To understand deep learning we need to understand kernel learning

ZIYU WANG

A Spectral View to Kernel Ridge Regression Neural Tangent Kernel

GP-BNN Correspondence

is

Contents

GP-BNN CORRESPONDENCE
The DGP corresponding to a single-layer BNN prior

$$w_i^{(1)} \sim \mathcal{N}(0, C_1/N),$$
 $i \in [N];$
 $w_i^{(0)} \sim \mathcal{N}(0, C_0),$ $i \in [N];$
 $f(x) := \sum_{i \le N} w_i^{(1)} \varphi(w_i^{(0)} x).$

Let $\varepsilon_i^{(1)} := \sqrt{N} w_i^{(1)}$. Now

$$\begin{bmatrix} f(x) \\ f(x') \end{bmatrix} = \frac{1}{\sqrt{N}} \sum_{i \in \mathcal{N}} \begin{bmatrix} \varepsilon_i^{(1)} \varphi(w_i^{(0)} x) \\ \varepsilon_i^{(1)} \varphi(w_i^{(0)} x') \end{bmatrix} \tag{}$$

is a sum of i.i.d. rvs. So when $\varphi(NormalRv)$ is well-behaved, by CLT (f(x), f(x')) are jointly normal, and $p(f) \to \mathcal{GP}$.

uncorrelated: $\mathbb{E}[f_0(x)f_1(x)]$

When the final layer has multiple outputs, they are

$$= \mathbb{E}\left[\sum_{i,i'} w_{i\to 0}^{(1)} \varphi(w_i^{(0)} x) w_{i'\to 1}^{(1)} \varphi(w_{i'}^{(0)} x)\right] = 0.$$
Thus $[f_0(x); f_1(x')] \to \mathcal{N} \Rightarrow \{f_i\}$ form independent GPs.

outputs are *a priori* independent is disturbing to many (Neal; MacKay; etc).

They believe this behavior is undesirable for a great

They believe this behavior is undesirable for e.g. pattern recognition, and advocate priors that break this. The easiest fix is to choose a φ s.t. $\varphi(NormalSample)$

The idea that for a multi-output NN, its top-layer

has unbounded moments. It's not clear if the implication will be profound. An analogy is to impose a prior of $\mathcal{N}(0,I)$ when you should use a hierarchical model for covariance.

Bayesian DNN to GP.—The DGP becomes

 $q_i^{(\mu)}(x) := \varphi[f_i^{(\mu)}(x)],$

where $w_{(k)}^{(\mu)} \sim \mathcal{N}(0, C_w^{(\mu)}), b_{(k)}^{(\mu)} \sim \mathcal{N}(0, C_b^{(\mu)}).$

 $\mathbb{E}[f_i^{(\mu)}(x)f_i^{(\mu)}(x')]:$

$$\mathbb{E}[f_i^{(\mu)}(x)f_j^{(\mu)}(x')] = \mathbb{E}\left\{\sum_{k,k'} w_{k\to i}^{(\mu)} g_k^{(\mu-1)}(x) w_{k'\to j}^{(\mu)} g_{k'}^{(\mu-1)}(x')\right\} + \delta_{ij} C_b^{(\mu)}$$

 $=\delta_{ij}[C_{\nu\nu}^{(\mu)}N_{\mu}\mathbb{E}[q_{\nu}^{(\mu-1)}(x)q_{\nu}^{(\mu-1)}(x')]+C_{\nu}^{(\mu)}]$ $= \delta_{ii} [\tilde{C}_{w}^{(\mu)} \mathbb{E}_{(\varepsilon,\varepsilon') \sim \mathcal{N}(0,K)} [\varphi(\varepsilon)\varphi(\varepsilon')] + C_{h}^{(\mu)}].$

 $= \delta_{ij} \mathbb{E} \left\{ \sum_{k \to i} w_{k \to i}^{(\mu)} g_k^{(\mu-1)}(x) w_{k \to i}^{(\mu)} g_k^{(\mu-1)}(x') \right\} + \delta_{ij} C_b^{(\mu)}$

Notice that up to now, we haven't used normality.

A hand-waving argument.—If we further require

 $\{f_{i}^{(\mu-1)}: k \in [N_{\mu-1}]\}$

be jointly normal, they become independent, and by multivariate CLT, as $N_{\mu} \to \infty$, $\{f_k^{(\mu)}: k \in [N_{\mu}]\}$ are jointly $normal \Rightarrow independent GPs with kernel (2).$ As $N_1 \to \infty$, $f_{\iota}^{(1)}(\cdot)$ become independent GPs follow-

ing the single-layer argument. Thus we claim the DNN prior converges to a GP if we

"set $N_{\mu} \to \infty$ for $\mu = 1, 2, \dots$ consecutively".

A rigorous proof for weak convergence.—can be found in Matthews et al (2018). The idea is that

Let the first two moments of $[f_k^{(\mu-1)}(x); f_k^{(\mu-1)}(x')]$ be 0 and $\mathbf{K}_{x,x'}$ for all k. We can calculate the covariance

(1) $f_n \xrightarrow{w} \mathcal{GP} \Leftrightarrow \text{FiniteLinearProj}[f_n] \xrightarrow{w} \mathcal{N};$

(2) CLT holds for *exchangeable* and uncorrelated rvs.

Simulations.—

(1) 4-layer DNNs with width 50 well approximates the

GP prior, in terms of 12-dimensional cross-sectional MMD.

(2) On a 2D regression task with tens of input, log marginal likelihood of BNN / GP differs by $\sim 10\%$.

(3) On the Yacht dataset, using GP / BNN to optimize kernel hyper-parameters results in significantly dif-

ferent results; under their settings BNN consistently outperforms GP.

(2)

A Spectral View to Kernel Ridge Regression

Now it is tempting¹ to study the MAP given a GP prior, i.e. the KRR estimator.

$$\hat{f} := \operatorname{argmin}_{f} - \|f(X_{\operatorname{tr}}) - Y_{\operatorname{tr}}\|_{2}^{2} + \alpha \|f\|_{\mathcal{H}}$$

$$\Rightarrow \hat{f}(x_{\operatorname{te}}) = K_{\operatorname{er}}(K_{\operatorname{rr}} + \alpha I)^{-1}Y_{\operatorname{tr}}.$$

As we will see, generalization performance of KRR relates to the *intrinsic dimensionality* of the regression problem.

A Functional / Asymptotic View.—Let $X_{\rm tr} \sim P(x)$. As $N_{\text{train}} \to \infty$, eigenvectors of K_{rr} can be viewed as eigenfunctions of the following operator:

 $Y_{\rm tr} \mapsto K_{\rm er}(K_{\rm rr} + \lambda I)^{-1} Y_{\rm tr}$

$$K_{\mathrm{rr}}: f(\mathbf{X}_{\mathrm{tr}}) \mapsto K_{\mathrm{rr}}f(X_{\mathrm{tr}}) \xrightarrow{N_{\mathrm{train}} \to \infty}$$

 $\mathbf{K}: f \mapsto \int f(\cdot)k(\cdot,y)P(dy).$

As $N_{\text{train}}, N_{\text{test}} \to \infty$, the KRR estimator

can also be viewed as an operator on
$$L^2(P)$$
, namely

 $a \mapsto \mathbf{K}(\mathbf{K} + \lambda \cdot \mathrm{id})^{-1}a$.

Let the eigenfunctions and eigenvalues of K be

$$\{\lambda_i, \psi_i(\cdot)\}_{i=1}^{\infty}$$

now

 $\mathbf{K}(\mathbf{K} + \alpha \cdot \mathrm{id})^{-1}g = \sum_{i} \frac{\lambda_{i}}{\lambda_{i} + \alpha} \langle \psi_{i}, g \rangle \psi_{i}$ ⇒ Asymptotically, KRR performs low-pass filtering.

Why is this interesting?.—The filtering effect is significant, at least for problems with moderately dimension:

Ex. (Belkin, 2018) When P is the Lebesgue measure on \mathbb{R}^d , k is RBF with bandwidth σ^2 , we will have

$$\lambda_n \sim \exp(-C\sigma^2 n^{1/d}).$$
 ψ_i s.t. $\lambda_i \ll \alpha$ is basically filtered out with this reg-

ularizer. As λ_i decays exponentially, even a very small value of α effectively makes KRR a truncated series estimator (Belkin, 2018; Section 4). This is desirable as higher-frequency eigenfunctions are harder to estimate, and are undesirable, if you believe in the $\mathcal{GP}(0,k)$ prior.

Your universal-approximating NN / GP / KRR regressors may encode stronger assumptions than you expect.

More example of eigenvalue decay.—

• A k-th order polynomial kernel has at most k non-zero

eigenvalues;

¹Meanwhile, recall it is not necessarily the weight-space MAP.

• When $\dim \operatorname{supp} P = d' < d$ and k is the RBF kernel, $\lambda_n \prec \exp(-C\sigma^2 n^{1/d'}).$ Eigenspectrum of K is a sensible measure of model complexity, and is determined by both the kernel and the geometry of P(x).

(Full-batch) gradient descent in weight space:

Neural Tangent Kernel

$$\theta_{\ell+1} \leftarrow \theta_{\ell} - \epsilon \frac{\partial L(\theta)}{\partial \theta}$$
$$= \theta_{\ell} - \epsilon \left[\frac{\partial f(\mathbf{X})}{\partial \theta} \right]^{\top} \frac{\partial L[f(\mathbf{X})]}{\partial f(\mathbf{X})}$$

in function space:

 $f_{\ell+1}(\mathbf{X}) \leftarrow$

$$f_{\ell}(\mathbf{X}) - \epsilon \underbrace{\frac{\partial f(\mathbf{X})}{\partial \theta} \begin{bmatrix} \partial f(\mathbf{X}) \\ \partial \theta \end{bmatrix}^{\top}}_{\text{preconditioner}} \underbrace{\frac{\partial L[f(\mathbf{X})]}{\partial f_{\ell}(\mathbf{X})}}_{\text{intended F-S update } d_{\ell}}$$
What does this preconditioner do?.—Consider a linear model

linear model
$$f(\mathbf{X}) := \quad \underbrace{\mathbf{X}} \quad \underbrace{\boldsymbol{\theta}} \; .$$

If X are random features corresponding to a certain kernel k, the preconditioner

 $\lim_{N_X \to \infty} \mathbf{X} \mathbf{X}^{\top} = k(\mathbf{X}, \mathbf{X})$

is the gram matrix.

If we decompose the intended function-space update

$$d_{\ell} =: \sum_{i} \langle d_{\ell}, \psi_{i} \rangle \, \psi_{i}$$

 $f_{\ell+1} - f_{\ell} = \epsilon \sum_{i} \frac{\lambda_{i}}{\lambda_{i}} \langle d_{\ell}, \psi_{i} \rangle \psi_{i}$

the update rule

decreases the learning rate for higher-frequency eigenfunctions.

Early stopping acts as a low-pass filter.

Again, the result is "exponentially strong": increasing training time to K times the original only add in $O(\log K)$ eigenfunctions. For general non-linear models, the preconditioner, as a function of θ , is time-varying. So the following may

seem mind-blowing:

Thm. For infinitely wide DNN with $|\sigma'|$ and $|\sigma''|$ bounded, $(1)\ \ The\ preconditioner\ at\ initialization\ converges\ in\ prob-$

 $W_{ii}^{(l)} \sim \mathcal{N}(0, I),$ $\tilde{\alpha}^{(l)}(x) := \frac{1}{\sqrt{N_{l-1}}} W^{(l)} \alpha^{(l-1)}(x) + b^{(l)}, \text{ (pre-activation)}$

 $\alpha^{(l)} := \sigma(\tilde{\alpha}^{(l)})$

Initial transform.—Let $\tilde{\alpha}_i^{(l)}, \alpha_i^{(l)} \in \mathbb{R}^{N_{train} \times 1}$ denote the evaluation on \mathbf{X} .

 $\frac{\partial \tilde{\alpha}_{i}^{(l)}}{\partial \Theta} \left(\frac{\partial \tilde{\alpha}_{i'}^{(l)}}{\partial \Theta} \right)^{\top}$

 $= \sum_{i} \frac{\partial \tilde{\alpha}_{i}^{(l)}}{\partial \theta} \left(\frac{\partial \tilde{\alpha}_{i'}^{(l)}}{\partial \theta} \right)^{\top} + (\theta \notin \text{layer } l)$ We will show by induction that when we take sequentially the limit $n_i \to \infty$ for i < l, the above (1) Converges in probability to some deterministic matrix

 $K^{(l)}$, if i = i'; (2) Converges to 0 otherwise.

(a) For $\theta \in \text{layer } l$, say $\theta = W_{ii}^{(l)}$ for some j,

Notations.—for $l \in [L], i \in [N_L], j \in [N_{L-1}]$

(activation)

 $\sum_{i} \frac{\partial \tilde{\alpha}_{i}^{(l)}}{\partial W_{i}^{(l)}} \left(\frac{\partial \tilde{\alpha}_{i'}^{(l)}}{\partial W_{i}^{(l)}} \right)^{\top} = \delta_{ii'} \sum_{i=1}^{N_{L-1}} \frac{1}{N_{L-1}} \alpha_{j}^{(l-1)} \left(\alpha_{j}^{(l-1)} \right)^{\top}$

 $\stackrel{\text{CLT}}{\longrightarrow} \delta_{ii'} \Sigma^{(l-1)}$

ability to a fixed transform; and it remains constant during training. $j \in [N_{l-1}]$ converge to i.d. GPs with deterministic kert. The authors showed that as $N_{1...l-2} \to \infty$, with probability 1 nel $\Sigma^{(l-1)}$ at initialization.)

(in the last line, we first let $N_{1...l-2} \to \infty$, now $\{\alpha_i^{(l-1)}:$

$$rac{\partial ilde{lpha}_{i}^{(l)}}{\partial b_{i}^{(l)}} \left(rac{\partial ilde{lpha}_{i'}^{(l)}}{\partial b_{i}^{(l)}}
ight)^{ op} = \delta_{ii'} \mathbf{1} \mathbf{1}^{ op}.$$

(b) For
$$\theta \notin \text{layer } l$$
, $\frac{\partial \tilde{\alpha}_{i}^{(l)}}{\partial \theta} \left(\frac{\partial \tilde{\alpha}_{i'}^{(l)}}{\partial \theta} \right)^{\top}$ equals

$$\left[\sum_{j} \frac{\partial \tilde{\alpha}_{i}^{(l)}}{\partial \alpha_{j}^{(l-1)}} \frac{\partial \alpha_{j}^{(l-1)}}{\partial \theta}\right] (\text{Transpose}, i \mapsto i')$$

$$= \frac{1}{N_{l-1}} \left[\sum_{j} W_{ij}^{(l)} \frac{\partial \tilde{\alpha}_{j}^{(l-1)}}{\partial \theta} \sigma'(\tilde{\alpha}_{j}^{(l-1)})\right] (\mathbf{T}, i \mapsto i')$$

$$\|\alpha_j^{(l-1)}(t) - \alpha_j^{(l-1)}(0)\|_2 = O\left(\frac{1}{\sqrt{N_{l-1}}}\right),$$

$$\|W_{j:}^{(l)}(t) - W_{j:}^{(l)}(0)\|_2 = O\left(\frac{1}{\sqrt{N_{l-1}}}\right)$$

Invariance during training.—Now α, W varies with

hold uniformly for all t. Now (each matrix element in) both sums in (3) changes by $O\left(\frac{1}{\sqrt{N_{l-1}}}\right)$, and taking

(5)

 $N_{l-1} \to \infty$ completes the proof. Rem. (1) You should not be bothered by (4), as collec-

tively $\|\alpha^{(l-1)}\|(t)$ can still change. Intuitively, (4) should hold because at any time, the gradient $\alpha_i^{(l-1)}$

receives is scaled by $N_{l-1}^{-1/2}$. (2) Notice K is independent of training data. So a more general statement is that in the complete, infinitedimensional function space,

 $\xrightarrow{p} \frac{1}{N_{l-1}} \sum_{i} W_{ij}^{(l)} W_{i'j}^{(l)} (\sigma'(\tilde{\alpha}_j^{(l-1)}))^2 K^{(l-1)}.$

The last line holds when N_l is fixed and $N_{1...l-2} \to \infty$. $\frac{df(\mathcal{X})}{dt} = K_{ntk}(\mathcal{X}, \mathbf{X}_{train}) d_t(\mathbf{X}).$ (6)Set $N_{l-1} \to \infty$, and proof completes by LLN (?).

(3) Before we proceed, here is the definition of neural tangent kernel.

$$\begin{split} K_{\text{ntk}}^{(0)} &= K_{\text{PriorGP}}^{(0)}, \\ K_{\text{ntk}}^{(L)} &= K_{\text{GP}}^{(L)} + K_{\text{ntk}}^{(L-1)} \odot \mathbb{E}_{f \sim K_{\text{cp}}^{(L-1)}} [\sigma'(f) \left(\sigma'(f)\right)^{\top}]. \end{split}$$

Notice it is different from the prior GP kernel; however, for common nonlinearities the expectation < 1, so maybe NTK and prior GP kernel aren't too different.

Early stopping as LP filter.—this argument still applies, but with K_{ntk} instead of K_{gp} .

More magic in least square regression.—For least-square regression, $d_t(\mathbf{X}) = f_t(\mathbf{X}) - \mathbf{Y}$. If we assume K_{ntk} is indeed fixed throughout training, (6) is a linear ODE and we can obtain $f(\mathcal{X})_{t\to\infty}$ in closed form. The result

$$f_{\infty}(x) = K_{er}K_{rr}^{-1}\mathbf{Y} + (f_0(x) - K_{er}K_{rr}^{-1}f_0(\mathbf{X})),$$

variance for out-of-sample x:

is

where $K_{er} = K_{ntk}(x, \mathbf{X}), K_{rr} = K_{ntk}(\mathbf{X}, \mathbf{X}).$ The second term is 0 for $x \in \mathbf{X}$, and the first term

is the maximum a posteriori estimation for $\mathcal{GP}(0, K_{ntk})$ with $\sigma^2 = 0$. Furthermore, as f_0 corresponds to a randomly initialized DNN, it converges to a GP. So we can derive the $K_{er}K_{rr}^{-1}K_{re}^{(0)} - K_{er}^{(0)}K_{rr}^{-1}K_{re}.$ where $K^{(0)}$ are Gram matrices corresponding to the P kernel, and K corresponds to the NT kernel. If we

 $\operatorname{Cov}[f_{\infty}(\mathcal{X})] = K_{ee}^{(0)} + K_{er}K_{rr}^{-1}K_{rr}^{(0)}K_{rr}^{-1}K_{re} -$

GP kernel, and K corresponds to the NT kernel. If we assume $K \approx K^{(0)}$, this is the GP posterior covariance!

Gradient descent is Bayesian inference.

*: only holds for RF expansion.

Connection to existing empirical findings.—

(1) It is known for long that GD ensemble produces sensi-

ble uncertainty estimate. On UCI regression datasets,

a NIPS17 paper shows the performance of GD ensem-

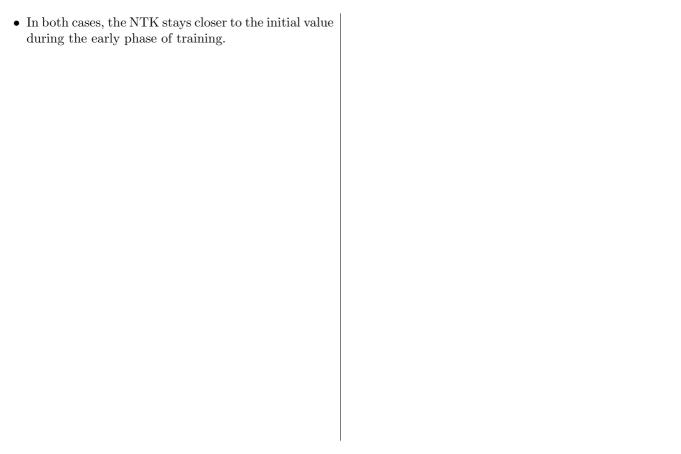
- ble matches that of MFVI and MC dropout, but is still worse than SoTA BNN; for adversarial defense
- ensembled GD is notably better than a single MAP.

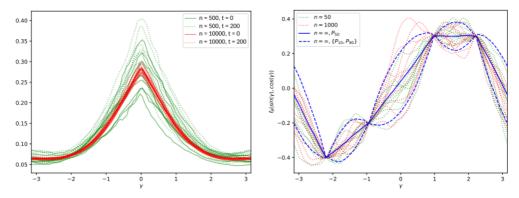
 (2) In general, $K \neq K^{(0)}$. And it is hard to relate their gigandecompositions
- eigendecompositions.
 (3) There are other ensemble-like heuristics that produces better uncertainty estimates. E.g. our f-POVI; ran-

domized prior (NIPS18). Intuitively, QMC is better

than MC. Simulations.—

• For 4-layer FNN, NTK in N=500 is notably different from the asymptotic value; N=10000 gets closer.



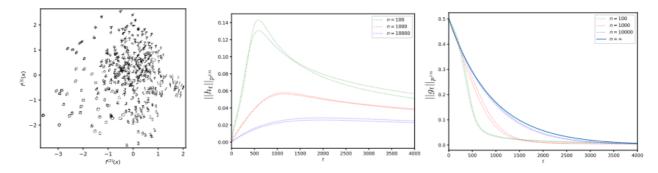


for two widths n and two times t.

Figure 1: Convergence of the NTK to a fixed limit Figure 2: Networks function f_{θ} near convergence for two widths n and 10th, 50th and 90th percentiles of the asymptotic Gaussian distribution.

Convergence of the NTK

The first experiment illustrates the convergence of the NTK $\Theta^{(L)}$ of a network of depth L=4 for two different widths n = 500, 10000. The function $\Theta^{(4)}(x_0, x)$ is plotted for a fixed $x_0 = (1, 0)$ and $x = (cos(\gamma), sin(\gamma))$ on the unit circle in Figure 1. To observe the distribution of the NTK, 10 independent initializations are performed for both widths. The kernels are plotted at initialization t=0 and then after 200 steps of gradient descent with learning rate 1.0 (i.e. at t=200). We approximate the function $f^*(x) = x_1x_2$ with a least-squares cost on random $\mathcal{N}(0,1)$ inputs.



components of MNIST.

(a) The 2nd and 3rd principal (b) Deviation of the network function (c) Convergence of f_{θ} along the 2nd f_{θ} from the straight line.

principal component.