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Supervised Learning
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Supervised Learning — classification
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Supervised Learning — regression
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How to learn a classifier?
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K-NN: a Non—parametric approach




Properties of K-NN
¥ Simple
® Strong consistency results:

o With infinite data, the error rate of K-NN is at most twice the

optimal error rate (i.e., Bayes error rate)

# Note: Bayes error rate — the minimum achievable error rate

given the distribution of the data




Issues of K-NN

& Computationally intensive for large training sets

o Clever nearest neighbor search helps

# Selection of K

# Distance metric matters a lot

o Aware of the metric learning field




K-NN for regression
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A weighted average is an estimate; where the weight is the inverse distance




A Parametric Method

# Binary classification can be viewed as the task of separating

classes in feature space:

f(x) = sign(wTX + b)




Linear Separators

# Which of the linear separators is optimal?




Classification Margin

# Distance from example X, to the separator is =
# Examples closest to the hyperplane are support vectors.

# Margin p of the separator is the distance between supporting
hyperplanes.

confidence := y;(w'x; + b)

/




Max-margin Classification

# Maximizing the margin is good according to intuition and PAC theory.

# Implies that only support vectors matter; other training examples are

i gnorable :




Linear SVM
# Let training set {(xs, ) }is1, xs € RY gy € {—1,+1} be
separated by a hyperplane with margin p.Then for each

training example (x;, y,):

wix. +b<-p/2 ify=-1
wix. +b2p/2 ify =1

& g(wix, b2 p/2
# For support vector x_ the above inequality is an equality.
After rescaling w and b by p/2, we obtain that distance

between each x and the hyperplane is

Iwll - liwl




Linear SVM

# Then the margin can be expressed through (rescaled) w and
b as:

Classification rule:
classify as: +1 if WTX + b 2 1

universe if |WTX—|—b| <1

explodes

1 if wx+b<—1

/




Observations

# We can assume b=0

Classification rule:
classify as: +1 if WTX + b 2 1

1 i wix+b< —1

universe if |WTX—|—b| <1

explodes

# This is the same as:

yw' x; >1, Vi=1,...,N




The Primal Hard SVM

# Given training dataset: D = {(x;,y;)}Y,
# Assume that D is linearly separable
A 1

W = argmin—|w]|
w2

s.t.: yw x;>1, Vi=1,...,N

# Prediction:

f(x; W) = sign(w' x)

This is a QP problem (d-dimensional)

(Quadratic cost tunction, linear constraints)




Constrained Optimization

min, x2
s.t. >0b
s.t. z2>2 -1 st. z>1
/ /
."’I/r‘J I /r{
/ /




LLagrange Multiplier

min, =2
s.t. & >0b

# Move the constraint to objective function — Lagrangian

L(xz,a) = 2* —alz —b), st.:a>0

# Solve:

minmax  L(x,«)
£ o

s.t.: a >0

Constraint is active when @ > ()




Lagrange Multiplier — dual variables

# Solving:
minmax  L(z,a) = 2 — oz — b)
s.t.: a >0
® We get:
oL _ 0= 2" = =
or 2
oL
5 0 = o = max(2b,0)

When v > (), constraint is tight




From Primal to Dual
# Primal problern:

. ! 9
W = argmin §HW||
S.t.: inTXi > 1, Vi = 1, .. .,N
# Lagrange function:
| N
L(w,a) = §HWH2 = oy (yiw % — 1)
i=1




The Lagrange Problem

] N
Liw,a) = §HWH2 — Zai (yiw'x; — 1)
i=1

# The Lagrange problem:

(W, &) = arg min max L(w, «)
W (87

oL
0= e e =W =

N
= W = E Q3 YiX,
i=1




The Dual Problem
Liw,a) = 1HWH2 — Zai (inTXi — 1)

= W = Z@Zyzxz
L(w, ——HWH2 ZO@ yiw ' x; — 1)

T
— 5” Z Oéiinf,;HQ + (IT]_ — Z Y, (Z Oéjijj) X
? v J

1
—a'l-— iaTYGYa

Y :=diag(y1,-..,YnN)

G € RN where Gj; := x; x; Gram matrix




The Dual Hard SVM

Y :=diag(y1, ..., YnN)

G € RN where Gy; :=x, x; Gram matrix

1
& =argmax o' 1 — EaTYGYa

st a >0, Vi=1,...,N

# Optimal solution:

N
W = E Qi Yi X
# Prediction: =1

N
f(x; W) = sign (w'x) = sign <Z o?iyz-xjx>

1=1




The Problem with Hard SVM

# [t assumes samples are linearly separable .

# How about if the data is not linearly separable?




The Problem with Hard SVM

# If the data is not linearly separable, adding new features
might make it linearly separable

o Now drop this “augmented” data into our linear SVM!




The Problem with Hard SVM

# [t assumes samples are linearly separable

# Solutions:

o User feature transformation to a higher—dim space

Overfitting ®

o Soft margin SVM instead of hard SVM
Next slides




Hard SVM
# The hard SVM problem can be rewritten:

5 .1 5
W = argmin §HWH
s.t.: yw'x; >0, Vi=1,...,N

N
A
W = argmvin §”WH2 + ZEO—oo(inTXi)

1=1

oo if b<0

where EO—oo(b) = { 0 Zf b> 0




From Hard to Soft Constraints

# Instead of using hard constraints (linearly separable)

N

. A

Whard — argm“lrngﬂwuz—l—g €0—oo(inTXi)
1=1

# We can try to solve the soft version of it:

o The loss is only 1 instead of o0 if misclassify an instance

N
1
Wsoft = argmin §HWH2 + Z lo_1(y;w ' x;)

i=1
1 1fb<O
where 60_1(b) — { 0 ’Li]i b>0




Problems with 0/1 loss

N
A
Weoft = argmvin§|lw\|2+;€0_1(y,,;WTXZ-)

1 1fb<0

where gO—l(b) — { 0 Zf b> 0

. . I
# It is not convex in yw X

o It is not convex in W, either

# We like convex functions ...




Approximation of the step function

0SS

f(x)

= WTX

quadratic loss

gquad(yf(x)) \
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Approximation of 0/1 loss

# Piecewise linear approximation (hinge loss, convex, nonsmooth)

bin(yf (x)) = max(0,1 —y f(x))

o we want yf(X) > 1

# Quadratic approximation (square-loss, convex, smooth)
lquaa(yf (%)) = max(0,1 — yf(x))"

# Huber loss (combine the above two, convex, smooth)

B L—yf(x) if yf(x) <0
Crruper (Y (%)) = { max(0,1 —yf(x))* if yf(x) >0
/




The Hinge loss approximation of 0/1 loss

N
A
W = arg min §HWH2 + ;fzm(%WTXi)

o where:

-

Elm(yz-waz-) = max(0, 1 — y;w X;)

> ly—1 (yz'WTXi)

o The hinge loss upper bounds the 0/1 loss




Geometric interpretation: slack variables
2

T T

§i = Elm(yz'w Xi) — maX(O, I —yw Xi)




The Primal Soft SVM problem

\ N
A . . 9 .
W = argmin |w |+ ;Zl &

T T

where §; := glin(yiw Xi) = max((), l —yw Xz‘)

& Equivalently:

N
~ . A 2
w = argmin —||w||° + i
gmin o ||w] ;Zlﬁ

st yw' x; >1—&,Vi=1,...,N

&>0 VYi=1,....N




The Primal Soft SVM problem
A D W
W = argmin o[ w]* + ;5

st yw' x;>1—-&, Vi=1,...,N

& >0, Ve=1,...,N
& Equivalently:

N
. .1 9
w = argmin —||w||* + C ;
gmin o [w ;:15

1
C=3




Dual Soft SVM (using hinge 10ss)

N
. .1 9
w = argmin —||w||* + C ;
gmin o [w ;:15

st yw' x;>1—-&, Vi=1,...,N
>0, Vi=1,...,N
# Lagrange multipliers
a>0, >0

# Lagrange function

L(w.¢ a,8) = %\le? O &= oilyw xi—1+&) =Y B

minmax L(w, &, o, 3)
w,§ o0

/




Dual Soft SVM (using hinge 10ss)

1
L(Waga aaﬁ) — §||WH2 + CSTl T Z OdiinTXi + aTl o £T(a + /6)

# We get:

N
0 = 8_L| :>V’\V:Z%yz'xi
ow ™ —
0 — 3L,£ = B=Cl—a>0
o =0<a<(C1
# Dual problem:

A ~

(&, B8) = argmax L(w,&, «,f3)

0<a<C1;0<8

& =argmaxa' 1 — —a' YGY«
0<a<C1 2 Y.




Dual Soft SVM (using hinge 10ss)

Y :=diag(y1, ..., YnN)

G € RN where Gy; :=x, x; Gram matrix

1
& =argmaxa' 1 — —a' YGY«
0<a<C1 2

# This is the same as the dual hard SVM problem, except that

we have additional constraints




SVM In the dual space
# Solve the dual problem

1
& =argmaxa' 1 — —a' YGY o
0<a<C1 2

# The primal solution

N
=1

# Prediction

N
f(x; W) = sign (w'x) = sign (Z oAziin,L-TX>

1=1




Why it iIs called Support Vector Machines?
# Hard-SVM.:

N
1
L(w,a) = §HWH2 = oy (yiw % — 1)
1=1

a:(oal,...,ozN)T>O

# KKT conditions (complementary slackness condition):

& =0 OR & >0=yw' x; =1

e

x; 1s on the margin line! SUPPORT VECTORS

/




Why it iIs called Support Vector Machines?
4 Hard SVM:

0 Only need to store support vectors to predict labels of test data




Support vectors in Soft SVM

N
1 2
w = arg min —||w||* + C ;
g =y 2” | ;:1:5

st yw' x;>1—-&, Vi=1,...,N
>0, Ve=1,...,N

& Margin support vectors

inTXi =1

® Nonmargin support vectors

& >0




Dual Sparsity

# Only few Lagrange multipliers (dual variables) & can be

non-ze€ro




What about multiple classes?




One vs All

# Learn multiple binary classifiers separately:

a class k vs. rest (Wk, bk)k=1,2,3

# Prediction:
j = argmax(w, x + by)
k




Problems with One vs All?

§ = argmax(w, X + by)
k

# (1) The weights may not be based on the same scale
a Note: (awk)TX + (aby,) is also a solution

# (2) Imbalance issue when learning each binary classifier

2 Much more negatives than positives




One vs One
# Learn K(K-1)/2 binary classifiers

# Prediction:
0 Majority voting

@ Ambiguity issue!




Learning 1 Joint Classifier

# Simultaneously learn 3 sets of weights (Wi, Ok ) k=123

§ = argmax(w, X + by,)
k

° \V”L, vy%yz
W;Xi—kbinWJXi—l—by—l—l

° ° Margin: gap between true class and nearest other class




Learning 1 Joint Classifier

# Simultaneously learn 3 sets of weights (Wi, Ok ) k=123

Joint optimization:

e mm —ZHWyH —I—sz&y

=1 y#y;

s.b.0 Wy X; + by, > W x; + by + 1 — & Vi, Yy # v
o
. . &, >0 Vi, Yy # y;
® ®
o
° Prediction:
* = argmax(w,;rx + b)

k




What you need to know
& Maximizing margin
# Derivation of SVM formulation

# Slack variables and hinge loss

# Relationship between
0 0/1 loss

o Hinge loss
@ Tackling multiple class

o One vs. All
o Multiclass SVMs




SVM for Regression

# Training data (x;,%;), X; € Rd, y; € R
# Still learn a hyper—plane (linear model)

# Squared error is the popular loss
N

Z(yi - w'x;)?

1=1

o a smooth function — no sparsity

# A piecewise linear approximation (e -insensitive loss)

N
Z max (0, ly; — w ' x;| — €)
i=1




SVM In the dual space
# Without offset b:

1
& = argmax o' 1 — §aTYG’Ya

(84

st 0<a<(C1
# With offset b:
1
& = argmaxoa ' 1 — iaTYGYa

(84

st 0<a<(C1

Zaiyi =0




Why solve the dual SVM?

# The dual problem has simpler constraints

# There some quadratic programming algorithms that can solve

the dual fast, especially in high-dimensions (d >> N)
a See [Bottou & Lin, 2007] for a summary of dual SVM solvers

o Be aware of the fast algorithms directly solving the primal

problem, e.g., cutting-plane, stochastic subgradient, etc.

# More importantly, the Kernel Trick!!




Nonlinear SVM

# Datasets that are linearly separable with some noise work out great:

0 : X

# But what are we going to do if the dataset is just too hard?

@ @ *—0— *0—0—0—0— 0>
O X

# How about. .. mapping data to a higher—dimensional space:




Non-linear SVMs: Feature Spaces

# General idea: the original feature space can always be mapped
to some higher-dimensional feature space where the training set
is separable:

|®
°
. . °
0 "
" g ® o Y
e - ,
R o o




Dot Product of Polynomials

# Polynomials of degree exactly d:  ®(x)

X = (5617562)—[_7 Z = (Zla ZQ)T

¢(x) " 0(x)

= XTZ

& d=2: B(x) = (22, V2x129, 23

)T

T

d(x) ®(x) = (x z)2

# In general:

P(x)' P(x) = (




The Kernel Trick

# Linear SVM relies on inner product between vectors

K(x;,x;) = X,L-ij

# If map every data point into high—dimensional space via P: x
— @(x), the inner product becomes:

K(xi,x;) = ©(x;) ' (x;)

1y 4xj

#® A kernel function is a function that is equivalent to an inner
product in some feature space.

# The feature mapping is not explicitly needed as long as we
can compute the dot product using some Kernel K




What functions are kernels?

@ For some function K(x,,x) checking that K(x,x)= @(x,) T(p(xj)
can be cumbersome.

& Mercer’s theorem:
Every semi-positive definite symmetric function is a kRernel

4 Semi-positive definite symmetric functions correspond to a semi-

positive definite symmetric Gram matrix:

KxpXp) | K(XpXp) | K(X3,X5) K(X1,Xp)

KX2Xp) | K(X2:Xp) | K(X;,X5) K(X2:Xp)
K =

K(Xn ’Xl) K(Xn ’XZ) K(Xn ’ X3) K(Xn ’Xn)




Example Kernel Functions

# Linear: K(XI.,X]. = Xij.
o Mapping @: x — P(x), where P(x)is x itself

# Polynomial of power p: K(x,,x)= (1+ XI.TX].)P
o Mapping @: x — P(x), where P(x) has (d ; pJ dimensions

# Gaussian (radial-basis function): ,
P x|

K(Xiaxj) — eXp - 2

20
o Mapping @: x — D(x), where P (x) is infinite-dimensional: every point is
mapped to a function; combination of functions for support vectors is the

separator.

& Higher—dimensionai space still has intrinsic dimensionality d, but linear
separators n it correspond to non-linear separators 1n original space.




Overfitting

# Huge feature space with kernels, what about overtitting??
0 Maximizing margin leads to a sparse set of support vectors

o Some interesting theory says that SVMs search for simply
hypothesis with a large margin

o Often robust to overfitting




SVM — demo

=l

& http: / / WwWw.isis.ecs.soton.ac.uk/resources/svminfo/

Good ToolKits: [1] SVM-Light: http://svmlight.joachims.org/
[2] LibSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/



http://www.isis.ecs.soton.ac.uk/resources/svminfo/
../AML-2013-2014/SVM-Demo/svm_gui.exe
http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Chessboard dataset, Polynomial kernel
Polynamial v  Deores | Separable Biound

Mo af Support Vectors: 263 (87.7%)




Chessboard dataset, Polynomial kernel
Polynomial v| Dearee | 5 | ] Separable Bound

Ma. of Support Wectors: 183 (61.0%)




Chessboard dataset, Polynomial kernel

Polynomial v| Dewes | g | [ Separable Bound | [ 1|

Mo, of Support Wectors: 164 (54.7%)




Chessboard dataset, RBF kernel

‘Gaussian RBF w| | SEma | 2| (| Separable Bound | [ 1|

Mo af Support Vectors: 174 (58.0%)




Advanced topics

# Scalable algorithms to learn SVMs

o Linear SVMs

Linear algorithm, e.g., cutting-plane (2009)
Stochastic optimization, e.g., Pegasos (2007)
Distributed learning, e.g., divide-and-conquer (2013)

o Non-linear SVMs

Kernel approximation, e.g., using low-rank or random features

# Structured output learning with SVMs

o Will cover later




# An incomplete list of SVM solvers [Menon, 2010]

Algorithm Citation SVM type Optimization type Style Runtime
SMO [Platt, 1999] Kernel Dual QP Batch Q(n’d)
SVMiisht [Joachims, 1999] Kernel Dual QP Batch Q(n2d)
Core Vector Machine [Tsang et al., 2005, 2007] SL Kernel Dual geometry Batch O(s/p")
SVMPt [Joachims, 2006] Linear Dual QP Batch O(ns/\p?)
NORMA [Kivinen et al., 2004] Kernel Primal SGD Online(-style) O(s/p?)
SVM-SGD [Bottou, 2007] Linear Primal SGD Online-style Unknown
Pegasos [Shalev-Shwartz et al., 2007] Kernel Primal SGD/SGP Online-style O(s/\p)
LibLinear [Hsieh et al., 2008] Linear Dual coordinate descent Batch O(nd -log(1/p))
SGD-QN [Bordes and Bottou, 2008] Linear Primal 2SGD Online-style Unknown
FOLOS [Duchi and Singer, 2008] Linear Primal SGP Online-style O(s/\p)
BMRM [Smola et al., 2007] Linear Dual QP Batch O(d/Ap)
OCAS [Franc and Sonnenburg, 2008] Linear Primal QP Batch O(nd)




Validation
# Model selection:

a Almost invariably, all ML methods have some free parameters
The number of neighbors in K-NN
The kernel parameters in SVMs

# Performance estimation:

o Once we have chosen a model, how to estimate its

performance?




Motivation

# If we had access to an unlimited number of examples, there is

a straightforward answer

o Choose the model with the lowest error rate on the entire
population

o The error rate is the true error rate

# In practice, we only access to a finite set of examples, usually

smaller than we wanted
o Use all training data to select model => too optimistic!

o A better approach is to split the training set into disjoint subsets




Holdout Method

& Split dataset into two subsets

0 Training set: used to learn the classifier

o Test set: used to estimate the error rate of the trained classifier

Total number of examples

Training Set

Test Set

# E.g.: used to determine a stopping point of an iterative alg.:

MSE

Test set error

Training set ermor




Holdout Method

# Two basic drawbacks
a In problems with a sparse dataset, we may not be able to afford the

“luxury” of setting aside a portion of data for testing

o A single train-test split may lead to misleading results, e.g., it we
happened to get an “unfortunate” split

# Resampling can overcome the limitations, but at the expense of
more computations
o Cross-validation
Random subsampling

K-fold cross-validation

Leave-one-out cross-validation

0 Bootstrap




Random Subsampling

4 Performs K data splits of the entire dataset
o Each split randomly selects a (fixed) no. examples

a For each split, retrain the classifier with training data, and evaluate on
test examples

Total number of examples

Fy
¥

-~ Test example

Experiment 1 =

Experiment 2

Experiment 3

# The true error is estimated as the average

1 K
E=—NE
K; g




K-Fold Cross-validation

# Create a K-fold partition of the dataset

o For each of K experiments, use K-1 folds for training and the remaining one for

testing

Experiment 1
Experiment 2
Experiment 3

Experiment 4

Total number of examples

/ Test examples

# K-fold CV is similar to random subsampling

a The advantage of K-fold CV is that all examples are eventually used for both

training and testing

# True error is estimated as the average

E:

| K
— E
258




L_eave-one-out Cross-Validation

& Leave-one-out CV is the extreme case of K-fold CV, where K=N

Total number of examples

Experiment 1

Experiment 2

Experiment 3

/ Single test example

Experiment N




How many folds are needed?
4 With a large number of folds

a (1) The bias of true error estimate is small (i.e., accurate estimate)

o (—) The variance of true error estimate is large — the K training sets
are too similar to one another

2 (—) The computational time will be large (i.e., many experiments)

# With a small number of folds
a (+)The computation time is reduced
a (+)The variance of true error estimate is small

o (—) The bias of the estimator is large, depending on the learning curve
of the classifier

# In practice, a large dataset often needs a small K, while a very
sparse dataset often needs a large K

# A common choice for K-fold CV is K=10




Three-way data splits

4 If model selection and true error estimates are to be computed simultaneously, the data
needs to be divided into 3 disjoint sets

a Training set: used for learning — to fit the parameters of the classifier
o Validation set: used to tune the parameters of a classifier

o Test set: used only to assess the performance of a fully trained classifier

Test set @
e ——————
Training set @ A\
Validation set @- |
| I
| I
| I
| I
| I
| [
| [
| [
| Final |
[ ModeII
I
I
I
I
[
[
[
I
I

Mc}gal El?n"ror
Selection Rate




