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Background

Understanding Collective behaviors has a wide range applications
in video surveillance and crowd management.

In the real scenes, pedestrians tend to form groups and their
trajectories are influenced by others and obstacles.

The main challenges of crowd motion analysis are nonlinear
dynamics and coherent motion.
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Problem Formulation

Obtain reliable tracklets from each scene using KLT trackers. At
any time-instant t, the ith person is represented by his/her
coordinate (xi(t),yi(t)).

Predict future trajectories of pedestrians and use extracted hidden
features to recognize crowd motions.
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Previous Work

Social Force model

Optimize energy function
Hand-crafted functions
Hard to generalize

Probabilistic Forecasting

Gaussian Process

Recurrent Neural Networks

N-LSTM [Alahi et al., 2016]
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LSTM

Structure

Input / Output / Forget
gate
Memory state ct

Advantage

Prevent vanishing gradient
problem
Nonlinear characteristic
Generalization

ct= ft � ct−1 + it � tanh(Wxcxt + Whcht−1 + bc) (1)
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Why Coherent LSTM?

LSTM can model individual behaviors but can’t capture the
interaction in a group.

When the neighboring relationship of individuals remain invariant
over time and correlation of their velocities remain high, they tend
to have similar hidden state.

The trajectories of pedestrians not only follow the old trend, but
also are influenced by current environment.
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cLSTM Unit

ct = ft � ct−1 + it � tanh(Wxcxt + Whcht−1 + bc) +
∑
j∈N

λj(t)f
j
t � cjt−1

(2)
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Coherent Motion Modeling

Use coherent filtering [Zhou et al., 2012] [Shao et al., 2014] to discover
the coherent group.

The dependency relationship between two tracklets within the same
group is measured as:

τj(t) =
vi(t) · vj(t)

‖vi(t)‖‖vj(t)‖
(3)
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Dependency Coefficient

The dependency coefficient between the ith and jth tracklets in Eq. (2)
is defined as

λj(t) =
1

Zi
exp

(
τj(t)− 1

2σ2

)
∈ (0, 1] (4)

Zi: normalization constant corresponding to the ith tracklet.

λj(t) ' Z−1i if vi(t) ' vj(t) which implies that tracklets i and j
are similar.

Coherent regularization encourages the tracklets to learn similar
feature distributions by sharing information across tracklets within
a coherent group.
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Framework

Unsupervised encoder-decoder cLSTM framework:

hT = cLSTMe(xT ,hT−1), (5)

x̂t = cLSTMdr(ht, x̂t+1), where t ∈ [1, T ], (6)

x̂t = cLSTMdp(ht, x̂t−1). where t > T, (7)

Coherent Regularization
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Crowd Scene Profiling

Solve critical tasks in crowd scene analysis:

Group state estimation
Crowd video classification

Softmax classification using the feature learnt from the
unsupervised cLSTM.
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Datasets and Settings

CUHK Crowd Dataset

http://www.ee.cuhk.edu.hk/~xgwang/CUHKcrowd.html

Scene: streets, shopping malls, airports and parks
More than 400 sequences and more then 200,000 traklets

Settings

128 hidden units in cLSTM
2/3 of tracklets as the input and 1/3 as the predicted tracklets to
evaluate the performance.
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Future Path Forecasting

Table 1: Error of Path Prediction(pixels)

Kalman Filter Un-coherent LSTM Coherent LSTM

9.32 ± 1.99 6.64 ± 1.76 4.37±0.93
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Group State Estimation

(a) Gas (b) Solid (c) Pure Fluid  (d) Impure Fluid

(a) Collective  Transition

(e) Coherent LSTM(d) Un-coherent LSTM

(b) Prediction LSTM (c) Reconstruction LSTM

Confusion matrices of estimating group states using different methods:
(a) collective transition [Shao et al., 2014]; (b) prediction LSTM; (c)
reconstruction LSTM; (d) un-coherent LSTM; and (e) coherent LSTM.
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Crowd Video Classification

All video clips are annotated into 8 classes as 1) Highly mixed
pedestrian walking; 2) Crowd walking following a mainstream and well
organized; 3) Crowd walking following a mainstream but poorly
organized; 4) Crowd merge; 5) Crowd split; 6) Crowd crossing in
opposite directions; 7) Intervened escalator traffic; and 8) Smooth
escalator traffic.
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Conclusion

A novel recurrent neural network with coherent long short
term memory unit;

Introduce a coherent regularization to consider the collective
properties;

Outperform other methods in group state estimation and
crowd video classification.
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Thanks for your time!

Questions?
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