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Supervised Learning
Task: learn a predictive function

“Experience” or training data: 

Feature space Label space 

Words in documents

“Sports”

“News”

“Politics”

…

Market information 

up to time t

Share price

“$ 20.50”

f< xd; yd >gD
d=1; xd 2 X ; yd 2 Y



Supervised Learning – classification

Feature space Label space 

Words in documents

“Sports”

“News”

“Politics”

…

“Tool”

“Animal”

…

Discrete Labels

Stimulus response



Supervised Learning – regression

Feature space Label space 

Market information 

up to time t

Share price

“$ 20.50”

Continuous Labels

Temperature

“42o F”

(session, location, time …)



How to learn a classifier?

C1
C2

K-NN: a Non-parametric approach

?



Properties of K-NN

Simple

Strong consistency results:

 With infinite data, the error rate of K-NN is at most twice the 

optimal error rate (i.e., Bayes error rate)

Note: Bayes error rate – the minimum achievable error rate 

given the distribution of the data



Issues of K-NN

Computationally intensive for large training sets

 Clever nearest neighbor search helps

Selection of K

Distance metric matters a lot

 Aware of the metric learning field



K-NN for regression

A weighted average is an estimate; where the weight is the inverse distance

?



A Parametric Method

Binary classification can be viewed as the task of separating 

classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)



Linear Separators

Which of the linear separators is optimal?



Classification Margin

Distance from example xi to the separator is

Examples closest to the hyperplane are support vectors. 

Margin ρ of the separator is the distance between supporting 
hyperplanes.

r

ρ



Max-margin Classification

Maximizing the margin is good according to intuition and PAC theory.

Implies that only support vectors matter; other training examples are 

ignorable.



Linear SVM

Let training set                                                                be 

separated by a hyperplane with margin ρ. Then for each 

training example (xi, yi):

For support vector xs the above inequality is an equality. 

After rescaling w and b by ρ/2, we obtain that distance 

between each xs and the hyperplane is 

wTxi + b ≤ - ρ/2 if yi = -1

wTxi + b ≥ ρ/2 if yi = 1
yi(w

Txi + b) ≥ ρ/2



Linear SVM

Then the margin can be expressed through (rescaled) w and 

b as:

w

2
2  r

Classification rule:

classify as:  +1         if 

- 1         if

universe     if

explodes



Observations

We can assume b=0

This is the same as:

Classification rule:

classify as:  +1         if 

- 1         if

universe     if

explodes



The Primal Hard SVM

Given training dataset:

Assume that D is linearly separable

Prediction:

This is a QP problem (d-dimensional)

(Quadratic cost function, linear constraints)



Constrained Optimization



Lagrange Multiplier

Move the constraint to objective function – Lagrangian

Solve:

Constraint is active when 



Lagrange Multiplier – dual variables

Solving: 

We get:

When               , constraint is tight



From Primal to Dual

Primal problem:

Lagrange function:



The Lagrange Problem

The Lagrange problem:



The Dual Problem



The Dual Hard SVM

Optimal solution:

Prediction:



The Problem with Hard SVM

It assumes samples are linearly separable …

How about if the data is not linearly separable?

0 x



The Problem with Hard SVM

If the data is not linearly separable, adding new features 

might make it linearly separable

 Now drop this “augmented” data into our linear SVM!

0

x2

x



The Problem with Hard SVM

It assumes samples are linearly separable

Solutions:

 User feature transformation to a higher-dim space

 Overfitting

 Soft margin SVM instead of hard SVM

 Next slides



Hard SVM

The hard SVM problem can be rewritten:



From Hard to Soft Constraints

Instead of using hard constraints (linearly separable)

We can try to solve the soft version of it:

 The loss is only 1 instead of ∞ if misclassify an instance



Problems with 0/1 loss

It is not convex in 

 It is not convex in     , either

We like convex functions …



Approximation of the step function



Approximation of 0/1 loss

Piecewise linear approximation (hinge loss, convex, nonsmooth)

 we want

Quadratic approximation (square-loss, convex, smooth)

Huber loss (combine the above two, convex, smooth)



The Hinge loss approximation of 0/1 loss

 where:

 The hinge loss upper bounds the 0/1 loss



Geometric interpretation: slack variables

ξi

ξi



The Primal Soft SVM problem

Equivalently:



The Primal Soft SVM problem

Equivalently:



Dual Soft SVM (using hinge loss)

Lagrange multipliers

Lagrange function



Dual Soft SVM (using hinge loss)

We get:

Dual problem:



Dual Soft SVM (using hinge loss)

This is the same as the dual hard SVM problem, except that 

we have additional constraints



SVM in the dual space

Solve the dual problem

The primal solution

Prediction



Why it is called Support Vector Machines?

Hard-SVM:

KKT conditions (complementary slackness condition):



Why it is called Support Vector Machines?

Hard SVM:

 Only need to store support vectors to predict labels of test data



Support vectors in Soft SVM

Margin support vectors

Nonmargin support vectors

ξi

ξi



Dual Sparsity

Only few Lagrange multipliers (dual variables)      can be 

non-zero



What about multiple classes?



One vs All

Learn multiple binary classifiers separately:

 class k vs. rest

Prediction:



Problems with One vs All?

(1) The weights may not be based on the same scale

 Note:                               is also a solution

(2) Imbalance issue when learning each binary classifier

 Much more negatives than positives



One vs One

Learn K(K-1)/2 binary classifiers

Prediction:

 Majority voting

Ambiguity issue!



Learning 1 Joint Classifier

Simultaneously learn 3 sets of weights

Margin:  gap between true class and nearest other class



Learning 1 Joint Classifier

Simultaneously learn 3 sets of weights

Joint optimization:

Prediction:



What you need to know

Maximizing margin

Derivation of SVM formulation

Slack variables and hinge loss

Relationship between

 0/1 loss

 Hinge loss

Tackling multiple class

 One vs. All

 Multiclass SVMs



SVM for Regression

Training data

Still learn a hyper-plane (linear model)

Squared error is the popular loss 

 a smooth function – no sparsity

A piecewise linear approximation (  -insensitive loss)



SVM in the dual space

Without offset b:

With offset b:



Why solve the dual SVM?

The dual problem has simpler constraints

There some quadratic programming algorithms that can solve 

the dual fast, especially in high-dimensions (d >> N)

 See [Bottou & Lin, 2007] for a summary of dual SVM solvers

 Be aware of the fast algorithms directly solving the primal 

problem, e.g., cutting-plane, stochastic subgradient, etc.

More importantly, the Kernel Trick!!



Nonlinear SVM
Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard? 

How about… mapping data to a higher-dimensional space:

0 x

0 x

0

x2

x



Non-linear SVMs: Feature Spaces

General idea:   the original feature space can always be mapped 
to some higher-dimensional feature space where the training set 
is separable:

Φ:  x→φ(x)



Dot Product of Polynomials

Polynomials of degree exactly d: 

d=1:

d=2:

In general:



The Kernel Trick
Linear SVM relies on inner product between vectors 

If map every data point into high-dimensional space via Φ:  x
→ Φ(x), the inner product becomes:

A kernel function is a function that is equivalent to an inner 
product in some feature space.

The feature mapping is not explicitly needed as long as we 
can compute the dot product using some Kernel K



What functions are kernels?

For some function K(xi,xj) checking that K(xi,xj)= φ(xi)
Tφ(xj) 

can be cumbersome. 

Mercer’s theorem:  

Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a semi-

positive definite symmetric Gram matrix:

K(x1,x1) K(x1,x2) K(x1,x3) … K(x1,xn)

K(x2,x1) K(x2,x2) K(x2,x3) K(x2,xn)

… … … … … 

K(xn,x1) K(xn,x2) K(xn,x3) … K(xn,xn)

K =



Example Kernel Functions
Linear: K(xi,xj)= xi

Txj
 Mapping Φ:    x → Φ(x), where Φ(x) is x itself

Polynomial of power p: K(xi,xj)= (1+ xi
Txj)

p

 Mapping Φ:   x → Φ(x), where Φ(x) has            dimensions 

Gaussian (radial-basis function): 

K(xi,xj) =

 Mapping Φ:  x→ Φ(x), where Φ(x) is infinite-dimensional: every point is 
mapped to a function; combination of functions for support vectors is the 
separator.

Higher-dimensional space still has intrinsic dimensionality d, but linear 
separators in it correspond to non-linear separators in original space.
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Overfitting

Huge feature space with kernels, what about overfitting??

 Maximizing margin leads to a sparse set of support vectors

 Some interesting theory says that SVMs search for simply 

hypothesis with a large margin

 Often robust to overfitting



SVM – demo 

http://www.isis.ecs.soton.ac.uk/resources/svminfo/
Good ToolKits: [1] SVM-Light: http://svmlight.joachims.org/

[2] LibSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.isis.ecs.soton.ac.uk/resources/svminfo/
../AML-2013-2014/SVM-Demo/svm_gui.exe
http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Chessboard dataset, Polynomial kernel



Chessboard dataset, Polynomial kernel



Chessboard dataset, Polynomial kernel



Chessboard dataset, RBF kernel



Advanced topics

Scalable algorithms to learn SVMs

 Linear SVMs

 Linear algorithm, e.g., cutting-plane (2009)

 Stochastic optimization, e.g., Pegasos (2007)

 Distributed learning, e.g., divide-and-conquer (2013)

 Non-linear SVMs

 Kernel approximation, e.g., using low-rank or random features

Structured output learning with SVMs

 Will cover later



An incomplete list of SVM solvers [Menon, 2010]



Validation

Model selection:

 Almost invariably, all ML methods have some free parameters

 The number of neighbors in K-NN 

 The kernel parameters in SVMs

Performance estimation:

 Once we have chosen a model, how to estimate its 

performance?



Motivation

If we had access to an unlimited number of examples, there is 

a straightforward answer

 Choose the model with the lowest error rate on the entire 

population

 The error rate is the true error rate

In practice, we only access to a finite set of examples, usually 

smaller than we wanted

 Use all training data to select model => too optimistic!

 A better approach is to split the training set into disjoint subsets



Holdout Method

Split dataset into two subsets

 Training set: used to learn the classifier

 Test set: used to estimate the error rate of the trained classifier

E.g.: used to determine a stopping point of an iterative alg.:



Holdout Method

Two basic drawbacks

 In problems with a sparse dataset, we may not be able to afford the 
“luxury” of setting aside a portion of data for testing

 A single train-test split may lead to misleading results, e.g., if we 
happened to get an “unfortunate” split

Resampling can overcome the limitations, but at the expense of 
more computations

 Cross-validation
 Random subsampling

 K-fold cross-validation

 Leave-one-out cross-validation

 Bootstrap



Random Subsampling

Performs K data splits of the entire dataset
 Each split randomly selects a (fixed) no. examples
 For each split, retrain the classifier with training data, and evaluate on 

test examples

The true error is estimated as the average



K-Fold Cross-validation
Create a K-fold partition of the dataset
 For each of K experiments, use K-1 folds for training and the remaining one for 

testing

K-fold CV is similar to random subsampling
 The advantage of K-fold CV is that all examples are eventually used for both 

training and testing

True error is estimated as the average



Leave-one-out Cross-Validation

Leave-one-out CV is the extreme case of K-fold CV, where K=N



How many folds are needed?

With a large number of folds
 (+)The bias of true error estimate is small (i.e., accurate estimate)
 (–)The variance of true error estimate is large – the K training sets 

are too similar to one another
 (–)The computational time will be large (i.e., many experiments) 

With a small number of folds
 (+)The computation time is reduced
 (+)The variance of true error estimate is small
 (–)The bias of the estimator is large, depending on the learning curve 

of the classifier

In practice, a large dataset often needs a small K, while a very 
sparse dataset often needs a large K

A common choice for K-fold CV is K=10



Three-way data splits
If model selection and true error estimates are to be computed simultaneously, the data 
needs to be divided into 3 disjoint sets
 Training set: used for learning – to fit the parameters of the classifier

 Validation set: used to tune the parameters of a classifier

 Test set: used only to assess the performance of a fully trained classifier


