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GP-BNN CORRESPONDENCE \

The DGP corresponding to a single-layer BNN prior
is
Y N(0,C1/N),
w™ ~ N(0,Cy),
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is a sum of i.i.d. rvs. So when ¢(NormalRv) is well-
behaved, by CLT (f(x), f(z')) are jointly normal, and
p(f) = GP.

When the final layer has multiple outputs, they are
uncorrelated:

E[fo(2) f1(2)]
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Thus [fo(x); f1(2")] = N = {f;} form independent GPs.

The idea that for a multi-output NN, its top-layer
outputs are a priori independent is disturbing to many
(Neal; MacKay; etc).

They believe this behavior is undesirable for e.g. pat-
tern recognition, and advocate priors that break this.
The easiest fix is to choose a ¢ s.t. @(NormalSample)
has unbounded moments.

It’s not clear if the implication will be profound. An
analogy is to impose a prior of N'(0, ) when you should
use a hierarchical model for covariance.



Bayesian DNN to GP.—The DGP becomes
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9" (@) = w[ff”(x)],
where w’}) ~ N'(0,CH#), %) ~ N(0,C{").

Let the first two moments of [fé“_l)(x); fé”_l)(x’)] be
0 and K, ,+ for all k. We can calculate the covariance

E[fi(u) (x)fj(u) (z")]:
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Notice that up to now, we haven’t used normality.
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A hand-waving argument.—If we further require

(Y ke [Nuoa])

be jointly normal, they become independent, and by mul-
tivariate CLT, as N, — oo, {f,gﬂ) : k € [N,]} are jointly
normal = independent GPs with kernel (2).

As Ny — oo, f,gl)(~) become independent GPs follow-
ing the single-layer argument.

Thus we claim the DNN prior converges to a GP if we
“set IV, — oo for u=1,2,... consecutively”.

A rigorous proof for weak convergence.—can be
found in Matthews et al (2018). The idea is that

(1) f. = GP < FiniteLinearProj[f,] — N/;

(2) CLT holds for exchangeable and uncorrelated rvs.

Simulations.—

(1) 4-layer DNNs with width 50 well approximates the
GP prior, in terms of 12-dimensional cross-sectional
MMD.

(2) On a 2D regression task with tens of input, log mar-
ginal likelihood of BNN / GP differs by ~ 10%.

(3) On the Yacht dataset, using GP / BNN to optimize
kernel hyper-parameters results in significantly dif-
ferent results; under their settings BNN consistently
outperforms GP.



| A SPECTRAL VIEW TO KERNEL RIDGE REGRESSION |

Now it is tempting' to study the MAP given a GP
prior, i.e. the KRR estimator.

f = argmin; — || f(X¢) —
= floe) = Ke(Kn+al) Y.

As we will see, generalization performance of KRR relates
to the intrinsic dimensionality of the regression problem.

A Functional / Asymptotic View.—Let X;, ~ P(z).
As Nipain — 00, eigenvectors of K, can be viewed as
eigenfunctions of the following operator:

f(Xer)
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AS Nirain, Niest — 00, the KRR estimator
Yie = Kor(Kee + )7 Y
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can also be viewed as an operator on L?(P), namely
g~ KK+ X-id)"'g
Let the eigenfunctions and eigenvalues of K be
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"Meanwhile, recall it is not necessarily the weight-space MAP.

now

KK+ a-id)~
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= Asymptotically, KRR performs low-pass filtering.
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Why is this interesting?.—The filtering effect is sig-
nificant, at least for problems with moderately dimen-
sion:

Ex. (Belkin, 2018) When P is the Lebesgue measure on
R?, k is RBF with bandwidth o2, we will have

An ~ exp(—Co?nt/?).

¥; s.t. A; < « is basically filtered out with this reg-
ularizer. As \; decays exponentially, even a very small
value of « effectively makes KRR a truncated series es-
timator (Belkin, 2018; Section 4). This is desirable as
higher-frequency eigenfunctions are harder to estimate,
and are undesirable, if you believe in the GP(0, k) prior.

Your universal-approximating NN / GP / KRR
regressors may encode stronger assumptions
than you expect.

More example of eigenvalue decay.—

e A k-th order polynomial kernel has at most k non-zero
eigenvalues;



e When dimsuppP = d’ < d and k is the RBF kernel,
An < exp(—Co2nt/?).
Eigenspectrum of K is a sensible measure of model com-
plexity, and is determined by both the kernel and the
geometry of P(z).

NEURAL TANGENT KERNEL

(Full-batch) gradient descent in weight space:

Opr1 < 0p — 68;(99)
. {aﬂxq T oLif(x)]
T a0 f(X)
in function space:
fer1(X)
0f(X) [9f(X) OL[f(X)]
JeX) = <=5 [aa] afi(X)

preconditioner intended F-S update d;

What does this preconditioner do?.—Consider a
linear model

f(X):= X 0
NirainXNx Nx X1

If X are random features corresponding to a certain ker-
nel k, the preconditioner

lim XXT =

Nx—>00

k(X,X)

is the gram matrix.



If we decompose the intended function-space update

dp =) (de, i) i

K2

the update rule
ferr = fo=1e€>_ Ni(de, i) ¥

decreases the learning rate for higher-frequency eigen-
functions.

Early stopping acts as a low-pass filter.

Again, the result is “exponentially strong”: increas-
ing training time to K times the original only add in
O(log K) eigenfunctions.

For general non-linear models, the preconditioner, as
a function of 0, is time-varying. So the following may
seem mind-blowing:

Thm. For infinitely wide DNN with |o’| and |o”| bounded,

(1) The preconditioner at initialization converges in prob-
ability to a fized transform;
(2) and it remains constant during training.

Notations.—for [ € [L],i € [NL],j € [Np_1]

)
W ~ N0, 1),
1
Ni_y

ol .= a(d(l))

d(l)(x) = W(l)oz(l*l)(x) + b, (pre-activation)

(activation)

AV, ol e RNtrainx1 denote

Initial transform.—Let &; ", o;
the evaluation on X.
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We will show by induction that when we take sequentially
the limit n; — oo for i < [, the above

(1) Converges in probability to some deterministic matrix
KO if =4
(2) Converges to 0 otherwise.
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(in the last line, we first let Ny, ;2 — 0o, now {agl_l) :

J € [Ni-1]} converge to i.d. GPs with deterministic ker-
nel X(=1) at initialization.)
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-
> equals

8@?71)
00

aaW

— (Transpose,i + i)
aa§l 1)

>

J
~(1-1)
N4 r Y00

Z W z)W(z (_zf

o' (@) | (T, i)

1)))21(”—1),

The last line holds when Nj is fixed and Ny ;_o — o0.
Set N;_1 — o0, and proof completes by LLN (?).

Invariance during training.—Now «, W varies with
t. The authors showed that as N1, ;o — 0o, with prob-
ability 1

(=1 gy _ oD _ 1
log 7 (t) =g 7 (0)]]2 0<m>, (4)
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hold uniformly for all t. Now (each matrix element in)

1

both sums in (3) changes by O T

) , and taking

N;_1 — oo completes the proof.

Rem. (1) You should not be bothered by (4), as collec-
tively [|a(=D||(t) can still change. Intuitively, (4)

should hold because at any time, the gradient a§l71)

receives is scaled by N l__ll/ 2,

(2) Notice K is independent of training data. So a more
general statement is that in the complete, infinite-
dimensional function space,

df (X)
dt

= Kntk(Xv Xt7'ain)dt(x)~ (6)



(3) Before we proceed, here is the definition of neural
tangent kernel.

0 0
Kr(ltl)< = Kl()r)iorGP7
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Notice it is different from the prior GP kernel; how-
ever, for common nonlinearities the expectation < 1,
so maybe NTK and prior GP kernel aren’t too differ-
ent.

Early stopping as LP filter.—this argument still ap-
plies, but with K, instead of K.

More magic in least square regression.—For least-
square regression, d¢(X) = f;(X) =Y. If we assume K,
is indeed fixed throughout training, (6) is a linear ODE
and we can obtain f(X):— oo in closed form. The result
is

foolw) = KeT’K;-lY + (fo(z) — KerKr:-lfO(X))a

where Ke?" = Nptk (.73, X), K»,-r = Nptk (){7 X)

The second term is 0 for x € X, and the first term
is the mazimum a posteriori estimation for GP (0, Kpx)
with 02 = 0.

Furthermore, as fy corresponds to a randomly initial-
ized DNN, it converges to a GP. So we can derive the
variance for out-of-sample x:

Cov[foo (X)) :Kég) + KerKr_rlKﬁg)KﬁlKre_
Ko K'K© - KOK-K,..
where K are Gram matrices corresponding to the

GP kernel, and K corresponds to the NT kernel. If we
assume K ~ K this is the GP posterior covariance!

Gradient descent is” Bayesian inference.

*: only holds for RF expansion.

Connection to existing empirical findings.—

(1) It is known for long that GD ensemble produces sensi-
ble uncertainty estimate. On UCI regression datasets,
a NIPS17 paper shows the performance of GD ensem-
ble matches that of MFVI and MC dropout, but is
still worse than SoTA BNN; for adversarial defense
ensembled GD is notably better than a single MAP.
In general, K # K. And it is hard to relate their
eigendecompositions.

There are other ensemble-like heuristics that produces
better uncertainty estimates. E.g. our POVI; ran-
domized prior (NIPS18). Intuitively, QMC is better
than MC.

Simulations.—

e For 4-layer FNN, NTK in N = 500 is notably different
from the asymptotic value; N = 10000 gets closer.



e In both cases, the NTK stays closer to the initial value
during the early phase of training.
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Figure 1: Convergence of the NTK to a fixed limit Figure 2: Networks function fy near convergence
for two widths n and two times ¢. for two widths n and 10th, 50th and 90th per-
centiles of the asymptotic Gaussian distribution.

6.1 Convergence of the NTK

The first experiment illustrates the convergence of the NTK @) of a network of depth I, = 4 for
two different widths n = 500, 10000. The function ©'*)(zg, ) is plotted for a fixed 2o = (1,0)
and z = (cos(7), sin(7)) on the unit circle in Figure I} To observe the distribution of the NTK, 10
independent initializations are performed for both widths. The kernels are plotted at initialization
t = 0 and then after 200 steps of gradient descent with learning rate 1.0 (i.e. att = 200). We
approximate the function f*(z) = x;x» with a least-squares cost on random A(0, 1) inputs.



(a) The 2nd and 3rd principal

components of MNIST.
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(b) Deviation of the network function (c) Convergence of fy along the 2nd

fo from the straight line.

principal component.
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