >~ O>—C Oo—CED

& Rearranging terms ...

P(e) = }/‘ 2 2 2 P(a)P(b|a)P(c|b)P(d | c)P(e|d)

= Z 2 2 P(c|b)P(d|c)P(e| d{z P(a)P(b|a)

4 Now, we can perform the innermost summation /

P(e) = Z 2 2 P(c|b)P(d |c)P(e|d)p(b)

o This summation “eliminates” one variable from our summation
argument at a “local cost”




Elimination on Chains

CspO—CE O~ o—Co o—~CED

# Rearranging and then summing again, we get

P(e) = Z E Z P(c|b)P(d | c)P(e|d)p(b)
_ Z ¥ P(d | e)P(e d)Z P(c|b)p(b)
- Z E P(d|c)P(e|d)p(c)




Elimination on Chains

Cr O~ O~ i~ o—CED

—

# Eliminate nodes one by one all the way to the end, we get

P(e) = Ep(e d)p(d)

# Complexity:
o Each step costs O(|Val(X;)| x |[Val(X;41)|) operations: O(nk?)

o Compare to naive evaluation that sums over joint values of n-1

variables O(k™)




Hidden Markov Model

# Now, you can do the marginal inference for HMM:

px,y) =px;...... Xy Vs oevee , V1)
=p() p(xy [ y) pOs [ YD) POy | 1) - PO | Y1) PO | 1)

o Answer the query:

p(y1|a:1, ‘e 7$T)




Undirected Chains
CA > > O—Co >—CED

& Rearranging terms ...
Pe) = 2 2 2 E %w,a)qﬁ(c,bw(d,cw(eﬁd)

-7 33 Soebpd.cped 3 pba




The Sum-Product Operation

# In general, we can view the task at hand as that of computing

the value of an expression of the form:

2117

o where  is a set of factors

# We call this task the sum-product inference task




Inference on General GM via VE

# General idea of Variable Elimination (VE):
o Write query in the form

P(Xae)= E*EEHP(X’ |par’)

This suggests an “elimination order” of latent variables

0 Iteratively:
Move all irrelevant terms outside of innermost sum
Perform innermost sum, getting a new term

Insert the new term into the product




A more complex network
# A food web

# What is the prob that hawks are leaving given that the grass
condition is poor?




Example: VE

o Query: P(A |h)

e Need to eliminate: B,C,D,E,F,G,H o o
e |[nitial factors: 0 0
P(a)P(b)P(c|b)P(d|a)P(e|c.d)P(f |a)P(g|e)P(h]e, [) G o
e Choose an elimination order: H6 F.ED CRB
””” OB
o Step 1:

e Conditioning (fix the evidence node (i.e., A) on its observed value (i.e., h))

m,(e, f)=plh=hle,f) @ @

e This step is isomorphic to a marginalization step: (S O

m, (e, )= E p(hle, fo(h= h) &

&




Example: VE

Query: P(A |h)
e Need to eliminate: B,C,D,E F &6

Initial factors:

P(a)P(D)P(c|b)P(d |a)P(e|c.d)P(f |a)P(g|e)P(h]e, [)
= P(a)P(D)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e. [)

Step 2: Eliminate &
compute
my(e)="y p(gle)=1
g

= P(a)P(D)P(c|b)P(d |a)P(e|c.d)P(f |aym, (e)m, (e, [)
= P(a)P(b)P(c|b)P(d | a)P(e|c,d)P(f | a)m, (e, f)

Keep eliminating F,E,D,C,B in order




Example: VE
e Query:P(A |h) (3

e Need to eliminate: B

e [nitial factors: o

P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) CE)

= P(a)P(B)P(c| d)P(d | a)P(e| e, d)P(f | a)P(g | e)m, (e, f)

= P(a)P(B)P(c| d)P(d | a)P(e| e, d)P(f | aym, e, [) (&)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m,(a,e)

= P(a)P(b)P(c|d)P(d |a)ym,(a,c,d)

= P(a)P(b)P(c|d)m,(a,c)

= P(a)P(b)m_(a,b)

= P(a)ym,(a)

e Final Step: Wrap-up p(a,ig) = p(a)my(a), p();) - zp(a.)mb(a)

R o pla)m,(a)
P(alh) Ep(a)???g;(a)




Understanding VE

& A graph elimination algorithrn
® @ ® @ ® @ ® @ ® @ ® @ @
/ y
L W CO—) (CF—3 (<
-4 -4
S & S B oy -~

# Intermediate terms correspond to the cliques resulted from

@

elimination




Graph elimination and marginalization

# Induced dependency during marginalization

a0 summation < elimination

o intermediate term < elimination Clique

P(a)P(b)P(c|d)P(d |a)P(e|c.d)P(f|a)P(g|e)P(h|e. )
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e, [)

(
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m, (e, [) P* D ,_ .
= P(a)P(b)P(c|d)P(d|a)P(e]c, d)mf(a.e) @
(

= P(a)P(b)P(c|d)P(d |a)m, (a.c.d) (4)

= P(a)P(b)P(c|d)m,(a.c) oGS,

= P(a)P(b)m_(a,b) 4
= P(a)m,(a)

i




A clique tree

(e|c.d)ym,(e)ym,(a,e)




Complexity

# The overall complexity is determined by the number of largest
elimination clique

o What is the largest elimination clique? —a pure graph theory question

0 “good” elimination orderings lead to small cliques and hence reduce
complexity

What if we eliminate “e” first in the above graph?

o Find the best elimination ordering of a graph — NP-hard
=» inference is NP-hard!

o But there often exist “obvious” optimal or near-opt elimination
ordering




From Elimination to Message Passing

# VE answers only one query (e.g., on one node), do we need

todo a complete elimination for every such query?

# Elimination <& message passing on a clique tree

O @ O @ O @ ® @ O @ D O . oo o0 @
GG
@ & S B &

Messages can

be reused!
m,(a,c,d)

_ 2 plele,d)ym, (eym,(a,e)

(&




-

From Elimination to Message Passing

# VE answers only one query (e.g., on one node), do we need

todo a complete elimination for every such query?

# Elimination <& message passing on a clique tree

o Another query ...

e NMessages m.and m, are reused, others need to be recomputed

/




The Message Passing Protocol

# A node can send a message to its neighbors when (and only

when) it has received messages from all its other neighbors

# Computing node marginal:

o Naive approach: consider each node as the root and execute

message passing

Computing P(X,)




The Message Passing Protocol

# A node can send a message to its neighbors when (and only

when) it has received messages from all its other neighbors

# Computing node marginal:

o Naive approach: consider each node as the root and execute

message passing

Computing P(X,)




The Message Passing Protocol

# A node can send a message to its neighbors when (and only

when) it has received messages from all its other neighbors

# Computing node marginal:

o Naive approach: consider each node as the root and execute

message passing

Computing P(X,)




The message passing protocol

# A two-pass algorithrn




Belief Propagation:
parallel synchronous implementation

mji(x;) = Z Y(x;)Y(x;, x;) H myi(x;)

T keN(j)\i

# For a node of degree d, whenever messages have arrived on any subset
of d-1 nodes, compute the message for the remaining edge and send!

o A pair of messages have been computed for each edge, one per direction

o All incoming messages are eventually computed for each node




Correctness of BP for tree

# Theorem: the message passing algorithm guarantees

obtaining all marginals in the tree




Another view of M-P: Factor Graph
& Example 1:

0 (k] ()

P(X1) P(X3) P(X3X4,X5) P(Xs|X4,X5)  P(X4]X5,X5)

g4 4 1 !

£06) FoX) FolXa X1 Xg) To(Xs. Xy Xa) To(X Xp,Xo)




Factor Graphs

e Example 2

%° X3

Y(Xq,X0,X3) = F3(X4,X2)Fp (X0, X3)fo(X3,X1)

e Example 3

X2 X3

P(Xq,X5,X3) = T5(X1,X5,X3)

p

?




Message Passing on a Factor Tree

# Two kinds of messages

From variables to factors

From factors to variables




Message Passing on a Factor Tree
@ Message passing pl‘OtOCOl:

o A node can send a message to a neighboring node only when it

has received messages from all its other neighbors

& Marginal probability of nodes

@ | N
—> <=

S @~

P(X;) = | s eng Wsi(X)

% vig(Xi)ugi(%)




BP on a Factor Tree
# Two-pass algorithm:




Why factor graph?

& Turn tree-like graphs to factor trees
3 X

J

o)




-

Why factor graph?

# Turn tree-like graphs to factor trees

x) e
>
\@/

g

X

Trees are a data-structure that guarantees correctness of M-P!

/




Max-product Algorithm:
computing MAP assignment

o maxp(x) = %?X(w(wf')mif(xf))
ﬁ mig(xy)

mji(x;) (%b(mj)lb(fﬂia%) H mkj(%))
kEN(j)—i
\ % my;(;)

M 553




~ Max-product Algorithm: N
computing MAP configurations using a final
bookkeeping backward pass

o vy = argmax(y(zy)mis(zs))
. :r:" = argrrzlﬁx(LD(H??:)TP(if?al‘i)mjé(ﬂ?v:))

o vy = argmax (b(a, (], @) (o)) (@)

J

v; = argmax (¢(z)(z,2]))

T

vp = argmax (P(2p)¥(zk, 7))

- " /




Inference on general GM
# Now, what if the GM is not a tree-like graph?

# Can we still directly run message-passing protocol along its edges?

# For non-trees, we do not have the guarantee that message-passing
will be consistent

# Then what?

o Construct a graph data-structure from P that has a tree structure, and
run message-passing on it!

0 Junction tree algorithm




Junction Tree

(b)
S o
) )
G T

A cluster graph T is a junction tree for (G if it has these three properties:
1. singly connected: there is exactly one path between each pair of clusters.
2. covering: for each clique A of GG there is some cluster C' such that A C C.

3. running intersection: for each pair of clusters B and C that contain 1,

each cluster on the unique path between B and C' also contains 1.

- /




Building Junction Tree

e To build a junction tree:

1. Choose an ordering of the nodes and use Node Elimination to obtain a

set of elimination cliques.
2. Build a complete cluster graph over the maximal elimination cliques.

3. Weight each edge {B,C'} by |B N C| and compute a maximum-weight

spanning tree.

This spanning tree is a junction tree for G (see Cowell et al., 1999).

e Different junction trees are obtained with different elimination orders and

different maximum-weight spanning trees.

e Finding the junction tree with the smallest clusters is an NP-hard problem.




An Example

1. Compute the elimination cliques (the order here is f,d, e, ¢, b, a).

L A4

2. Form the complete cluster graph over the maximal elimination cliques and

find a maximum-weight spanning tree.




sSummary

& Surn—product algorithm computes singleton rnarginal
probabilities on
o Irees

0 Tree-like graphs

# Maximum a posterior configurations can be computed by

replacing sum with max in the surn—product algorithrn

# Junction tree data-structure for exact inference on general

graphs




Learning Graphical Models
The goal:

Given set of independent samples (assignments of
random variables), find the best (the most likely?)
Bayesian Network (both DAG and CPDs)

D r G T
> @D > A
D) a»
(B,E,A,C,R)=(T,F,F,T,F) < E B| PIAIEB)
(B,E,A,C,R)=(T,F,T.T,F) e blos o1
........ e bloz o8
— £ blos o1
(B,E,A,C,R)=(F, T, T.T,F) . z =l 001 099

Structural
learning

Parameter
learning




Learning Graphical Models

e Scenarios:

e completely observed GMs
directed
undirected

e partially or unobserved GMs
directed
undirected (an open research topic)
e Estimation principles:
e Maximal likelihood estimation (MLE)
e Bayesian estimation
e Maximal conditional likelihood
e Maximal "Margin”
e Maximum entropy

e \We use learning as a name for the process of estimating the parameters,
and in some cases, the topology of the network, from data.

/




e
ML Structure Learning for Fully Observed

Networks

# Two optimal approaches:

e “Optimal” here means the employed algorithms guaranteé to
return a structure that maximizes the objectives (e.g., LogLik)

e Many heuristics used to be popular, but they provide no guarantee on attaining
optimality, interpretability, or even do not have an explicit objective

e E.g.:structured EM, Module network, greedy structural search, etc.

e We will learn two classes of algorithms for guaranteed
structure learning, which are likely to be the only known
methods enjoying such guarantee, but they only apply to
certain families of graphs:

e Trees: The Chow-Liu algorithm
e Pairwise MRFs: covariance selection, neighborhood-selection (later)




ML Parameter Est. for

fully observed Bayesian Networks of

given structure




Parameter Learning

Assume G Is known and fixed,
e from expert design
e from an intermediate outcome of iterative structure learning

Goal: estimate from a dataset of N independent, identically
distributed (iid) training cases D = {x,, . . ., x)}.

_In general, each training case x =(x, ;, . . ., x, /)
Is a vector of M values, one per node,

e the model can be completely observable, i.e., every element in x, is known (no
missing values, no hidden variables),

e or, partially observable, i.e., 3i, s.t. x,,; is not observed.

In this lecture we consider learning parameters for a BN
with given structure and is completely observable

Z(G‘D) - log p(D ‘ 9) = ngH H p("\"n!}' X?:,,-‘.’:"i; ’91') ] - Z(Z log p(‘rn‘j XH.JT; ’9:') }

i




Recall Density Estimation

# Can be viewed as a single-node graphical model

o) &) G -+ (o)

# Instances of exponential family dist.
& Building block of general GM
# MLE and Bayesian estimate @

N

# Recall the example of Bernoulli distribution

- [1-p forx =0
POO=1, " fexo1 = PXO=pra-p”

=

o MLE gives count frequency

&

a Bayes introduces pseudo—counts




Recall Conditional Density Estimation

# Can be viewed as two-node graphical models

# Instances of GLIM
& Building blocks of general GM
# MLE and Bayesian estimate

# Recall example of logistic regression
o We talked about the MLE

o Bayesian estimate is a bit involved (due to non-conjugacy). We’ll

come to it in GPs




MLE for general BNS

# If we assume the parameters for each CPD are globally
independent, and all nodes are fully observed, then the log-
likelihood decomposes into a sum of local terms, one per node:

/ \ /

H p(‘}“n.f | Xsr._;r;.- ’ 6]3' )J - Z [ Z ng p(‘)“n.f | Xi:._frr- ’ Hz)

1

¢£(0:D)=log p(D|6) =log[]

M

\

W X;=1,X:=0
0 Xz=0,X%5=1




Decomposable likelihood of a BN

4 Consider the distribution defined by the directed acyclic GM:
p(x[0) = p(x; [ 0)p(x, | x;.0,) p(xy | x,.605) p(x, | x,.%5.6,)

# This is exactly like learning four separate small BNs, each of which

consists of a node and its parents

€3 £
—
X % o o

X %




MLE for BNs with tabular CPDs

# Assume each CPD is represented as a table (multinomial)

where X Xs
] | [}

6’;..: — p(X — j }ff?_ — ]{) Xy "

01
X2

o Note that in case of multiple parents, X, will have a composite
state, and the CPD will be a high-dimensional table

o The sufficient statistics are counts of family configurations

def -
n., = Z x/ xt
L 7 i .’:..-lfi.'

# The log—likelihood is

£(6:D) =log [ T 6 = 2. ny log 6, =) O =

i.j.k i.j.k ‘ Z ”;5;1—




Bayesian Estimate for BNs

Earthquake Burglary

M
Factorization: p(X=x)=]] p(x,|x,)
i=1

Local Distributions
defined by, e.g., multinomial parameters:

p(x|x.)=86.

. f_|Xf;?.
# How to define a parameter prior? p(0|G)?
# Assumptions (Geiger & Hecherman, 1997)

o Global parameter independence N

o Local parameter independence




-

Parameter Sharing

# Consider a time-invariant (stationary) 15-order Markov model

(7} l A

def
a Initial state probability vector 7, = p(X{ =1)

o State transition probability matrix aet p(X7 =1 X", =1)
Ay = =LAy =

# The joint distribution: .
p(‘YI:T | 6') — p(‘xl | ”T)H p(“Xr | ‘/Yr—l)
=2 =2

& Log—likelihood
£(0: D)_ZIUEP(‘-m |f’T)+ZZlD p(x,, |x,,4.4)

n t=2
# Again, we optimize each parameter separately

o We have seen how to estimate .What about A?




Learning a Markov chain transition matrix

# A is a stochastic matrix Z { =1
.4 'U -
# Each row of 4 is multinomial distribution ’

# So, MLE of is the fraction of transitions from i to j:

s . Z ZT vy
4ML - #(I — ;) o - t—2 'n.t=1"n.t

- ij ﬁl . T 4',:
i (I — .) ZPFZIZZ J’H.f—l

4 Application:
o If the states represent words, this is called a bigram language

model

# Data sparsity problem:

a If didn’t occur in data, we have , then any future
sequence with word pair will have zero probability

o A standard hack: back(ﬁf Smoothing




Bayesian language model

& Interpreted as a Bayesian language model

& If assign a Dirichlet prior to each row of the transition matrix

# We have

def #(i—> )+ p.;

A

4 Bayes -] . 9 ' 1 ML . T
A% = p(jli.D.p;) =~ = 4B +(1=4)4;, where 2, =

H(i—> )+ |f] Bl — )




Example: HMMs

& Supervised learning: estimation when the “right answer’ is

known

= Example:

the casino player allows us to observe him one evening, as he changes dice

and produces 10,000 rolls

& Unsupervised learning: estimation when the “right answer’ is
unknown

o Example:

10,000 rolls of the casino player, but we don’t see when he changes dice

# Question: update the parameters of the model to maximize

likelihood




Definition of HMM

e Observation space '
Alphabeticset: C={c,.c,,---.¢, ) 0 @ @ @
() () () - G

Euclidean space: R¢
e Index set of hidden states
[={2-.M)}

e Transition probabilities between any two states
p(y! =11y, =1=qa;.
or p(y, |y, =1~ Multinumial(ﬂu._a,-_l,...7af_M),Wf el
e Start probabilities
p(y,)~ Multinﬂm1'::11(;?1__frz,...7;?1'M )
e Emission probabilities associated with each state
p(x, |y =1)~ Multin(}mial(t),-ph-_l,...jbf_K ),\:ff el.
or in general:
p(x. |y, =1)~f(|6,)Viel




Supervised MLE

e Given x = x,...xy for which the true state path y = y,...yy is known,

e Define:
Ajj = # times state transition i—j occurs iny
Bi, = # times state i in y emits kin x

e We can show that the maximum likelihood parameters @ are:

T . .
G‘ML - #(I —> ‘]) o Z” ZF:Z J;:?‘f—l.};}{,{ o ‘4'?}

R D I WIS AP I

L N Lk
o _FEF) 2.2 Vnkn. B,

CoHioe FT L B

e What if x is continuous? We can treat {(x y )it=1:T.n=1: N} as NxT

nirs

observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Be aware of the zero-count problem!




Summary: Learning BNs

# For fully observed BN, the log—likelihood function decomposes
into a sum of local terms, one per node; thus learning is also
factored
a Structure learning

Chow-Liu;
Neighborhood selection (later)

o Learning single—node GM — density estimation: exponential family
distribution

o Learning two-node BN: GLIM

o Learning BN with more nodes

Local operations




ML Parameter Est. for
fully observed Markov Random Fields of

given structure




MLE for Undirected Graphical Models

# What we have known

a For directed GMs, the log-likelihood decomposes into a sum of
terms, one per family (node plus parents)

4 However, for undirected GMs, the log-likelihood does NOT

decompose!

1

P(xy,....x ) =—| |v.(x, 7 = ) (x,
Gpee) = [ e 2= 3 [Inas

# In general, we will need to do inference (i.e., marginalization) to
learn parameters for undirected GMs, even in the fully observed
case




Log-likelihood for UGMs with tabular

cligue potentials

# Sufficient statistics: for a UGM (V, E), the number of
times that a configuration is observed in a dataset D={x;,...,x,}

def

m(x zé X,X,) (totalcount), and m(x,)= zm(x) (clique count)

i

# In terms of counts, the log-likelihood is

}?(Dlé?) = HH p(X| H)aix.xn}

logp(D|(7‘) = E E 0(x,x,)logp(x|0) = 2 E o0(x,x,)logp(x|8)

4 —Em(‘ﬁ)log( Hg/; X
EEW x_)logy (x,.)- \logZ I A nasty term!

/




Derivative of Log-likelihood
# Log-likelihood ¢ = E E m(x_)logy . (x.)-NlogZL

. 0y m(xﬂy
# First term: d (X.) Y. (X,)

# Second term:  dlogZ 1 d L
oy (x,) Z Wm(ZD*"N‘” )

1 0
I = — (5 X .X W X
Set the value of variables to X Z Z (X, C)aﬁé’c(xc)(ldl Py d))

=Z§(XC:KC)'€/J’C(;‘EC)Z];[wd(xd)

1 N 4.5 )
Cp.(x) Zé(xc, X IP(X) = Y. (x,)




Conditions on Cligue Marginals
# Derivative of log-likelihood

e  m(x,) N p(x,)

Iy (x,) y.(x)  y.(x,)

4 Hence, for the ML parameters, we know that

. def
Die(X,) = ’”(N"” Z 5(x,)

# In other words, at the ML setting of the parameters, for each
clique, the model marginal must be equal to the observed
marginal (empirical counts)

# Note: this condition doesn’t tell us how to get the ML parameters!




MLE for decomposable UGMs

# Decomposable models

a G is decomposable & Gis triangulated < G has a junction

tree

Y(x,)
| .7 (x)

o Potential based representation:  p(x) =

# Consider a chain X, - X, - X,
a The cliques are (X}, X, ) (X5,X3) ; the separator is X,

o The empirical marginal must equal the model marginal
@ Let’s guess that
~ _ px.xp) pxp.x3)
pﬂ’flf (XI > /Y_Z "'__/\/3 ) _ ﬁ_[_.x“_z )
o We can verify that such a guess satisfies the condition

Puie (Xp.X3) = P (X, X3)
a Similar for (x;. x,)




MLE for decomposable UGMs (cont.)

p(x1.x2) p(x5.X3)
p(x)

# To compute clique potentials, ]ust equate them to the

& Let’s guess that  f,, - (X, Xz, X3)

empirical marginal (or conditionals). Then Z=1:

p(_Xz Xa)
p(X5)

’)/:'f?ig(xl X,) = P(*’ﬁ X;) G”';aﬁg

(X5, X;3) = ) X3‘Xz

# One more example:

; 0 (Xy, X o X3 ) P (X Xy X
Boe (%5, 5, %) = P20 X5 )P (X, X5, X0)

(x)—x Ko Foaxo
‘ 1115(111)_}9(\11) -~1‘11)

pee
~ MLE

Yaza (X2.X3,X4) = P(X5. X3, X,)

/




Iterative Proportional Fitting (IPF)

# From the derivative of log—likelihood
o ms) g PE)
iy (X)) y.(x,) Y (X,.)

# We derive another relationship:

p) _ px)
v.(x) P(x,)

o Note that ¥ appears implicitly in the model marginal

# This is therefore a fixed—point equation for .

# The idea of IPF is to hold ¥¢ fixed on the R.H.S and solve it
on the L.H.S. We cycle through all cliques and iterate:

px.)
p{,ﬂ(xc)

?‘+1 (X ) I/J”h( C)




Feature-based Cligue Potentials

# We use CRFs as an example to explain!




Classical Supervised Learning

Hypotheses H Labeled data

05
04 \& .
x® =[xl('), X3, xé')}

. ] find h e H
earning | . v~ h(x(®) y(” € {C11C2""’CM }

New data

Il
Prediction C:

Supervised Setting (figure from Taskar'05)




Sequential Labeling

& Example: POS ( part—of—speech) tagging

a ‘Do you want fries with that?”

o <verb pron verb noun prep pron=>

o Xj — sequence of words

a Yi —sequence of part of speech




-

Sequential Labeling

# Example: Web Information Extraction

<dI><dt><b>Srinivasan Seshan</b> (Carnegie Mellon University)
<dt><a href=...><i>Making Virtual Worlds
Real</i></a><dt>Tuesday, June 4, 2002<dd>2:00 PM , 322
Sieg<dd>Research Seminar

** * name name * * affiliation affiliation affiliation * * * * title title
title title * * * date date date date * time time * location location *

event—type event—type

Xi — sequence of tokens

Yi — sequence of field labels {name, ...}




Two kinds of Relationships

# Relationships between the X, and Y,

o Example: “Friday” is usually a "date”

4 How about the relationships among the Y;

o Example: “hame’ is usually followed by “affiliation”

@ Classical models fai] to consider the second kind (yf re]ationshjps.




Sequential Supervised Learning (SSL)

Hypotheses H Labeled data

94 X2 yO = (v, ¥,y )

Lea n'ng find heH
sit. v ~ p(x(® - : : T
y (x\*) X(ju) :[XEI) ) ---,X%)

1182
New data

~ yWelc, ¢, 0}
Prediction C: j 107207 UM

Supervised Setting (figure from Taskar'05)




Graphical Models for SSL

# Hidden Markov Models

# Maximum Entropy Markov Models

# Conditional Random Fields

# Structural SVMs / Max-margin Markov Networks

# Maximum Entropy Discrimination Markov Networks

@® ...




Hidden Markov Models

@ Detine a joint probability of paired observation and label
sequences

PCXY) = py) p(x|y)
H p(y; |y, JJ(H p(x | y;) j

_1n i=1Ln

# Y, form a Markov chain

& X; are generated independently (as in nalve Bayes or
Gaussian classifiers).




Hidden Markov Models

*» Learning:
o MLE

Count and divide for complete case

EM for incomplete case, forward-backward algorithm to compute marginal
probabilities

o Discriminative Learning

Voted Perceptron

& Labeling

o Given an observation sequence, choose label sequence s.t.

y" =argmax p(x,y)

y
a Viterbi algorithm (i.e., max-product)




Hidden Markov Models

# Models both the X, and Y, relationships and the Y; and Y

relationships.

# Does not handle long—distance dependency

o Everything must be captured by the current label Yi .
o Photograph: / 'foutd gra:f/; Photography: /{2 tpgrofi/

# Does not permit rich Y; and X relationships

o We can’t use several X, topredict Y, .

o For computational tractability, strong independence assumption about the
observations




Recall Definition of CRFs

If the graph G = (V, E) of Y is a tree, the conditional distribution over
the label sequence Y =y, given X =x, by the Hammersley Clifford
theorem of random fields is:

Pe(yIx)ecexp| X A filey],.x)+ D 1,8,(v.y],.X)
ecEk vel k
— X is a data sequence ()—()
— ylis alabel sequence k. g
— Vvis a vertex from vertex set V = set of label random variables X Xa

— eis an edge from edge set E over V

- f,and g, are given and fixed. g, is a Boolean vertex feature; f, is a Boolean edge
feature

— ks the number of features

- 0= Ay Ay e, ), A, and i, are parameters to be estimated
— Y| is the set of components of y defined by edge e

— |, is the set of components of y defined by vertex v




CRFs: Inference

# Given CRF parameters (\, p), find the  that maximizes
p(y|x):

T

y* = argmaxexp(} (\'f(yi,yi1,%) + ' g(y:, %))
1=1

o Can ignore Z(x) because it is not a function of y.

# Run the max—product algorithm on the junction-tree of CRF:




CRF Learning

o Given {(Xg Yg)lq=1", find 1%, p* such that

Ak, px = a,rgma,xL()\ W) = argmaxHP VlXd, A, i)
Ao d=1
N 1
= argmax ex N (yai, yaio1,xq) + pt iy X
g ma: L 7603000 p(;( (Yd,i Ya,i—1,%a) + 1 8(Yd,i»Xa)))

— argma.xz Z )\Tf yd iy Yd,i— 1;Xd)+»“ g(yd zaxd)) lOgZ(Xd:)\aﬂ/))
sk d=1 1=1

e Computing the gradient w.r.t A:

V)\L A ﬂ Z(Zf Yd,is Yd,i— laxd) Z( (Y|Xd)zf(yd,i: ydgi—laxd)))
1=1

d=1 1=1

/




CRF Learning

N n n

VaLp) = > O fWaisyai-1,%xa) > _(Pylxa) > £(yi,yi-1,%a)))

d=1 i=1 y i=1

# Computing the model expectations:

o Requires exponentially large number of summations: Is it
intractable?

n

Z(P(YIXd) Z f(%? Yi—1, Xd,)) Z(Z f(y,,;,, Yi—1, Xd,)P(Y|Xd))

y 1=1 =1 ¥y

— Z Z [f(yiayi—laXd)P(yz’:yi—1|xd)]

1=1 Yi,Yi—1

Expectation of f over the marginal

o Tractable! prob of neighboring nodes!

Can compute marginal using the sum—product algorithm on the chain!

/




CRF Learning

4 Computing marginal forward-backward message passing

0 Represented in matrix form

- - M;(x) = [M;(yi—1, yi|x)]

M;(yi—1,Y:i|x) = exp ()‘Tf(yia Yyim1,X) + 1’ (yi, X))

start stop




CRF Learning

4 Computing marginal forward-backward message passing

o Forward pass:

1 i1f y, =start
& o,() = &, (M, (%)

0 otherwise

ao(yo |X) :{




CRF Learning

4 Computing marginal forward-backward message passing

o Forward pass:

1 if y=stop
0 otherwise

ﬂt(X)T — Mt+1(X)ﬁt+1(X)

ﬂn+1(y | X) — {




CRF Learning

4 Computing marginal forward-backward message passing

o Normalization to get marginal probabilities:

Single Variable:

t WY I X) P (Y [ X
p(y,1x) == y |z)(f)(y %)
at(yt |X)ﬂt(yt |X)
OCt(X),Bt(X)
Neighboring Variables:
M Y,  (y,
p(yt—pyt |X):at—1(yt—llx) t(yt_l y |X)IB (y |X)

Z(x)
_ Olt—l(yt—l |X)|\/|t (yt_l, Y, |X)ﬂt (yt |X)
22 (X)/Bt (X)




Some Empirical Results
# Part-of-Speech tagging

model | error  oov error
HMM | 5.69%  45.99%
MEMM | 6.37%  54.61%
CRF | 5.55%  48.05%

MEMMT™ | 481%  26.99%
CRF* | 427%  23.76%

T Using spelling features

e Using same set of features: HMM >=< CRF > MEMM
e Using additional overlapping features: CRF* > MEMM* >> HMM




Beyond Linear-Chains

# CRFs can be defined over arbitrary undirected graphs, not limited
to sequences
o Grid-like CRFs
2D CRFs for Web information extraction (Zhu et al., 2005)
o Tree structured CRFs with/without inner-layer connections

Multi-scale CRFs for image labeling
HCREFs for simultaneous record detection and labeling (Zhu et al., 2006)

o Dynamic CRFs (in terms of time)
Factorial CRFs for joint POS tagging and chunking

o Semi-Markov Random Fields

Model uncertainty of segment boundary for joint segmentation and labeling

# General mechanisms for specifying templates of graphical
structure
o Relational Markov Networks
a Markov Logic Networks




sSummary

# Parameter learning for Undirected graphical models

# Conditional random fields
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