Further Analysis of Outlier Detection with DGMs

Ziyu Wang¹, Bin Dai², David Wipf³, Jun Zhu¹

¹Tsinghua University, ²Samsung Research China, ³AWS AI Lab

Background

"Do Deep Generative Models Know What They Don't Know?"

Figure taken from Nalisnick et al (2019). See also Hendrycks et al (2019).

The Typicality Argument

A "longitudinal view" of data: high-d rv ⇔ random sequence

• $\mathcal{N}(0, I_d) \Leftrightarrow$ a sequence of d scalar rvs

Certain random sequences fall into a **typical set** with high probability, which does not necessarily coincide with region of high density

Ex. an IID random sequence of length d will have ℓ_2 norm of $O(\sqrt{d})$ with high probability

- · "Gaussian distributions are like soap bubbles"
- Test for outlier using ||x||

The Typicality Argument

So far, the typicality argument has not been successfully applied to explain the peculiarity of single-sample outlier detection¹

Check log $p_{inlier}(x_{test})$?

· log p doesn't always concentrate, unlike the IID case

Transform $x \sim p_{inlier}$ to an **IID** sequence (e.g. latents of flows) and test in that space?

 Doesn't work in practice, estimating that transformation is probably too hard

¹See paper for discussion about previous work, alternative explanation, etc

An Outlier Test Generalizing the Idea of Typicality

Proposal: transform x into a sequence with a **weaker** property than IID, and test for that property

IID ⊂ Martingale Difference ⊂ (weak) White Noise

$$\tilde{R}_i(x) := x_i - \mathsf{E}_p(x_i|x_{< i}) \approx x_i - \mathsf{E}_\theta(x_i|x_{< i})$$
 is MD for $x \sim p_{inlier}$

- Still using autoregressive GMs
- But estimating $\mathbf{E}(x_i|x_{< i})$ is easier than estimating $p(x_i|x_{< i})$

Test for outlier by applying WN tests to R

Results

Table 1: AUROC and average ranks. Worse than random

Inlier Dist.		CIFAI	R-10	Cele	bA	TinyIma	geNet	Avg.
Outlier Dist.		CelebA	SVHN	CIFAR-10	SVHN	CIFAR-10	SVHN	Rank↓
AR- DGM	LH LH-2S LR Ours	0.88 0.77 0.86 0.97	0.16 0.69 0.86 0.83	0.82 0.84 0.99 0.85	0.15 0.78 1.00 0.93	0.28 0.55 0.39 0.85	0.05 0.93 0.56 0.62	3.67 2.50 2.00 1.67

- Our test works well under the previous setup, supporting a (generalized) typicality argument
- DGMs probably know what they don't know?

Results

Inlier Dist.		CIFAR-10		CelebA		TinyImageNet		Avg.
Outlier Dist.		CelebA	SVHN	CIFAR-10	SVHN	CIFAR-10	SVHN	Rank↓
Linear	LH LH-2S Ours	0.77 0.69 0.67	0.02 0.76 0.95	0.72 0.70 0.90	0.03 0.80 0.99	0.11 0.64 0.92	0.00 0.81 0.99	2.50 2.17 1.33

· A linear generative model also seems to know ... about semantics?

Further Analysis of Generative Outlier Detection

- New benchmarks to disentangle the influence of low-level textual information vs image semantics:
 - · CIFAR-10 vs subset-of-CIFAR-100, and BigGAN-synthesized images
- On the intrinsic difficulty of high-dimensional density estimation in OOD regions
 - SoTA DGMs generate visually plausible images, yet may deviate significantly from a known ground truth in density estimation
 - Model's inductive bias has more influence on density estimation in OOD regions ⇒ likelihood-based tests should be used with care

See paper for details