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Overview

e EBM: interesting on its own; as score estimator for implicit VI, mutual
information estimation, etc

e Optimizing the learning objective (score matching) is nontrivial since
1t involves second-order derivatives

e We present scalable approximations to a family of learning objectives

Background: Manifold and Flows

e Differential and gradient on general manifolds: for

f - M—=R,

(df e (jjt) = S| (mad, f.v) = (dF)

to

including score matching, by connecting them to Wasserstein gradient

e We derive a CD-1-like approximation to these objectives

e Applications: Riemannian score matching for implicit VAEs and WAES X

with manifold-valued prior

for any c: [0,a| = M,p e M,v € T,M.
flows e The 2- Wasserstein space P(X):
—Tangent vector v € T,P(X) < vector field v on

—(0,0)p = Byo)(v(2), v'(2))

p(u) Image from Liu et al (2019)

— (grad, KL,)(u) = grad, log ——

e Gradient flow of F : M — R: % _

EBMs and Score Matching

e LBM: .

Z(0)

q(z;0) =
& parameterized by e.g. NNs.
o MLE intractable: Vglogq(x;8) involves Vglog Z = E(;.9(Valog £).

e Score estimation: match

exp(—&(x;0)),

DFisheT(pIQ> — IEpHngp T vbg QHQ
which does not depend on Z.
e Hyvarinen (2005):

1
Drisher(plq) = E, {—AE + §va”2} +  gconst

only depends on p
Estimation possible but expensive (involves AE).

dr = V(x)dt + /2G 1 (z)dB, V'(z):=g"0, <logp(x)

q(u)

—grad, f.

Background: Sampling Dynamics

spaces of probability measures:
e P(X), X =R% Langevin dynamics

dz = grad, log p(x)dt + v/2dB.

e P(X), X general manifold: Riemannian Langevin dynamics

1 )
08 ‘g(x)‘> +0,g"

(p is the density w.r.t. the Hausdorff measure here)

e The H-Wasserstein space: Stein Variational Gradient Descent

e Other examples: birth-death LD, stochastic particle optimization

Score Matching as Minimum Velocity Learning

DFisher(p‘Q) — ngadeLqHQ
where ||| is in defined in P(X).
Interpretation: the initial velocity of the Wasserstein gradient flow of KL, connecting p
and q.
Wasserstein MVL: switch from P(X) to other spaces of probability measures.

Approximation using the MVL Formulation

Let Flp|] .= —E,&, H|p] :=E,logp so KL, =H — F.
2 2
|grad KL ||” = ||grad,H||” —2(grad,F, grad KL}

const

E: 1 —E, 1l
_<gradp.7-", gradeLq1/2> — (d]:)p(—gradequ/Q) T 0g qy »10g qo

e—0 €

where {p:} is the gradient flow of KL,», and ¢'/? o< exp(—E&/2).
—> Algorithm 0:

1. Simulate KL 12 using the corresponding sampling dynamics, for a time of €

2. Return the difference in energy, divided by €

Variance Reduction

Problem: When the sampling dynamics consists of Ito diffusion, the mini-batch estimator

E(xt) — E(ar)

€

€
has infinite variance as € — 0.

Solution: subtract the diffusion part from the estimator. For LD the resulted estimator is

(6~ €t clogay +VE2) (V22 V..8))

€

T control variate

Side product: the same problem exists in CD-1 for score matching (Hyvarinen (2007)) and
denoising score matching: they can be fixed similarly.

Varlance-reduced objective has vanishing bias , e

as € — 0, and O(1) variance regardless of €. % 1 dsmrcv
: : . > 107!+
= Unlike previous work, we can use arbitrar- g,
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ily small € in practice.
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Example: Score Matching on Manifolds

A 4

Common samplers can be interpreted as simulating the gradient flow of KL, : ¢ — KL(q||p), in different

e The Riemannian score matching objective: same form as Dpjsper, but with different

metric ||-|].
e Also a MVL objective, with different sampling dynamics (Riemannian LD).

e F'inal approximator:

Lyyinid = %(5( —0) — E(y;0) — V2e9,E(y) 2" ),

control variate

| |  E(u ) L loc |G | |
(y—)z: y“re(—g”aj (y> )+20g| (y)| | akgzk) —|—\/27€Z7’,

is a sample from Riemannian LD, and 2 ~ N(0, G~ (y)).

where

gro%pd truth energy function Lgarnt energy function
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Simulation: learning
mixture of
von-Mises-Fisher on S?.

VAE and WAE with hyperspherical prior

VAE n, =8 n, = 32 WAE n, =8

NLL | Euc. Sph. Euc. Sph. FID Euc. Sph.
Explicit 196.47 95.38 190.11 91.16 GAN 25.48 20.40
Implicit|95.71 94.99 90.17 88.63 MVL (Ours) 21.95 19.13

Related Work

Unified under our framework (and enhanced):

e CD-1 for score matching (Hyvarinen (2007)): a similar approximator for the gradient of the score matching objective wrt 6.

Suffers from the infinite variance problem above.
e CD-1 for KSD (Liu and Wang, 2017): a similar approximator for the gradient of KSD using SVGD.
(Movellan, 2007, unpublished): score matching as minimizing the “probability velocity field” in data space.

Other unifying perspectives (that do not lead to scalable approximations): Minimum Probability Flow, Minimum Stein discrepancy

estimator
Score matching: scalable approximator (Song et al (UAI 2019)), another connection to diffusion (Lyu (UAI 2009))

Our contribution: generalized derivation using WGE'; practical implementation with control variate, and estimator for the original

objective instead of its gradient
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