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GP-BNN Correspondence

The DGP corresponding to a single-layer BNN prior
is

w
(1)
i ∼ N (0, C1/N), i ∈ [N ];

w
(0)
i ∼ N (0, C0), i ∈ [N ];

f(x) :=
∑
i≤N

w
(1)
i φ(w

(0)
i x).

Let ε
(1)
i :=

√
Nw

(1)
i . Now[

f(x)
f(x′)

]
=

1√
N

∑
i≤N

[
ε
(1)
i φ(w

(0)
i x)

ε
(1)
i φ(w

(0)
i x′)

]
(1)

is a sum of i.i.d. rvs. So when φ(NormalRv) is well-
behaved, by CLT (f(x), f(x′)) are jointly normal, and
p(f)→ GP .

When the final layer has multiple outputs, they are
uncorrelated:

E[f0(x)f1(x)]

=E

∑
i,i′

w
(1)
i→0φ(w

(0)
i x)w

(1)
i′→1φ(w

(0)
i′ x)

 = 0.

Thus [f0(x); f1(x
′)]→ N ⇒ {fi} form independent GPs.

The idea that for a multi-output NN, its top-layer
outputs are a priori independent is disturbing to many
(Neal; MacKay; etc).

They believe this behavior is undesirable for e.g. pat-
tern recognition, and advocate priors that break this.
The easiest fix is to choose a φ s.t. φ(NormalSample)
has unbounded moments.

It’s not clear if the implication will be profound. An
analogy is to impose a prior of N (0, I) when you should
use a hierarchical model for covariance.



LATEX FOR CHALK TALKS 3

Bayesian DNN to GP.—The DGP becomes

f
(µ)
i (x) :=

Nµ∑
k=1

w
(µ)
k→ig

(µ−1)
k (x) + b

(µ)
i ,

g
(µ)
i (x) := φ[f

(µ)
i (x)],

where w
(µ)
(·) ∼ N (0, C

(µ)
w ), b

(µ)
(·) ∼ N (0, C

(µ)
b ).

Let the first two moments of [f
(µ−1)
k (x); f

(µ−1)
k (x′)] be

0 and Kx,x′ for all k. We can calculate the covariance

E[f (µ)i (x)f
(µ)
j (x′)]:

E[f (µ)i (x)f
(µ)
j (x′)]

=E

∑
k,k′

w
(µ)
k→ig

(µ−1)
k (x)w

(µ)
k′→jg

(µ−1)
k′ (x′)

+ δijC
(µ)
b

=δijE

{∑
k

w
(µ)
k→ig

(µ−1)
k (x)w

(µ)
k→ig

(µ−1)
k (x′)

}
+ δijC

(µ)
b

=δij [C
(µ)
w NµE[g(µ−1)

k (x)g
(µ−1)
k (x′)] + C

(µ)
b ]

=δij [C̃
(µ)
w E(ε,ε′)∼N (0,K)[φ(ε)φ(ε

′)] + C
(µ)
b ]. (2)

Notice that up to now, we haven’t used normality.

A hand-waving argument.—If we further require

{f (µ−1)
k : k ∈ [Nµ−1]}

be jointly normal, they become independent, and by mul-

tivariate CLT, as Nµ → ∞, {f (µ)k : k ∈ [Nµ]} are jointly
normal ⇒ independent GPs with kernel (2).

As N1 →∞, f
(1)
k (·) become independent GPs follow-

ing the single-layer argument.
Thus we claim the DNN prior converges to a GP if we

“set Nµ →∞ for µ = 1, 2, . . . consecutively”.

A rigorous proof for weak convergence.—can be
found in Matthews et al (2018). The idea is that

(1) fn
w−→ GP ⇔ FiniteLinearProj[fn]

w−→ N ;
(2) CLT holds for exchangeable and uncorrelated rvs.

Simulations.—

(1) 4-layer DNNs with width 50 well approximates the
GP prior, in terms of 12-dimensional cross-sectional
MMD.

(2) On a 2D regression task with tens of input, log mar-
ginal likelihood of BNN / GP differs by ∼ 10%.

(3) On the Yacht dataset, using GP / BNN to optimize
kernel hyper-parameters results in significantly dif-
ferent results; under their settings BNN consistently
outperforms GP.
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A Spectral View to Kernel Ridge Regression

Now it is tempting1 to study the MAP given a GP
prior, i.e. the KRR estimator.

f̂ := argminf − ∥f(Xtr)− Ytr∥22 + α∥f∥H
⇒ f̂(xte) = Ker(Krr + αI)−1Ytr.

As we will see, generalization performance of KRR relates
to the intrinsic dimensionality of the regression problem.

A Functional / Asymptotic View.—LetXtr ∼ P (x).
As Ntrain → ∞, eigenvectors of Krr can be viewed as
eigenfunctions of the following operator:

Krr : f(Xtr) 7→ Krrf(Xtr)
Ntrain→∞
======⇒

K : f 7→
∫
f(·)k(·, y)P (dy).

As Ntrain, Ntest →∞, the KRR estimator

Ytr 7→ Ker(Krr + λI)−1Ytr

can also be viewed as an operator on L2(P ), namely

g 7→ K(K+ λ · id)−1g.

Let the eigenfunctions and eigenvalues of K be

{λi, ψi(·)}∞i=1,

1Meanwhile, recall it is not necessarily the weight-space MAP.

now

K(K+ α · id)−1g =
∑
i

λi
λi + α

⟨ψi, g⟩ψi

=⇒ Asymptotically, KRR performs low-pass filtering.

Why is this interesting?.—The filtering effect is sig-
nificant, at least for problems with moderately dimen-
sion:

Ex. (Belkin, 2018) When P is the Lebesgue measure on
Rd, k is RBF with bandwidth σ2, we will have

λn ∼ exp(−Cσ2n1/d).

ψi s.t. λi ≪ α is basically filtered out with this reg-
ularizer. As λi decays exponentially, even a very small
value of α effectively makes KRR a truncated series es-
timator (Belkin, 2018; Section 4). This is desirable as
higher-frequency eigenfunctions are harder to estimate,
and are undesirable, if you believe in the GP(0, k) prior.

Your universal-approximating NN / GP / KRR
regressors may encode stronger assumptions
than you expect.

More example of eigenvalue decay.—

• A k-th order polynomial kernel has at most k non-zero
eigenvalues;
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• When dim suppP = d′ < d and k is the RBF kernel,
λn ≺ exp(−Cσ2n1/d

′
).

Eigenspectrum of K is a sensible measure of model com-
plexity, and is determined by both the kernel and the
geometry of P (x).

Neural Tangent Kernel

(Full-batch) gradient descent in weight space:

θℓ+1 ← θℓ − ϵ
∂L(θ)

∂θ

= θℓ − ϵ
[
∂f(X)

∂θ

]⊤
∂L[f(X)]

∂f(X)

in function space:

fℓ+1(X)←

fℓ(X)− ϵ ∂f(X)

∂θ

[
∂f(X)

∂θ

]⊤
︸ ︷︷ ︸

preconditioner

∂L[f(X)]

∂fℓ(X)︸ ︷︷ ︸
intended F-S update dℓ

What does this preconditioner do?.—Consider a
linear model

f(X) := X︸︷︷︸
Ntrain×NX

θ︸︷︷︸
NX×1

.

If X are random features corresponding to a certain ker-
nel k, the preconditioner

lim
NX→∞

XX⊤ = k(X,X)

is the gram matrix.
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If we decompose the intended function-space update

dℓ =:
∑
i

⟨dℓ, ψi⟩ψi

the update rule

fℓ+1 − fℓ = ϵ
∑
i

λi ⟨dℓ, ψi⟩ψi

decreases the learning rate for higher-frequency eigen-
functions.

Early stopping acts as a low-pass filter.

Again, the result is “exponentially strong”: increas-
ing training time to K times the original only add in
O(logK) eigenfunctions.

For general non-linear models, the preconditioner, as
a function of θ, is time-varying. So the following may
seem mind-blowing:

Thm. For infinitely wide DNN with |σ′| and |σ′′| bounded,

(1) The preconditioner at initialization converges in prob-
ability to a fixed transform;

(2) and it remains constant during training.

Notations.—for l ∈ [L], i ∈ [NL], j ∈ [NL−1]

W
(l)
ij ∼ N (0, I),

α̃(l)(x) :=
1√
NL−1

W (l)α(l−1)(x) + b(l), (pre-activation)

α(l) := σ(α̃(l)) (activation)

Initial transform.—Let α̃
(l)
i , α

(l)
i ∈ RNtrain×1 denote

the evaluation on X.

∂α̃
(l)
i

∂Θ

(
∂α̃

(l)
i′

∂Θ

)⊤

=
∑

θ∈layer l

∂α̃
(l)
i

∂θ

(
∂α̃

(l)
i′

∂θ

)⊤

+ (θ ̸∈ layer l) (3)

We will show by induction that when we take sequentially
the limit ni →∞ for i < l, the above

(1) Converges in probability to some deterministic matrix
K(l), if i = i′;

(2) Converges to 0 otherwise.

(a) For θ ∈ layer l, say θ =W
(l)
ji for some j,

∑
j

∂α̃
(l)
i

∂W
(l)
ji

(
∂α̃

(l)
i′

∂W
(l)
ji

)⊤

= δii′

NL−1∑
j=1

1

NL−1
α
(l−1)
j

(
α
(l−1)
j

)⊤
CLT−→ δii′Σ

(l−1).
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(in the last line, we first let N1...l−2 →∞, now {α(l−1)
j :

j ∈ [Nl−1]} converge to i.d. GPs with deterministic ker-
nel Σ(l−1) at initialization.)

∂α̃
(l)
i

∂b
(l)
i

(
∂α̃

(l)
i′

∂b
(l)
i

)⊤

= δii′11
⊤.

(b) For θ ̸∈ layer l,
∂α̃

(l)
i

∂θ

(
∂α̃

(l)

i′
∂θ

)⊤

equals

∑
j

∂α̃
(l)
i

∂α
(l−1)
j

∂α
(l−1)
j

∂θ

 (Transpose,i 7→ i′)

=
1

Nl−1

∑
j

W
(l)
ij

∂α̃
(l−1)
j

∂θ
σ′(α̃

(l−1)
j )

 (T,i 7→ i′)

p→ 1

Nl−1

∑
j

W
(l)
ij W

(l)
i′j (σ

′(α̃
(l−1)
j ))2K(l−1).

The last line holds when Nl is fixed and N1...l−2 → ∞.
Set Nl−1 →∞, and proof completes by LLN (?).

Invariance during training.—Now α,W varies with
t. The authors showed that as N1...l−2 →∞, with prob-
ability 1

∥α(l−1)
j (t)− α(l−1)

j (0)∥2 = O

(
1√
Nl−1

)
, (4)

∥W (l)
j: (t)−W

(l)
j: (0)∥2 = O

(
1√
Nl−1

)
(5)

hold uniformly for all t. Now (each matrix element in)

both sums in (3) changes by O

(
1√
Nl−1

)
, and taking

Nl−1 →∞ completes the proof.

Rem. (1) You should not be bothered by (4), as collec-
tively ∥α(l−1)∥(t) can still change. Intuitively, (4)

should hold because at any time, the gradient α
(l−1)
j

receives is scaled by N
−1/2
l−1 .

(2) Notice K is independent of training data. So a more
general statement is that in the complete, infinite-
dimensional function space,

df(X )
dt

= Kntk(X ,Xtrain)dt(X). (6)
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(3) Before we proceed, here is the definition of neural
tangent kernel.

K
(0)
ntk = K

(0)
PriorGP,

K
(L)
ntk = K

(L)
GP +K

(L−1)
ntk ⊙ E

f∼K
(L−1)
GP

[σ′(f) (σ′(f))
⊤
].

Notice it is different from the prior GP kernel; how-
ever, for common nonlinearities the expectation < 1,
so maybe NTK and prior GP kernel aren’t too differ-
ent.

Early stopping as LP filter.—this argument still ap-
plies, but with Kntk instead of Kgp.

More magic in least square regression.—For least-
square regression, dt(X) = ft(X)−Y. If we assume Kntk

is indeed fixed throughout training, (6) is a linear ODE
and we can obtain f(X )t→∞ in closed form. The result
is

f∞(x) = KerK
−1
rr Y + (f0(x)−KerK

−1
rr f0(X)),

where Ker = Kntk(x,X),Krr = Kntk(X,X).
The second term is 0 for x ∈ X, and the first term

is the maximum a posteriori estimation for GP(0,Kntk)
with σ2 = 0.

Furthermore, as f0 corresponds to a randomly initial-
ized DNN, it converges to a GP. So we can derive the
variance for out-of-sample x:

Cov[f∞(X )] =K(0)
ee +KerK

−1
rr K

(0)
rr K

−1
rr Kre−

KerK
−1
rr K

(0)
re −K(0)

er K
−1
rr Kre.

where K(0) are Gram matrices corresponding to the
GP kernel, and K corresponds to the NT kernel. If we
assume K ≈ K(0), this is the GP posterior covariance!

Gradient descent is* Bayesian inference.

*: only holds for RF expansion.

Connection to existing empirical findings.—

(1) It is known for long that GD ensemble produces sensi-
ble uncertainty estimate. On UCI regression datasets,
a NIPS17 paper shows the performance of GD ensem-
ble matches that of MFVI and MC dropout, but is
still worse than SoTA BNN; for adversarial defense
ensembled GD is notably better than a single MAP.

(2) In general, K ̸= K(0). And it is hard to relate their
eigendecompositions.

(3) There are other ensemble-like heuristics that produces
better uncertainty estimates. E.g. our f-POVI; ran-
domized prior (NIPS18). Intuitively, QMC is better
than MC.

Simulations.—

• For 4-layer FNN, NTK inN = 500 is notably different
from the asymptotic value; N = 10000 gets closer.
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• In both cases, the NTK stays closer to the initial value
during the early phase of training.
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