[70240413 Statistical Machine Learning, Spring, 2015]

Supervised Learning
Classification

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://bigml.cs.tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems

Tsinghua University

March 24, 2015

Supervised Learning

4 'Task: learn a predictive function h: X =)
Feature space X Label space)
“Sports”
|:> “News”
: “Politics”
Words in documents
0J INDU AYERAGE (DOW JOMES & CO
as of 22-Jan-2010
11000
10500 =\ ~1"\
L . A /,\\ /ﬂr’ A])
A/ VNV \‘ Share price
10000 f ! . l:: > ¢« »
/. Market information $20.50
O up to time t —

Copyright 2010 % _ 10.com/

@ “Experience” or training data:

{< Xds Yd >}c?:17 Xd € Xayd c)y

Supervised Learning — classification

Feature space X

Label space y

“Sports”

I:> “NCWS”

. ’ “Politics”
Words in documents

((Tool))

|:> “Animal”

~ Stimulus response

Discrete Labels

Supervised Learning — regression

Feature space X

0J INDU AVERAGE (DOW JOMWES & CO

as of 22-Jan-2010

Label space y

11000

10500 -

10000 F

9500

Copyright 2010 Y

\’\/AHL,W

11 am

39°F
Precif

/

12 pm

41°F

Precip
109%

(session, location, time ...

12 pm

,._,—"/\"'/\'/
o~ ” 4
/f\h/°\\j“uﬁ\//'\\J/‘ Vv \\\

Market information

up to time t

1 pm 2 pm 3 pm 4 pm
iy ey
— —
44°F 44°F 44°F 4°F
Precip Precip Precip Precip
10% 1096 109%% 109%

1pm

=

—

_ o.com

—

Continuous Labels

Share price
“$ 20.50”

Ternp erature
« 4 20 F”

How to learn a classifier?

(@)

n O

A % © o Cy
Cq QA ®’ & o

A o o

A&\A

A--
JAN

K-NN: a Non—parametric approach

Properties of K-NN
¥ Simple
® Strong consistency results:

o With infinite data, the error rate of K-NN is at most twice the

optimal error rate (i.e., Bayes error rate)

Note: Bayes error rate — the minimum achievable error rate

given the distribution of the data

Issues of K-NN

& Computationally intensive for large training sets

o Clever nearest neighbor search helps

Selection of K

Distance metric matters a lot

o Aware of the metric learning field

K-NN for regression

O
- O
e RN
// G\
/ \
1 O \
’ 1
S AR
O O ,’
O \\ //
~ -

. 1
v Z dist(x, Xz)yi

A weighted average is an estimate; where the weight is the inverse distance

A Parametric Method

Binary classification can be viewed as the task of separating

classes in feature space:

f(x) = sign(wTX + b)

Linear Separators

Which of the linear separators is optimal?

Classification Margin

Distance from example X, to the separator is =
Examples closest to the hyperplane are support vectors.

Margin p of the separator is the distance between supporting
hyperplanes.

confidence := y;(w'x; + b)

/

Max-margin Classification

Maximizing the margin is good according to intuition and PAC theory.

Implies that only support vectors matter; other training examples are

i gnorable :

Linear SVM
Let training set {(xs,) }is1, xs € RY gy € {—1,+1} be
separated by a hyperplane with margin p.Then for each

training example (x;, y,):

wix. +b<-p/2 ify=-1
wix. +b2p/2 ify =1

& g(wix, b2 p/2
For support vector x_ the above inequality is an equality.
After rescaling w and b by p/2, we obtain that distance

between each x and the hyperplane is

Iwll - liwl

Linear SVM

Then the margin can be expressed through (rescaled) w and
b as:

Classification rule:
classify as: +1 if WTX + b 2 1

universe if |WTX—|—b| <1

explodes

1 if wx+b<—1

/

Observations

We can assume b=0

Classification rule:
classify as: +1 if WTX + b 2 1

1 i wix+b< —1

universe if |WTX—|—b| <1

explodes

This is the same as:

yw' x; >1, Vi=1,...,N

The Primal Hard SVM

Given training dataset: D = {(x;,y;)}Y,
Assume that D is linearly separable
A 1

W = argmin—|w]|
w2

s.t.: yw x;>1, Vi=1,...,N

Prediction:

f(x; W) = sign(w' x)

This is a QP problem (d-dimensional)

(Quadratic cost tunction, linear constraints)

Constrained Optimization

min, x2
s.t. >0b
s.t. z2>2 -1 st. z>1
/ /
."’I/r‘J I /r{
/ /

LLagrange Multiplier

min, =2
s.t. & >0b

Move the constraint to objective function — Lagrangian

L(xz,a) = 2* —alz —b), st.:a>0

Solve:

minmax L(x,«)
£ o

s.t.: a >0

Constraint is active when @ > ()

Lagrange Multiplier — dual variables

Solving:
minmax L(z,a) = 2 — oz — b)
s.t.: a >0
® We get:
oL _ 0= 2" = =
or 2
oL
5 0 = o = max(2b,0)

When v > (), constraint is tight

From Primal to Dual
Primal problern:

. ! 9
W = argmin §HW||
S.t.: inTXi > 1, Vi = 1, .. .,N
Lagrange function:
| N
L(w,a) = §HWH2 = oy (yiw % — 1)
i=1

The Lagrange Problem

] N
Liw,a) = §HWH2 — Zai (yiw'x; — 1)
i=1

The Lagrange problem:

(W, &) = arg min max L(w, «)
W (87

oL
0= e e =W =

N
= W = E Q3 YiX,
i=1

The Dual Problem
Liw,a) = 1HWH2 — Zai (inTXi — 1)

= W = Z@Zyzxz
L(w, ——HWH2 ZO@ yiw ' x; — 1)

T
— 5” Z Oéiinf,;HQ + (IT]_ — Z Y, (Z Oéjijj) X
? v J

1
—a'l-— iaTYGYa

Y :=diag(y1,-..,YnN)

G € RN where Gj; := x; x; Gram matrix

The Dual Hard SVM

Y :=diag(y1, ..., YnN)

G € RN where Gy; :=x, x; Gram matrix

1
& =argmax o' 1 — EaTYGYa

st a >0, Vi=1,...,N

Optimal solution:

N
W = E Qi Yi X
Prediction: =1

N
f(x; W) = sign (w'x) = sign <Z o?iyz-xjx>

1=1

The Problem with Hard SVM

[t assumes samples are linearly separable .

How about if the data is not linearly separable?

The Problem with Hard SVM

If the data is not linearly separable, adding new features
might make it linearly separable

o Now drop this “augmented” data into our linear SVM!

The Problem with Hard SVM

[t assumes samples are linearly separable

Solutions:

o User feature transformation to a higher—dim space

Overfitting ®

o Soft margin SVM instead of hard SVM
Next slides

Hard SVM
The hard SVM problem can be rewritten:

5 .1 5
W = argmin §HWH
s.t.: yw'x; >0, Vi=1,...,N

N
A
W = argmvin §”WH2 + ZEO—oo(inTXi)

1=1

oo if b<0

where EO—oo(b) = { 0 Zf b> 0

From Hard to Soft Constraints

Instead of using hard constraints (linearly separable)

N

. A

Whard — argm“lrngﬂwuz—l—g €0—oo(inTXi)
1=1

We can try to solve the soft version of it:

o The loss is only 1 instead of o0 if misclassify an instance

N
1
Wsoft = argmin §HWH2 + Z lo_1(y;w ' x;)

i=1
1 1fb<O
where 60_1(b) — { 0 ’Li]i b>0

Problems with 0/1 loss

N
A
Weoft = argmvin§|lw\|2+;€0_1(y,,;WTXZ-)

1 1fb<0

where gO—l(b) — { 0 Zf b> 0

. . I
It is not convex in yw X

o It is not convex in W, either

We like convex functions ...

Approximation of the step function

0SS

f(x)

= WTX

quadratic loss

gquad(yf(x)) \

\ hinge loss
- ’
. -
-
’
-

-' -
I.‘ ’
- -
.
- ny(x}{o
-
- o -
- .
- i
- .
- . "
- . .
o, "
| I | | 1] |
2.0 1.5 -1.0 -0.5 0.0 0.5 1.0
—yf(x) Picture is taken from R. Herbrich

/

-

Approximation of 0/1 loss

Piecewise linear approximation (hinge loss, convex, nonsmooth)

bin(yf (x)) = max(0,1 —y f(x))

o we want yf(X) > 1

Quadratic approximation (square-loss, convex, smooth)
lquaa(yf (%)) = max(0,1 — yf(x))"

Huber loss (combine the above two, convex, smooth)

B L—yf(x) if yf(x) <0
Crruper (Y (%)) = { max(0,1 —yf(x))* if yf(x) >0
/

The Hinge loss approximation of 0/1 loss

N
A
W = arg min §HWH2 + ;fzm(%WTXi)

o where:

-

Elm(yz-waz-) = max(0, 1 — y;w X;)

> ly—1 (yz'WTXi)

o The hinge loss upper bounds the 0/1 loss

Geometric interpretation: slack variables
2

T T

§i = Elm(yz'w Xi) — maX(O, I —yw Xi)

The Primal Soft SVM problem

\ N
A . . 9 .
W = argmin |w |+ ;Zl &

T T

where §; := glin(yiw Xi) = max((), l —yw Xz‘)

& Equivalently:

N
~ . A 2
w = argmin —||w||° + i
gmin o ||w] ;Zlﬁ

st yw' x; >1—&,Vi=1,...,N

&>0 VYi=1,....N

The Primal Soft SVM problem
A D W
W = argmin o[w]* + ;5

st yw' x;>1—-&, Vi=1,...,N

& >0, Ve=1,...,N
& Equivalently:

N
. .1 9
w = argmin —||w||* + C ;
gmin o [w ;:15

1
C=3

Dual Soft SVM (using hinge 10ss)

N
. .1 9
w = argmin —||w||* + C ;
gmin o [w ;:15

st yw' x;>1—-&, Vi=1,...,N
>0, Vi=1,...,N
Lagrange multipliers
a>0, >0

Lagrange function

L(w.¢ a,8) = %\le? O &= oilyw xi—1+&) =Y B

minmax L(w, &, o, 3)
w,§ o0

/

Dual Soft SVM (using hinge 10ss)

1
L(Waga aaﬁ) — §||WH2 + CSTl T Z OdiinTXi + aTl o £T(a + /6)

We get:

N
0 = 8_L| :>V’\V:Z%yz'xi
ow ™ —
0 — 3L,£ = B=Cl—a>0
o =0<a<(C1
Dual problem:

A ~

(&, B8) = argmax L(w,&, «,f3)

0<a<C1;0<8

& =argmaxa' 1 — —a' YGY«
0<a<C1 2 Y.

Dual Soft SVM (using hinge 10ss)

Y :=diag(y1, ..., YnN)

G € RN where Gy; :=x, x; Gram matrix

1
& =argmaxa' 1 — —a' YGY«
0<a<C1 2

This is the same as the dual hard SVM problem, except that

we have additional constraints

SVM In the dual space
Solve the dual problem

1
& =argmaxa' 1 — —a' YGY o
0<a<C1 2

The primal solution

N
=1

Prediction

N
f(x; W) = sign (w'x) = sign (Z oAziin,L-TX>

1=1

Why it iIs called Support Vector Machines?
Hard-SVM.:

N
1
L(w,a) = §HWH2 = oy (yiw % — 1)
1=1

a:(oal,...,ozN)T>O

KKT conditions (complementary slackness condition):

& =0 OR & >0=yw' x; =1

e

x; 1s on the margin line! SUPPORT VECTORS

/

Why it iIs called Support Vector Machines?
4 Hard SVM:

0 Only need to store support vectors to predict labels of test data

Support vectors in Soft SVM

N
1 2
w = arg min —||w||* + C ;
g =y 2” | ;:1:5

st yw' x;>1—-&, Vi=1,...,N
>0, Ve=1,...,N

& Margin support vectors

inTXi =1

® Nonmargin support vectors

& >0

Dual Sparsity

Only few Lagrange multipliers (dual variables) & can be

non-ze€ro

What about multiple classes?

One vs All

Learn multiple binary classifiers separately:

a class k vs. rest (Wk, bk)k=1,2,3

Prediction:
j = argmax(w, x + by)
k

Problems with One vs All?

§ = argmax(w, X + by)
k

(1) The weights may not be based on the same scale
a Note: (awk)TX + (aby,) is also a solution

(2) Imbalance issue when learning each binary classifier

2 Much more negatives than positives

One vs One
Learn K(K-1)/2 binary classifiers

Prediction:
0 Majority voting

@ Ambiguity issue!

Learning 1 Joint Classifier

Simultaneously learn 3 sets of weights (Wi, Ok) k=123

§ = argmax(w, X + by,)
k

° \V”L, vy%yz
W;Xi—kbinWJXi—l—by—l—l

° ° Margin: gap between true class and nearest other class

Learning 1 Joint Classifier

Simultaneously learn 3 sets of weights (Wi, Ok) k=123

Joint optimization:

e mm —ZHWyH —I—sz&y

=1 y#y;

s.b.0 Wy X; + by, > W x; + by + 1 — & Vi, Yy # v
o
. . &, >0 Vi, Yy # y;
® ®
o
° Prediction:
* = argmax(w,;rx + b)

k

What you need to know
& Maximizing margin
Derivation of SVM formulation

Slack variables and hinge loss

Relationship between
0 0/1 loss

o Hinge loss
@ Tackling multiple class

o One vs. All
o Multiclass SVMs

SVM for Regression

Training data (x;,%;), X; € Rd, y; € R
Still learn a hyper—plane (linear model)

Squared error is the popular loss
N

Z(yi - w'x;)?

1=1

o a smooth function — no sparsity

A piecewise linear approximation (e -insensitive loss)

N
Z max (0, ly; — w ' x;| — €)
i=1

SVM In the dual space
Without offset b:

1
& = argmax o' 1 — §aTYG’Ya

(84

st 0<a<(C1
With offset b:
1
& = argmaxoa ' 1 — iaTYGYa

(84

st 0<a<(C1

Zaiyi =0

Why solve the dual SVM?

The dual problem has simpler constraints

There some quadratic programming algorithms that can solve

the dual fast, especially in high-dimensions (d >> N)
a See [Bottou & Lin, 2007] for a summary of dual SVM solvers

o Be aware of the fast algorithms directly solving the primal

problem, e.g., cutting-plane, stochastic subgradient, etc.

More importantly, the Kernel Trick!!

Nonlinear SVM

Datasets that are linearly separable with some noise work out great:

0 : X

But what are we going to do if the dataset is just too hard?

@ @ *—0— *0—0—0—0— 0>
O X

How about. .. mapping data to a higher—dimensional space:

Non-linear SVMs: Feature Spaces

General idea: the original feature space can always be mapped
to some higher-dimensional feature space where the training set
is separable:

|®
°
. . °
0 "
" g ® o Y
e - ,
R o o

Dot Product of Polynomials

Polynomials of degree exactly d: ®(x)

X = (5617562)—[_7 Z = (Zla ZQ)T

¢(x) " 0(x)

= XTZ

& d=2: B(x) = (22, V2x129, 23

)T

T

d(x) ®(x) = (x z)2

In general:

P(x)' P(x) = (

The Kernel Trick

Linear SVM relies on inner product between vectors

K(x;,x;) = X,L-ij

If map every data point into high—dimensional space via P: x
— @(x), the inner product becomes:

K(xi,x;) = ©(x;) ' (x;)

1y 4xj

#® A kernel function is a function that is equivalent to an inner
product in some feature space.

The feature mapping is not explicitly needed as long as we
can compute the dot product using some Kernel K

What functions are kernels?

@ For some function K(x,,x) checking that K(x,x)= @(x,) T(p(xj)
can be cumbersome.

& Mercer’s theorem:
Every semi-positive definite symmetric function is a kRernel

4 Semi-positive definite symmetric functions correspond to a semi-

positive definite symmetric Gram matrix:

KxpXp) | K(XpXp) | K(X3,X5) K(X1,Xp)

KX2Xp) | K(X2:Xp) | K(X;,X5) K(X2:Xp)
K =

K(Xn ’Xl) K(Xn ’XZ) K(Xn ’ X3) K(Xn ’Xn)

Example Kernel Functions

Linear: K(XI.,X]. = Xij.
o Mapping @: x — P(x), where P(x)is x itself

Polynomial of power p: K(x,,x)= (1+ XI.TX].)P
o Mapping @: x — P(x), where P(x) has (d ; pJ dimensions

Gaussian (radial-basis function): ,
P x|

K(Xiaxj) — eXp - 2

20
o Mapping @: x — D(x), where P (x) is infinite-dimensional: every point is
mapped to a function; combination of functions for support vectors is the

separator.

& Higher—dimensionai space still has intrinsic dimensionality d, but linear
separators n it correspond to non-linear separators 1n original space.

Overfitting

Huge feature space with kernels, what about overtitting??
0 Maximizing margin leads to a sparse set of support vectors

o Some interesting theory says that SVMs search for simply
hypothesis with a large margin

o Often robust to overfitting

SVM — demo

=l

& http: / / WwWw.isis.ecs.soton.ac.uk/resources/svminfo/

Good ToolKits: [1] SVM-Light: http://svmlight.joachims.org/
[2] LibSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.isis.ecs.soton.ac.uk/resources/svminfo/
../AML-2013-2014/SVM-Demo/svm_gui.exe
http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Chessboard dataset, Polynomial kernel
Polynamial v Deores | Separable Biound

Mo af Support Vectors: 263 (87.7%)

Chessboard dataset, Polynomial kernel
Polynomial v| Dearee | 5 |] Separable Bound

Ma. of Support Wectors: 183 (61.0%)

Chessboard dataset, Polynomial kernel

Polynomial v| Dewes | g | [Separable Bound | [1|

Mo, of Support Wectors: 164 (54.7%)

Chessboard dataset, RBF kernel

‘Gaussian RBF w| | SEma | 2| (| Separable Bound | [1|

Mo af Support Vectors: 174 (58.0%)

Advanced topics

Scalable algorithms to learn SVMs

o Linear SVMs

Linear algorithm, e.g., cutting-plane (2009)
Stochastic optimization, e.g., Pegasos (2007)
Distributed learning, e.g., divide-and-conquer (2013)

o Non-linear SVMs

Kernel approximation, e.g., using low-rank or random features

Structured output learning with SVMs

o Will cover later

An incomplete list of SVM solvers [Menon, 2010]

Algorithm Citation SVM type Optimization type Style Runtime
SMO [Platt, 1999] Kernel Dual QP Batch Q(n’d)
SVMiisht [Joachims, 1999] Kernel Dual QP Batch Q(n2d)
Core Vector Machine [Tsang et al., 2005, 2007] SL Kernel Dual geometry Batch O(s/p")
SVMPt [Joachims, 2006] Linear Dual QP Batch O(ns/\p?)
NORMA [Kivinen et al., 2004] Kernel Primal SGD Online(-style) O(s/p?)
SVM-SGD [Bottou, 2007] Linear Primal SGD Online-style Unknown
Pegasos [Shalev-Shwartz et al., 2007] Kernel Primal SGD/SGP Online-style O(s/\p)
LibLinear [Hsieh et al., 2008] Linear Dual coordinate descent Batch O(nd -log(1/p))
SGD-QN [Bordes and Bottou, 2008] Linear Primal 2SGD Online-style Unknown
FOLOS [Duchi and Singer, 2008] Linear Primal SGP Online-style O(s/\p)
BMRM [Smola et al., 2007] Linear Dual QP Batch O(d/Ap)
OCAS [Franc and Sonnenburg, 2008] Linear Primal QP Batch O(nd)

Validation
Model selection:

a Almost invariably, all ML methods have some free parameters
The number of neighbors in K-NN
The kernel parameters in SVMs

Performance estimation:

o Once we have chosen a model, how to estimate its

performance?

Motivation

If we had access to an unlimited number of examples, there is

a straightforward answer

o Choose the model with the lowest error rate on the entire
population

o The error rate is the true error rate

In practice, we only access to a finite set of examples, usually

smaller than we wanted
o Use all training data to select model => too optimistic!

o A better approach is to split the training set into disjoint subsets

Holdout Method

& Split dataset into two subsets

0 Training set: used to learn the classifier

o Test set: used to estimate the error rate of the trained classifier

Total number of examples

Training Set

Test Set

E.g.: used to determine a stopping point of an iterative alg.:

MSE

Test set error

Training set ermor

Holdout Method

Two basic drawbacks
a In problems with a sparse dataset, we may not be able to afford the

“luxury” of setting aside a portion of data for testing

o A single train-test split may lead to misleading results, e.g., it we
happened to get an “unfortunate” split

Resampling can overcome the limitations, but at the expense of
more computations
o Cross-validation
Random subsampling

K-fold cross-validation

Leave-one-out cross-validation

0 Bootstrap

Random Subsampling

4 Performs K data splits of the entire dataset
o Each split randomly selects a (fixed) no. examples

a For each split, retrain the classifier with training data, and evaluate on
test examples

Total number of examples

Fy
¥

-~ Test example

Experiment 1 =

Experiment 2

Experiment 3

The true error is estimated as the average

1 K
E=—NE
K; g

K-Fold Cross-validation

Create a K-fold partition of the dataset

o For each of K experiments, use K-1 folds for training and the remaining one for

testing

Experiment 1
Experiment 2
Experiment 3

Experiment 4

Total number of examples

/ Test examples

K-fold CV is similar to random subsampling

a The advantage of K-fold CV is that all examples are eventually used for both

training and testing

True error is estimated as the average

E:

| K
— E
258

L_eave-one-out Cross-Validation

& Leave-one-out CV is the extreme case of K-fold CV, where K=N

Total number of examples

Experiment 1

Experiment 2

Experiment 3

/ Single test example

Experiment N

How many folds are needed?
4 With a large number of folds

a (1) The bias of true error estimate is small (i.e., accurate estimate)

o (—) The variance of true error estimate is large — the K training sets
are too similar to one another

2 (—) The computational time will be large (i.e., many experiments)

With a small number of folds
a (+)The computation time is reduced
a (+)The variance of true error estimate is small

o (—) The bias of the estimator is large, depending on the learning curve
of the classifier

In practice, a large dataset often needs a small K, while a very
sparse dataset often needs a large K

A common choice for K-fold CV is K=10

Three-way data splits

4 If model selection and true error estimates are to be computed simultaneously, the data
needs to be divided into 3 disjoint sets

a Training set: used for learning — to fit the parameters of the classifier
o Validation set: used to tune the parameters of a classifier

o Test set: used only to assess the performance of a fully trained classifier

Test set @
e ——————
Training set @ A\
Validation set @- |
| I
| I
| I
| I
| I
| [
| [
| [
| Final |
[ModeII
I
I
I
I
[
[
[
I
I

Mc}gal El?n"ror
Selection Rate

