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Deep Learning is Everywhere
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[Google NMIT, witness the miracle of the moment]

Recent advances in microblogging crazy biography of artfcial intelligence: Google
translaton to achieve a major breakthroughl Worthy of atenton and celebraton. Mt
almost unlmited number of natural standard data in the new fechnology tseems to
startforce. The repor says:

Ten years ago, we released Google Translate, the core agorithm behind this senvice is
PBMT Phrase-Based Machine Translation

Since then, he rapid development of machine inteligence has given us a great boost
in speech recognifion and image recognition, but improving machine translaton s il
adficulttask

Today, we announced th release of the Goagle Neural Machine Transiation (GNMT)
system, which utiizes state-ofthe-ar raining techniques to maxiize the qualty of
machine tiansation sofar.For a full eview of our findings, please see our paper
"Google's Neural Machine Transiation System: Bridging the Gap between Human and
Machine Transiafion”
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Limitations
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m Computation Intensive
B Memory Intensive
m Hard to deploy on mobile devices




Low-bit DNNs for Efficient Inference
= S
m High Redundancy in DNNs;
m Quantize full-precision(32-bits) weights to binary(1 bit)
or ternary(2 bits) weights;
m Replace multiplication(convolution) by addition and
subtraction;




Typical Low-bit DNNs
= T
m BinaryConnect:
B — +1 with probability p = a(W;)
! ™ | =1 with probability 1 — p

m BWN: minimize [|W — aB||
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Training & Inference of Low-bit DNN

Let W be the full-precision weights, Q be the low-bit
weights (B, T, aB, oT).

Forward propagation: quantize W to Q and perform
convolution or multiplication

Backward propagation: use Q to calculate gradients
oL
Parameter update: Wit = Wt — nta—Qt

Inference: only need to keep low-bit weights Q




Motivations

B Quantize all weights simultaneously;

m Quantization error ||W — Q|| may be large for some
elements/filters;

B Induce inappropriate gradient directions.

B Quantize a portion of weights
m Stochastic selection
B Could be applied to any low-bit settings




Roulette Selection Algorithm
" -

Weight Matrix Quantization Error Stochastic Partition with r = 50% Hybrid Weight Matrix
Rotation Rotation
Cl 0.2
c2 0.05 | s
C3 0.2
C4 0.1 1-st selection: v=0.58 2-nd selection: v=0.37
C2 selected C3 selected
W — Q;ll1

Quantization Error: e; = A
ill1

Quantization Probability: Larger quantization error
L . 1
means smaller quantization probability, e.g. p; < —
l

Quantization Ratio r: Gradually increase to 100%
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Training & Inference
= S
m Hybrid weight matrix Q
~ _ |@Q; if channel i being selected
Qi = W; else

B Parameter update

m Inference: all weights are quantized; use Q to perform
inference




Ablation Studies
=
m Selection Granularity:
Filter-level > Element-level
m Selection/partition algorithms

Stochastic (roulette) > deterministic (sorting) ~ fixed
(selection only at first iteration)

m Quantization functions
Linear > Sigmoid > Constant ~ Softmax

» p; = exp(f;)/X exp(f;), where f = %
m Quantization Ratio Update Scheme

Exponential > Fine-tune > Uniformly
m 50% 2> 75% > 87.5% 2> 100%
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Results -- CIFAR

Bl CIFAR-10 CIFAR-100
5 TVGG9 | ResNet-56 | VGG-9 | ResNet-56
FWN 32 9.00 30.68 29.49
BWN 1 10.67 37.68 35.01
SQ-BWN | 1 9.40 35.25 31.56
TWN 2 9.87 34.80 32.09
SQ-TWN | 2 8.37 34.24 28.90
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Results -- ImageNet

AlexNet-BN ResNet-18
top-1 | top-5 | top-1 | top-5

FWN 32 44.18 | 20.83 | 34.80 | 13.60

Bits

BWN 1 51.22 | 27.18 | 45.20 | 21.08
SQ-BWN 1 48.78 | 24.86 | 41.64 | 18.35
TWN 2 47.54 | 23.81 | 39.83 | 17.02
SQ-TWN 2 4470 | 21.40 | 36.18 | 14.26
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Conclusions

We propose a stochastic quantization algorithm for
Low-bit DNN training

Our algorithm can be flexibly applied to all low-bit
settings;

Our algorithm help to consistently improve the
performance;

We release our codes to public for future development
https://github.com/dongyp13/Stochastic-Quantization
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